logo logo
Salt-Induced Hepatic Inflammatory Memory Contributes to Cardiovascular Damage Through Epigenetic Modulation of SIRT3. Gao Peng,You Mei,Li Li,Zhang Qin,Fang Xia,Wei Xiao,Zhou Qing,Zhang Hexuan,Wang Miao,Lu Zongshi,Wang Lijuan,Sun Fang,Liu Daoyan,Zheng Hongting,Yan Zhencheng,Yang Gangyi,Zhu Zhiming Circulation BACKGROUND:High salt intake is the leading dietary risk factor for cardiovascular diseases. Although clinical evidence suggests that high salt intake is associated with nonalcoholic fatty liver disease, which is an independent risk factor for cardiovascular diseases, it remains elusive whether salt-induced hepatic damage leads to the development of cardiovascular diseases. METHODS:Mice were fed with normal or high-salt diet for 8 weeks to determine the effect of salt loading on liver histological changes and blood pressure, and salt withdrawal and metformin treatment were also conducted on some high-salt diet-fed mice. Adeno-associated virus 8, global knockout, or tissue-specific knockout mice were used to manipulate the expression of some target genes in vivo, including SIRT3 (sirtuin 3), NRF2 (NF-E2-related factor 2), and AMPK (AMP-activated protein kinase). RESULTS:Mice fed with a high-salt diet displayed obvious hepatic steatosis and inflammation, accompanied with hypertension and cardiac dysfunction. All these pathological changes persisted after salt withdrawal, displaying a memory phenomenon. Gene expression analysis and phenotypes of SIRT3 knockout mice revealed that reduced expression of SIRT3 was a chief culprit responsible for the persistent inflammation in the liver, and recovering SIRT3 expression in the liver effectively inhibits the sustained hepatic inflammation and cardiovascular damage. Mechanistical studies reveal that high salt increases acetylated histone 3 lysine 27 (H3K27ac) on SIRT3 promoter in hepatocytes, thus inhibiting the binding of NRF2, and results in the sustained inhibition of SIRT3 expression. Treatment with metformin activated AMPK, which inhibited salt-induced hepatic inflammatory memory and cardiovascular damage by lowering the H3K27ac level on SIRT3 promoter, and increased NRF2 binding ability to activate SIRT3 expression. CONCLUSIONS:This study demonstrates that SIRT3 inhibition caused by histone modification is the key factor for the persistent hepatic steatosis and inflammation that contributes to cardiovascular damage under high salt loading. Avoidance of excessive salt intake and active intervention of epigenetic modification may help to stave off the persistent inflammatory status that underlies high-salt-induced cardiovascular damage in clinical practice. 10.1161/CIRCULATIONAHA.121.055600
Roles of HDAC3-orchestrated circadian clock gene oscillations in diabetic rats following myocardial ischaemia/reperfusion injury. Qiu Zhen,Ming Hao,Lei Shaoqing,Zhou Bin,Zhao Bo,Yu Yanli,Xue Rui,Xia Zhongyuan Cell death & disease The circadian clock is closely related to the development of diabetes mellitus and cardiovascular disease, and disruption of the circadian clock exacerbates myocardial ischaemia/reperfusion injury (MI/RI). HDAC3 is a key component of the circadian negative feedback loop that controls the expression pattern of the circadian nuclear receptor Rev-erbα to maintain the stability of circadian genes such as BMAL1. However, the mechanism by which the HDAC3-orchestrated Rev-erbα/BMAL1 pathway increases MI/RI in diabetes and its relationship with mitophagy have yet to be elucidated. Here, we observed that the clock genes Rev-erbα, BMAL1, and C/EBPβ oscillations were altered in the hearts of rats with streptozotocin (STZ)-induced diabetes, with upregulated HDAC3 expression. Oscillations of Rev-erbα and BMAL1 were rapidly attenuated in diabetic MI/R hearts versus non-diabetic I/RI hearts, in accordance with impaired and rhythm-disordered circadian-dependent mitophagy that increased injury. Genetic knockdown of HDAC3 significantly attenuated diabetic MI/RI by mediating the Rev-erbα/BMAL1 circadian pathway to recover mitophagy. Primary cardiomyocytes with or without HDAC3 siRNA and Rev-erbα siRNA were exposed to hypoxia/reoxygenation (H/R) in vitro. The expression of HDAC3 and Rev-erbα in cardiomyocytes was increased under high-glucose conditions compared with low-glucose conditions, with decreased BMAL1 expression and mitophagy levels. After H/R stimulation, high glucose aggravated H/R injury, with upregulated HDAC3 and Rev-erbα expression and decreased BMAL1 and mitophagy levels. HDAC3 and Rev-erbα siRNA can alleviate high glucose-induced and H/R-induced injury by upregulating BMAL1 to increase mitophagy. Collectively, these findings suggest that disruption of HDAC3-mediated circadian gene expression oscillations induces mitophagy dysfunction, aggravating diabetic MI/RI. Cardiac-specific HDAC3 knockdown could alleviate diabetic MI/RI by regulating the Rev-erbα/BMAL1 pathway to restore the activation of mitophagy. 10.1038/s41419-020-03295-y
FoxO1 inhibition alleviates type 2 diabetes-related diastolic dysfunction by increasing myocardial pyruvate dehydrogenase activity. Cell reports Type 2 diabetes (T2D) increases the risk for diabetic cardiomyopathy and is characterized by diastolic dysfunction. Myocardial forkhead box O1 (FoxO1) activity is enhanced in T2D and upregulates pyruvate dehydrogenase (PDH) kinase 4 expression, which inhibits PDH activity, the rate-limiting enzyme of glucose oxidation. Because low glucose oxidation promotes cardiac inefficiency, we hypothesize that FoxO1 inhibition mitigates diabetic cardiomyopathy by stimulating PDH activity. Tissue Doppler echocardiography demonstrates improved diastolic function, whereas myocardial PDH activity is increased in cardiac-specific FoxO1-deficient mice subjected to experimental T2D. Pharmacological inhibition of FoxO1 with AS1842856 increases glucose oxidation rates in isolated hearts from diabetic C57BL/6J mice while improving diastolic function. However, AS1842856 treatment fails to improve diastolic function in diabetic mice with a cardiac-specific FoxO1 or PDH deficiency. Our work defines a fundamental mechanism by which FoxO1 inhibition improves diastolic dysfunction, suggesting that it may be an approach to alleviate diabetic cardiomyopathy. 10.1016/j.celrep.2021.108935
VPS39-deficiency observed in type 2 diabetes impairs muscle stem cell differentiation via altered autophagy and epigenetics. Nature communications Insulin resistance and lower muscle quality (strength divided by mass) are hallmarks of type 2 diabetes (T2D). Here, we explore whether alterations in muscle stem cells (myoblasts) from individuals with T2D contribute to these phenotypes. We identify VPS39 as an important regulator of myoblast differentiation and muscle glucose uptake, and VPS39 is downregulated in myoblasts and myotubes from individuals with T2D. We discover a pathway connecting VPS39-deficiency in human myoblasts to impaired autophagy, abnormal epigenetic reprogramming, dysregulation of myogenic regulators, and perturbed differentiation. VPS39 knockdown in human myoblasts has profound effects on autophagic flux, insulin signaling, epigenetic enzymes, DNA methylation and expression of myogenic regulators, and gene sets related to the cell cycle, muscle structure and apoptosis. These data mimic what is observed in myoblasts from individuals with T2D. Furthermore, the muscle of Vps39 mice display reduced glucose uptake and altered expression of genes regulating autophagy, epigenetic programming, and myogenesis. Overall, VPS39-deficiency contributes to impaired muscle differentiation and reduced glucose uptake. VPS39 thereby offers a therapeutic target for T2D. 10.1038/s41467-021-22068-5
Differential Promoter Methylation of Macrophage Genes Is Associated With Impaired Vascular Growth in Ischemic Muscles of Hyperlipidemic and Type 2 Diabetic Mice: Genome-Wide Promoter Methylation Study. Babu Mohan,Durga Devi Thota,Mäkinen Petri,Kaikkonen Minna,Lesch Hanna P,Junttila Sini,Laiho Asta,Ghimire Bishwa,Gyenesei Attila,Ylä-Herttuala Seppo Circulation research RATIONALE:Hyperlipidemia and type 2 diabetes mellitus (T2DM) severely impair adaptive vascular growth responses in ischemic muscles. This is largely attributed to dysregulated gene expression, although details of the changes are unknown. OBJECTIVE:To define the role of promoter methylation in adaptive vascular growth in hyperlipidemia (LDLR(-/-)ApoB(100/100)) and T2DM (IGF-II/LDLR(-/-)ApoB(100/100)) mouse models of hindlimb ischemia. METHODS AND RESULTS:Unilateral hindlimb ischemia was induced by ligating femoral artery. Perfusion was assessed using ultrasound, and capillary and arteriole parameters were assessed using immunohistochemistry. Genome-wide methylated DNA sequencing was performed with DNA isolated from ischemic muscle, tissue macrophages (Mϕs), and endothelial cells. Compared with the controls, hyperlipidemia and T2DM mice showed impaired perfusion recovery, which was associated with impaired angiogenesis and arteriogenesis. Genome-wide proximal promoter DNA methylation analysis suggested differential patterns of methylation in Mϕ genes in ischemic muscles. Classically activated M1-Mϕ gene promoters, including Cfb, Serping1, and Tnfsf15, were significantly hypomethylated, whereas alternatively activated M2-Mϕ gene promoters, including Nrp1, Cxcr4, Plxnd1, Arg1, Cdk18, and Fes, were significantly hypermethylated in Mϕs isolated from hyperlipidemia and T2DM ischemic muscles compared with controls. These results combined with mRNA expression and immunohistochemistry showed the predominance of proinflammatory M1-Mϕs, compared with anti-inflammatory and proangiogenic M2-Mϕs in hyperlipidemia and T2DM ischemic muscles. CONCLUSIONS:We found significant promoter hypomethylation of genes typical for proinflammatory M1-Mϕs and hypermethylation of anti-inflammatory, proangiogenic M2-Mϕ genes in hyperlipidemia and T2DM ischemic muscles. Epigenetic alterations modify Mϕ phenotype toward proinflammatory M1 as opposed to anti-inflammatory, proangiogenic, and tissue repair M2 phenotype, which may contribute to the impaired adaptive vascular growth under these pathological conditions. 10.1161/CIRCRESAHA.115.306424
KLF5 Is Induced by FOXO1 and Causes Oxidative Stress and Diabetic Cardiomyopathy. Circulation research RATIONALE:Diabetic cardiomyopathy (DbCM) is a major complication in type-1 diabetes, accompanied by altered cardiac energetics, impaired mitochondrial function, and oxidative stress. Previous studies indicate that type-1 diabetes is associated with increased cardiac expression of KLF5 (Krüppel-like factor-5) and PPARα (peroxisome proliferator-activated receptor) that regulate cardiac lipid metabolism. OBJECTIVE:In this study, we investigated the involvement of KLF5 in DbCM and its transcriptional regulation. METHODS AND RESULTS:KLF5 mRNA levels were assessed in isolated cardiomyocytes from cardiovascular patients with diabetes and were higher compared with nondiabetic individuals. Analyses in human cells and diabetic mice with cardiomyocyte-specific FOXO1 (Forkhead box protein O1) deletion showed that FOXO1 bound directly on the promoter and increased KLF5 expression. Diabetic mice with cardiomyocyte-specific FOXO1 deletion had lower cardiac KLF5 expression and were protected from DbCM. Genetic, pharmacological gain and loss of KLF5 function approaches and AAV (adeno-associated virus)-mediated delivery in mice showed that KLF5 induces DbCM. Accordingly, the protective effect of cardiomyocyte FOXO1 ablation in DbCM was abolished when KLF5 expression was rescued. Similarly, constitutive cardiomyocyte-specific KLF5 overexpression caused cardiac dysfunction. KLF5 caused oxidative stress via direct binding on NADPH oxidase ()4 promoter and induction of NOX4 (NADPH oxidase 4) expression. This was accompanied by accumulation of cardiac ceramides. Pharmacological or genetic KLF5 inhibition alleviated superoxide formation, prevented ceramide accumulation, and improved cardiac function in diabetic mice. CONCLUSIONS:Diabetes-mediated activation of cardiomyocyte FOXO1 increases KLF5 expression, which stimulates NOX4 expression, ceramide accumulation, and causes DbCM. 10.1161/CIRCRESAHA.120.316738
BH4 Increases nNOS Activity and Preserves Left Ventricular Function in Diabetes. Circulation research RATIONALE:In diabetic patients, heart failure with predominant left ventricular (LV) diastolic dysfunction is a common complication for which there is no effective treatment. Oxidation of the NOS (nitric oxide synthase) cofactor tetrahydrobiopterin (BH4) and dysfunctional NOS activity have been implicated in the pathogenesis of the diabetic vascular and cardiomyopathic phenotype. OBJECTIVE:Using mice models and human myocardial samples, we evaluated whether and by which mechanism increasing myocardial BH4 availability prevented or reversed LV dysfunction induced by diabetes. METHODS AND RESULTS:In contrast to the vascular endothelium, BH4 levels, superoxide production, and NOS activity (by liquid chromatography) did not differ in the LV myocardium of diabetic mice or in atrial tissue from diabetic patients. Nevertheless, the impairment in both cardiomyocyte relaxation and [Ca]i (intracellular calcium) decay and in vivo LV function (echocardiography and tissue Doppler) that developed in wild-type mice 12 weeks post-diabetes induction (streptozotocin, 42-45 mg/kg) was prevented in mGCH1-Tg (mice with elevated myocardial BH4 content secondary to trangenic overexpression of GTP-cyclohydrolase 1) and reversed in wild-type mice receiving oral BH4 supplementation from the 12th to the 18th week after diabetes induction. The protective effect of BH4 was abolished by CRISPR/Cas9-mediated knockout of nNOS (the neuronal NOS isoform) in mGCH1-Tg. In HEK (human embryonic kidney) cells, S-nitrosoglutathione led to a PKG (protein kinase G)-dependent increase in plasmalemmal density of the insulin-independent glucose transporter GLUT-1 (glucose transporter-1). In cardiomyocytes, mGCH1 overexpression induced a NO/sGC (soluble guanylate cyclase)/PKG-dependent increase in glucose uptake via GLUT-1, which was instrumental in preserving mitochondrial creatine kinase activity, oxygen consumption rate, LV energetics (by phosphorous magnetic resonance spectroscopy), and myocardial function. CONCLUSIONS:We uncovered a novel mechanism whereby myocardial BH4 prevents and reverses LV diastolic and systolic dysfunction associated with diabetes via an nNOS-mediated increase in insulin-independent myocardial glucose uptake and utilization. These findings highlight the potential of GCH1/BH4-based therapeutics in human diabetic cardiomyopathy. Graphic Abstract: A graphic abstract is available for this article. 10.1161/CIRCRESAHA.120.316656
Transfer of a human gene variant associated with exceptional longevity improves cardiac function in obese type 2 diabetic mice through induction of the SDF-1/CXCR4 signalling pathway. European journal of heart failure AIMS:Homozygosity for a four-missense single-nucleotide polymorphism haplotype of the human BPIFB4 gene is enriched in long-living individuals. Delivery of this longevity-associated variant (LAV) improved revascularisation and reduced endothelial dysfunction and atherosclerosis in mice through a mechanism involving the stromal cell-derived factor-1 (SDF-1). Here, we investigated if delivery of the LAV-BPIFB4 gene may attenuate the progression of diabetic cardiomyopathy. METHODS AND RESULTS:Compared with age-matched lean controls, diabetic db/db mice showed altered echocardiographic indices of diastolic and systolic function and histological evidence of microvascular rarefaction, lipid accumulation, and fibrosis in the myocardium. All these alterations, as well as endothelial dysfunction, were prevented by systemic LAV-BPIFB4 gene therapy using an adeno-associated viral vector serotype 9 (AAV9). In contrast, AAV9 wild-type-BPIFB4 exerted no benefit. Interestingly, LAV-BPIFB4-treated mice showed increased SDF-1 levels in peripheral blood and myocardium and up-regulation of the cardiac myosin heavy chain isoform alpha, a contractile protein that was reduced in diabetic hearts. SDF-1 up-regulation was instrumental to LAV-BPIFB4-induced benefit as both haemodynamic and structural improvements were inhibited by an orally active antagonist of the SDF-1 CXCR4 receptor. CONCLUSIONS:In mice with type-2 diabetes, LAV-BPIFB4 gene therapy promotes an advantageous remodelling of the heart, allowing it to better withstand diabetes-induced stress. These results support the viability of transferring healthy characteristics of longevity to attenuate diabetic cardiac disease. 10.1002/ejhf.1840
Myeloid Mineralocorticoid Receptor Transcriptionally Regulates P-Selectin Glycoprotein Ligand-1 and Promotes Monocyte Trafficking and Atherosclerosis. Arteriosclerosis, thrombosis, and vascular biology Objective:MR (mineralocorticoid receptor) activation associates with increased risk of cardiovascular ischemia while MR inhibition reduces cardiovascular-related mortality and plaque inflammation in mouse atherosclerosis. MR in myeloid cells (My-MR) promotes inflammatory cell infiltration into injured tissues and atherosclerotic plaque inflammation by unclear mechanisms. Here, we examined the role of My-MR in leukocyte trafficking and the impact of sex. Approach and Results:We confirm in vivo that My-MR deletion (My-MR-KO) in ApoE-KO mice decreased plaque size. Flow cytometry revealed fewer plaque macrophages with My-MR-KO. By intravital microscopy, My-MR-KO significantly attenuated monocyte slow-rolling and adhesion to mesenteric vessels and decreased peritoneal infiltration of myeloid cells in response to inflammatory stimuli in male but not female mice. My-MR-KO mice had significantly less PSGL1 (P-selectin glycoprotein ligand 1) mRNA in peritoneal macrophages and surface PSGL1 protein on circulating monocytes in males. In vitro, MR activation with aldosterone significantly increased PSGL1 mRNA only in monocytes from MR-intact males. Similarly, aldosterone induced, and MR antagonist spironolactone inhibited, PSGL1 expression in human U937 monocytes. Mechanistically, aldosterone stimulated MR binding to a predicted MR response element in intron-1 of the PSGL1 gene by ChIP-qPCR. Reporter assays demonstrated that this PSGL1 MR response element is necessary and sufficient for aldosterone-activated, MR-dependent transcriptional activity. Conclusions:These data identify PSGL1 as a My-MR target gene that drives leukocyte trafficking to enhance atherosclerotic plaque inflammation. These novel and sexually dimorphic findings provide insight into increased ischemia risk with MR activation, cardiovascular protection in women, and the role of MR in atherosclerosis and tissue inflammation. 10.1161/ATVBAHA.121.316929
Tissue factor cytoplasmic domain exacerbates post-infarct left ventricular remodeling via orchestrating cardiac inflammation and angiogenesis. Chong Suet Yen,Zharkova Olga,Yatim Siti Maryam J M,Wang Xiaoyuan,Lim Xiong Chang,Huang Chenyuan,Tan Chia Yee,Jiang Jianming,Ye Lei,Tan Michelle Siying,Angeli Veronique,Versteeg Henri H,Dewerchin Mieke,Carmeliet Peter,Lam Carolyn S P,Chan Mark Y,de Kleijn Dominique P V,Wang Jiong-Wei Theranostics The coagulation protein tissue factor (TF) regulates inflammation and angiogenesis via its cytoplasmic domain in infection, cancer and diabetes. While TF is highly abundant in the heart and is implicated in cardiac pathology, the contribution of its cytoplasmic domain to post-infarct myocardial injury and adverse left ventricular (LV) remodeling remains unknown. Myocardial infarction was induced in wild-type mice or mice lacking the TF cytoplasmic domain (TF∆CT) by occlusion of the left anterior descending coronary artery. Heart function was monitored with echocardiography. Heart tissue was collected at different time-points for histological, molecular and flow cytometry analysis. Compared with wild-type mice, TF∆CT had a higher survival rate during a 28-day follow-up after myocardial infarction. Among surviving mice, TF∆CT mice had better cardiac function and less LV remodeling than wild-type mice. The overall improvement of post-infarct cardiac performance in TF∆CT mice, as revealed by speckle-tracking strain analysis, was attributed to reduced myocardial deformation in the peri-infarct region. Histological analysis demonstrated that TF∆CT hearts had in the infarct area greater proliferation of myofibroblasts and better scar formation. Compared with wild-type hearts, infarcted TF∆CT hearts showed less infiltration of proinflammatory cells with concomitant lower expression of protease-activated receptor-1 (PAR1) - Rac1 axis. In particular, infarcted TF∆CT hearts displayed markedly lower ratios of inflammatory M1 macrophages and reparative M2 macrophages (M1/M2). experiment with primary macrophages demonstrated that deletion of the TF cytoplasmic domain inhibited macrophage polarization toward the M1 phenotype. Furthermore, infarcted TF∆CT hearts presented markedly higher peri-infarct vessel density associated with enhanced endothelial cell proliferation and higher expression of PAR2 and PAR2-associated pro-angiogenic pathway factors. Finally, the overall cardioprotective effects observed in TF∆CT mice could be abolished by subcutaneously infusing a cocktail of PAR1-activating peptide and PAR2-inhibiting peptide via osmotic minipumps. Our findings demonstrate that the TF cytoplasmic domain exacerbates post-infarct cardiac injury and adverse LV remodeling via differential regulation of inflammation and angiogenesis. Targeted inhibition of the TF cytoplasmic domain-mediated intracellular signaling may ameliorate post-infarct LV remodeling without perturbing coagulation. 10.7150/thno.63354
Soluble Klotho-integrin β1/ERK1/2 pathway ameliorates myocardial fibrosis in diabetic cardiomyopathy. Li Jia-Min,Chen Fang-Fang,Li Guo-Hua,Zhu Jia-Liang,Zhou Yu,Wei Xin-Yi,Zheng Fei,Wang Li-Li,Zhang Wei,Zhong Ming,Zhang Ming-Ming,Ding Wen-Yuan FASEB journal : official publication of the Federation of American Societies for Experimental Biology Soluble Klotho (sKL) is closely related to insulin resistance, which is a major factor in the progression of diabetic cardiomyopathy (DCM). The purpose of this study was to investigate the role of sKL in the regulation of DCM and the mechanism involved. A mouse model of type 2 diabetes was induced by high-fat diet and streptozotocin injection. An insulin-resistant cardiac fibroblast model was established by high glucose and high insulin. KL gene overexpression was achieved in vivo and vitro through transfection with an adenovirus-harboring KL-cDNA. Gene overexpression was used to evaluate the role of sKL in the pathophysiologic characteristics of DCM. Insulin-resistant cardiac fibroblasts reduced sKL expression and collagen deposition. Diabetic mice constructed by streptozotocin exhibited severe insulin resistance, inflammation, fibrosis, left ventricular dysfunction, and sKL downregulation. The overexpression of sKL mitigated insulin resistance and metabolic disturbance; inflammation, fibrosis, and upregulated collagen I/III content ratio in diabetic state were significantly reduced. Our findings were accompanied by notable moderation of cardiac function. Further, blunted phosphorylation of Akt was restored with sKL gene overexpression, and activated phosphorylation of extracellular signal-regulated kinase 1/2 in DCM was reduced. Our results suggest that sKL protein overexpression exerts a defensive measure by ameliorating selective insulin resistance in mouse DCM, thus revealing its underlying mechanism for potential human DCM treatment. 10.1096/fj.202100952R
Downregulation of SOX11 in fetal heart tissue, under hyperglycemic environment, mediates cardiomyocytes apoptosis. Su Dongmei,Gao Qianqian,Guan Lina,Sun Peng,Li Qian,Shi Cuige,Ma Xu Journal of biochemical and molecular toxicology Gestational diabetes mellitus is one of the causes of abnormal embryonic heart development, but the mechanism is still poor. This study investigated the regulatory mechanism and role of SOX11 in congenital heart abnormality in a hyperglycemic environment. Immunohistochemistry, Western blotting, and quantitative reverse transcription-polymerase chain reaction (qRT-PCR) showed decreased SOX11 protein and messenger RNA (mRNA) levels in the heart tissue of diabetic offspring compared with the control group. A Sequenom EpiTYPER MassArray showed that methylation sites upstream in SOX11 region 1 were increased in the diabetic group compared with the control group. Luciferase reporter assays and qRT-PCR showed that Dnmt3b overexpression decreased SOX11 promoter activity and its mRNA level, whereas Dnmt3a had little effect on regulating SOX11 expression. Furthermore, we found that Dnmt3L cooperated with Dnmt3b to regulate SOX11 gene expression. Additionally, the function of SOX11 silencing was analyzed by using small interfering RNA-mediated knockdown. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and apoptotic assays showed that SOX11 downregulation inhibited cell viability and induced apoptosis in cardiomyocytes. Overexpression of the SOX11 gene suppressed cardiomyocytes apoptosis after high glucose treatment. We identified a novel epigenetic regulatory mechanism of SOX11 during heart development in a hyperglycemic environment and revealed a distinct role of SOX11 in mediating cardiomyocytes viability and apoptosis. 10.1002/jbt.22629
Maternal High Fat Diet and Diabetes Disrupts Transcriptomic Pathways That Regulate Cardiac Metabolism and Cell Fate in Newborn Rat Hearts. Frontiers in endocrinology Children born to diabetic or obese mothers have a higher risk of heart disease at birth and later in life. Using chromatin immunoprecipitation sequencing, we previously demonstrated that late-gestation diabetes, maternal high fat (HF) diet, and the combination causes distinct fuel-mediated epigenetic reprogramming of rat cardiac tissue during fetal cardiogenesis. The objective of the present study was to investigate the overall transcriptional signature of newborn offspring exposed to maternal diabetes and maternal H diet. Microarray gene expression profiling of hearts from diabetes exposed, HF diet exposed, and combination exposed newborn rats was compared to controls. Functional annotation, pathway and network analysis of differentially expressed genes were performed in combination exposed and control newborn rat hearts. Further downstream metabolic assessments included measurement of total and phosphorylated AKT2 and GSK3β, as well as quantification of glycolytic capacity by extracellular flux analysis and glycogen staining. Transcriptional analysis identified significant fuel-mediated changes in offspring cardiac gene expression. Specifically, functional pathways analysis identified two key signaling cascades that were functionally prioritized in combination exposed offspring hearts: (1) downregulation of fibroblast growth factor (FGF) activated PI3K/AKT pathway and (2) upregulation of peroxisome proliferator-activated receptor gamma coactivator alpha (PGC1α) mitochondrial biogenesis signaling. Functional metabolic and histochemical assays supported these transcriptome changes, corroborating diabetes- and diet-induced cardiac transcriptome remodeling and cardiac metabolism in offspring. This study provides the first data accounting for the compounding effects of maternal hyperglycemia and hyperlipidemia on the developmental cardiac transcriptome, and elucidates nuanced and novel features of maternal diabetes and diet on regulation of heart health. 10.3389/fendo.2020.570846