加载中

    logo
    Strawberry (Fragaria × ananassa cv. Romina) methanolic extract attenuates Alzheimer's beta amyloid production and oxidative stress by SKN-1/NRF and DAF-16/FOXO mediated mechanisms in C. elegans. Navarro-Hortal María D,Romero-Márquez Jose M,Esteban-Muñoz Adelaida,Sánchez-González Cristina,Rivas-García Lorenzo,Llopis Juan,Cianciosi Danila,Giampieri Francesca,Sumalla-Cano Sandra,Battino Maurizio,Quiles José L Food chemistry Bioactive compounds from strawberries have been associated with multiple healthy benefits. The present study aimed to assess chemical characterization of a methanolic extract of the Romina strawberry variety in terms of antioxidant capacity, polyphenols profile and chemical elements content. Additionally, potential toxicity, the effect on amyloid-β production and oxidative stress of the extract was in vivo evaluated in the experimental model Caenorhabditis elegans. Results revealed an important content in phenolic compounds (mainly ellagic acid and pelargonidin-3-glucoside) and minerals (K, Mg, P and Ca). The treatment with 100, 500 or 1000 μg/mL of strawberry extract did not show toxicity. On the contrary, the extract was able to delay amyloid β-protein induced paralysis, reduced amyloid-β aggregation and prevented oxidative stress. The potential molecular mechanisms present behind the observed results explored by RNAi technology revealed that DAF-16/FOXO and SKN-1/NRF2 signaling pathways were, at least partially, involved. 10.1016/j.foodchem.2021.131272
    Tangeretin promotes lifespan associated with insulin/insulin-like growth factor-1 signaling pathway and heat resistance in Caenorhabditis elegans. Liu Yalei,Zhou Zhenyu,Yin Liufang,Zhu Mengnan,Wang Fei,Zhang Lijun,Wang Hongqing,Zhou Zhiqin,Zhu Huanhu,Huang Cheng,Fan Shengjie BioFactors (Oxford, England) Tangeretin is a polymethoxylated flavonoid naturally occurred in citrus fruits with many pharmacological activities, such as anti-inflammatory, antiproliferative, and neuroprotective properties. A previous study reported that tangeretin-enriched orange extract could prolong the lifespan in Caenorhabditis elegans. However, the antiaging effect of tangeretin remains uncertain. In this study, we used the model organism C. elegans to conduct a lifespan test, observed the aging-related functional changes of nematodes, the fluorescence changes of stress-related proteins (DAF-16 and HSP-16.2) and its response to stress assay, and monitored the effect of tangeretin on the mRNA expression levels. The results showed that tangeretin supplementation (30 and 100 μM) extended the mean lifespan, slowed aging-related functional declines, and increased the resistance against heat-shock stress. Furthermore, tangeretin upregulated the mRNA expression of daf-16, hsp-16.2, and hsp-16.49, promoted the nuclear localization of DAF-16, and enhanced the fluorescence intensity of HSP-16.2, while it had no effect on the lifespan of daf-2, age-1, and daf-16 mutants. The current findings suggest that tangeretin can significantly extend the lifespan and enhance heat stress tolerance in an insulin/insulin-like growth factor signaling dependent manner. 10.1002/biof.1788
    Eugenol Elicits Prolongevity by Increasing Resistance to Oxidative Stress in C. elegans. Parween Nikhat,Jabeen Amber,Prasad Birendra CNS & neurological disorders drug targets AIM:To analyze the efficacy of eugenol on longevity by assessing its antioxidant effect using Caenorhabditis elegans as an animal model. BACKGROUND:Eugenol is a major polyphenolic component of Ocimum sanctum (Tulsi) which attributes wide pharmacological activities and can serve as a biomarker. However, the possible effect of eugenol on longevity in Caenorhabditis elegans has not been reported. OBJECTIVE:The objective of this investigation was to provide first scientific based results about effect of eugenol on longevity, slowing down of paralysis in Alzheimer's model and mechanism behind it in Caenorhabditis elegans animal model system. METHODS:The phenolic components of methanolic extract of Ocimum sanctum was analyzed by RP-HPLC. Worms were exposed to different concentrations of extract and one of its components -eugenol. Lifespan, health span, survival in CL4176 Alzheimer's model and molecular mechanism were analyzed. RESULTS:Extract of Ocimum sanctumand eugenol increased lifespan and provided indemnity against pro-oxidants. It also significantly improved healthy ageing and slowed the progression of neurodegeneration in CL4176 Alzheimer's model of worm by increasing survival against prooxidants and slowing down the paralysis. Longevity effect was independent of the DAF-16 as observed by using DAF-16::GFP and daf-16 null mutant strains. These results implicate eugenol as a potent therapeutic compound which may curtail ageing and age related disorders like- Alzheimer's disease. CONCLUSION:The present work demonstrated eugenol as a potential anti-ageing compound which may curtail ageing, improve heath span by enhancing resistance to oxidative stress and exerts its effect independent of DAF-16 pathway. So, it can be assumed that eugenol can be beneficial to humans as well, albeit further research is necessary before declaring it for human consumption. 10.2174/1871527320666211008150347
    Oolonghomobisflavans from Camellia sinensis increase Caenorhabditis elegans lifespan and healthspan. Duangjan Chatrawee,Curran Sean P GeroScience Tea polyphenols are widely considered as excellent antioxidant agents which can contribute to human health and longevity. However, the identification of the active biomolecules in complex tea extracts that promote health and longevity are not fully known. Here we used the nematode Caenorhabditis elegans to analyze the health benefits and longevity effects of Camellia sinensis oolong tea extracts (QFT, NFT, and CFT) and oolonghomobisflavan A and oolonghomobisflavan B, which are present in oolong tea extracts. Our results showed that oolong tea extracts and oolonghomobisflavans prolong lifespan and improved healthspan by curtailing the age-related decline in muscle activity and the accumulation of age pigment (lipofuscin). We found that the lifespan and healthspan promoting effects of oolong tea extracts and oolonghomobisflavans were positively correlated with the stress resistance via DAF-16/FOXO transcription factor. Furthermore, oolong tea extracts and oolonghomobisflavans displayed protective effects against Aβ- and polyQ-induced neuro/proteotoxicity. Overall, our study provides new evidence to support the health benefits of oolong tea and importantly identify oolonghomobisflavans as potent bioactive molecules that promote health when supplemented with a normal diet. As such, oolonghomobisflavans represent a valuable new class of compounds that promote healthy aging. 10.1007/s11357-021-00462-7