logo logo
Gut-derived factors promote neurogenesis of CNS-neural stem cells and nudge their differentiation to an enteric-like neuronal phenotype. Kulkarni Subhash,Zou Bende,Hanson Jesse,Micci Maria-Adelaide,Tiwari Gunjan,Becker Laren,Kaiser Martin,Xie Xinmin Simon,Pasricha Pankaj Jay American journal of physiology. Gastrointestinal and liver physiology Recent studies have explored the potential of central nervous system-derived neural stem cells (CNS-NSC) to repopulate the enteric nervous system. However, the exact phenotypic fate of gut-transplanted CNS-NSC has not been characterized. The aim of this study was to investigate the effect of the gut microenvironment on phenotypic fate of CNS-NSC in vitro. With the use of Transwell culture, differentiation of mouse embryonic CNS-NSC was studied when cocultured without direct contact with mouse intestinal longitudinal muscle-myenteric plexus preparations (LM-MP) compared with control noncocultured cells, in a differentiating medium. Differentiated cells were analyzed by immunocytochemistry and quantitative RT-PCR to assess the expression of specific markers and by whole cell patch-clamp studies for functional characterization of their phenotype. We found that LM-MP cocultured cells had a significant increase in the numbers of cells that were immune reactive against the panneuronal marker β-tubulin, neurotransmitters neuronal nitric oxide synthase (nNOS), choline acetyltransferase (ChAT), and neuropeptide vasoactive intestinal peptide (VIP) and showed an increase in expression of these genes, compared with control cells. Whole cell patch-clamp analysis showed that coculture with LM-MP decreases cell excitability and reduces voltage-gated Na(+) currents but significantly enhances A-current and late afterhyperpolarization (AHP) and increases the expression of the four AHP-generating Ca(2+)-dependent K(+) channel genes (KCNN), compared with control cells. In a separate experiment, differentiation of LM-MP cocultured CNS-NSC produced a significant increase in the numbers of cells that were immune reactive against the neurotransmitters nNOS, ChAT, and the neuropeptide VIP compared with CNS-NSC differentiated similarly in the presence of neonatal brain tissue. Our results show that the gut microenvironment induces CNS-NSC to produce neurons that share some of the characteristics of classical enteric neurons, further supporting the therapeutic use of these cells for gastrointestinal disorders. 10.1152/ajpgi.00123.2011
Functional interplay between NMDA receptors, SK channels and voltage-gated Ca2+ channels regulates synaptic excitability in the medial prefrontal cortex. Faber E S L The Journal of physiology Synaptic activity in the medial prefrontal cortex (mPFC) is fundamental for higher cognitive functions such as working memory. The present study shows that small conductance (SK) calcium-activated potassium channels attenuate excitatory synaptic transmission at layer 2/3 and layer 5 inputs to layer 5 pyramidal neurons in the mPFC. SK channels are located postsynaptically at synapses where they are activated during synaptic transmission by calcium influx through NMDA receptors, L-type calcium channels, R-type calcium channels and by calcium release from IP(3)-sensitive stores. Removal of the SK channel-mediated shunt of synaptic transmission reveals significant NMDA receptor-mediated activation during basal synaptic transmission, which is greater at layer 5 inputs (approximately 30%) than at layer 2/3 inputs (approximately 20%). These findings show that interactions between NMDA receptors, SK channels and voltage-gated calcium channels play a critical role in regulating excitatory synaptic transmission in layer 5 pyramidal neurons in the mPFC. 10.1113/jphysiol.2009.185645
Learning-induced modulation of SK channels-mediated effect on synaptic transmission. Brosh Inbar,Rosenblum Kobi,Barkai Edi The European journal of neuroscience Although small conductance (SK)-mediated calcium-dependent potassium currents are usually mostly thought to modulate neuronal adaptation by suppressing repetitive spike firing, recent evidence suggests that these channels also modulate synaptic transmission. SK2 channels were shown to be activated in dendritic spines following calcium entry via N-methyl-d-aspartate (NMDA) receptor. Such activation of potassium currents terminates the NMDA-dependent postsynaptic potential (PSP). Synaptic potentials in pyramidal neurons in the piriform cortex from olfactory-discrimination-trained rats have enhanced rise time 3 days after learning, and their dendritic spines are significantly smaller at this time. In the present study we examined whether the SK channel-mediated effect on PSPs is modified after learning. The SK channels inhibitor, apamin, that selectively blocks the SK channels-mediated potassium currents enhanced the width of the PSP in neurons from trained rats only. This effect is abolished in the presence of the NMDA-channel blocker, APV. The learning-induced reduction in paired-pulse facilitation was not affected by apamin. Although the effect of the SK channels is increased after learning, the protein expression level of the SK2 channels, the type located in dendritic spines, was decreased after learning. The protein expression level of the SK3 channel, suggested to be located mainly in axon terminals, was not modified by learning. We suggest that the enhanced effect of the SK channels on NMDA-mediated synaptic transmission is the result of the reduction in the spine volume after learning. Moreover, these data indicate that spines are more excitable after learning, and are thus more predisposed to activity-dependent modifications. 10.1111/j.1460-9568.2007.05936.x
Emerging role of the calcium-activated, small conductance, SK3 K+ channel in distal tubule function: regulation by TRPV4. PloS one The Ca2+-activated, maxi-K (BK) K+ channel, with low Ca2+-binding affinity, is expressed in the distal tubule of the nephron and contributes to flow-dependent K+ secretion. In the present study we demonstrate that the Ca2+-activated, SK3 (KCa2.3) K+ channel, with high Ca2+-binding affinity, is also expressed in the mouse kidney (RT-PCR, immunoblots). Immunohistochemical evaluations using tubule specific markers demonstrate significant expression of SK3 in the distal tubule and the entire collecting duct system, including the connecting tubule (CNT) and cortical collecting duct (CCD). In CNT and CCD, main sites for K+ secretion, the highest levels of expression were along the apical (luminal) cell membranes, including for both principal cells (PCs) and intercalated cells (ICs), posturing the channel for Ca2+-dependent K+ secretion. Fluorescent assessment of cell membrane potential in native, split-opened CCD, demonstrated that selective activation of the Ca2+-permeable TRPV4 channel, thereby inducing Ca2+ influx and elevating intracellular Ca2+ levels, activated both the SK3 channel and the BK channel leading to hyperpolarization of the cell membrane. The hyperpolarization response was decreased to a similar extent by either inhibition of SK3 channel with the selective SK antagonist, apamin, or by inhibition of the BK channel with the selective antagonist, iberiotoxin (IbTX). Addition of both inhibitors produced a further depolarization, indicating cooperative effects of the two channels on Vm. It is concluded that SK3 is functionally expressed in the distal nephron and collecting ducts where induction of TRPV4-mediated Ca2+ influx, leading to elevated intracellular Ca2+ levels, activates this high Ca2+-affinity K+ channel. Further, with sites of expression localized to the apical cell membrane, especially in the CNT and CCD, SK3 is poised to be a key pathway for Ca2+-dependent regulation of membrane potential and K+ secretion. 10.1371/journal.pone.0095149
SK channels modulate the excitability and firing precision of projection neurons in the robust nucleus of the arcopallium in adult male zebra finches. Hou Guo-Qiang,Pan Xuan,Liao Cong-Shu,Wang Song-Hua,Li Dong-Feng Neuroscience bulletin OBJECTIVE:Motor control is encoded by neuronal activity. Small conductance Ca(2+)-activated K(+) channels (SK channels) maintain the regularity and precision of firing by contributing to the afterhyperpolarization (AHP) of the action potential in mammals. However, it is not clear how SK channels regulate the output of the vocal motor system in songbirds. The premotor robust nucleus of the arcopallium (RA) in the zebra finch is responsible for the output of song information. The temporal pattern of spike bursts in RA projection neurons is associated with the timing of the acoustic features of birdsong. METHODS:The firing properties of RA projection neurons were analyzed using patch clamp whole-cell and cell-attached recording techniques. RESULTS:SK channel blockade by apamin decreased the AHP amplitude and increased the evoked firing rate in RA projection neurons. It also caused reductions in the regularity and precision of firing. RA projection neurons displayed regular spontaneous action potentials, while apamin caused irregular spontaneous firing but had no effect on the firing rate. In the absence of synaptic inputs, RA projection neurons still had spontaneous firing, and apamin had an evident effect on the firing rate, but caused no significant change in the firing regularity, compared with apamin application in the presence of synaptic inputs. CONCLUSION:SK channels contribute to the maintenance of firing regularity in RA projection neurons which requires synaptic activity, and consequently ensures the precision of song encoding. 10.1007/s12264-012-1241-7
Synergistic roles of GABAA receptors and SK channels in regulating thalamocortical oscillations. Kleiman-Weiner Max,Beenhakker Mark P,Segal William A,Huguenard John R Journal of neurophysiology Rhythmic oscillations throughout the cortex are observed during physiological and pathological states of the brain. The thalamus generates sleep spindle oscillations and spike-wave discharges characteristic of absence epilepsy. Much has been learned regarding the mechanisms underlying these oscillations from in vitro brain slice preparations. One widely used model to understand the epileptiform oscillations underlying absence epilepsy involves application of bicuculline methiodide (BMI) to brain slices containing the thalamus. BMI is a well-known GABAA receptor blocker that has previously been discovered to also block small-conductance, calcium-activated potassium (SK) channels. Here we report that the robust epileptiform oscillations observed during BMI application rely synergistically on both GABAA receptor and SK channel antagonism. Neither application of picrotoxin, a selective GABAA receptor antagonist, nor application of apamin, a selective SK channel antagonist, alone yielded the highly synchronized, long-lasting oscillations comparable to those observed during BMI application. However, partial blockade of SK channels by subnanomolar concentrations of apamin combined with picrotoxin sufficiently replicated BMI oscillations. We found that, at the cellular level, apamin enhanced the intrinsic excitability of reticular nucleus (RT) neurons but had no effect on relay neurons. This work suggests that regulation of RT excitability by SK channels can influence the excitability of thalamocortical networks and may illuminate possible pharmacological treatments for absence epilepsy. Finally, our results suggest that changes in the intrinsic properties of individual neurons and changes at the circuit level can robustly modulate these oscillations. 10.1152/jn.91158.2008
Metabotropic glutamate receptors regulate hippocampal CA1 pyramidal neuron excitability via Ca²⁺ wave-dependent activation of SK and TRPC channels. El-Hassar Lynda,Hagenston Anna M,D'Angelo Lisa Bertetto,Yeckel Mark F The Journal of physiology Group I metabotropic glutamate receptors (mGluRs) play an essential role in cognitive function. Their activation results in a wide array of cellular and molecular responses that are mediated by multiple signalling cascades. In this study, we focused on Group I mGluR activation of IP3R-mediated intracellular Ca2+ waves and their role in activating Ca2+-dependent ion channels in CA1 pyramidal neurons. Using whole-cell patch-clamp recordings and high-speed Ca2+ fluorescence imaging in acute hippocampal brain slices, we show that synaptic and pharmacological stimulation of mGluRs triggers intracellular Ca2+ waves and a biphasic electrical response composed of a transient Ca2+-dependent SK channel-mediated hyperpolarization and a TRPC-mediated sustained depolarization. The generation and magnitude of the SK channel-mediated hyperpolarization depended solely on the rise in intracellular Ca2+ concentration ([Ca2+]i), whereas the TRPC channel-mediated depolarization required both a small rise in [Ca2+]i and mGluR activation. Furthermore, the TRPC-mediated current was suppressed by forskolin-induced rises in cAMP. We also show that SK- and TRPC-mediated currents robustly modulate pyramidal neuron excitability by decreasing and increasing their firing frequency, respectively. These findings provide additional evidence that mGluR-mediated synaptic transmission makes an important contribution to regulating the output of hippocampal neurons through intracellular Ca2+ wave activation of SK and TRPC channels. cAMP provides an additional level of regulation by modulating TRPC-mediated sustained depolarization that we propose to be important for stabilizing periods of sustained firing. 10.1113/jphysiol.2011.209783
Absence of small conductance K+ channel (SK) activity in apical membranes of thick ascending limb and cortical collecting duct in ROMK (Bartter's) knockout mice. The Journal of biological chemistry The ROMK (Kir1.1; Kcnj1) gene is believed to encode the apical small conductance K(+) channels (SK) of the thick ascending limb (TAL) and cortical collecting duct (CCD). Loss-of-function mutations in the human ROMK gene cause Bartter's syndrome with renal Na(+) wasting, consistent with the role of this channel in apical K(+) recycling in the TAL that is crucial for NaCl reabsorption. However, the mechanism of renal K(+) wasting and hypokalemia that develop in individuals with ROMK Bartter's syndrome is not apparent given the proposed loss of the collecting duct SK channel. Thus, we generated a colony of ROMK null mice with approximately 25% survival to adulthood that provides a good model for ROMK Bartter's syndrome. The remaining 75% of null mice die in less than 14 days after birth. The surviving ROMK null mice have normal gross renal morphology with no evidence of significant hydronephrosis, whereas non-surviving null mice exhibit marked hydronephrosis. ROMK protein expression was absent in TAL and CCD from null mice but exhibited normal abundance and localization in wild-type littermates. ROMK null mice were polyuric and natriuretic with an elevated hematocrit consistent with mild extracellular volume depletion. SK channel activity in TAL and CCD was assessed by patch clamp analysis in ROMK wild-type ROMK(+/+), heterozygous ROMK(+/-), and null ROMK(-/-) mice. In 313 patches with successful seals from the three ROMK genotypes, SK channel activity in ROMK (+/+ and +/-) exhibited normal single channel kinetics. The expression frequencies are as follows: 67 (TAL) and 58% (CCD) in ROMK(+/+); about half that of the wild-type in ROMK(+/-), being 38 (TAL) and 25% (CCD); absent in both TAL or CCD in ROMK(-/-) between 2 and 5 weeks in 15 mice (61 and 66 patches, respectively). The absence of SK channel activity in ROMK null mice demonstrates that ROMK is essential for functional expression of SK channels in both TAL and CCD. Despite loss of ROMK expression, the normokalemic null mice exhibited significantly increased kaliuresis, indicating alternative mechanisms for K(+) absorption/secretion in the nephron. 10.1074/jbc.M206644200
Changes in potassium channel modulation may underlie afterhyperpolarization plasticity in oxytocin neurons during late pregnancy. Wang Lie,Chandaka Giri Kumar,Foehring Robert C,Callaway Joseph C,Armstrong William E Journal of neurophysiology Oxytocin (OT) neurons exhibit larger afterhyperpolarizations (AHPs) following spike trains during late pregnancy and lactation, times when these neurons fire in bursts and release more OT associated with labor and lactation. Calcium-dependent AHPs mediated by SK channels show this plasticity, and are reduced when the channel complex is phosphorylated by casein kinase 2 (CK2), and increased when dephosphorylated by protein phosphatase (PP)2A, by altering Ca sensitivity. We compared AHP currents in supraoptic OT neurons after CK2 inhibition with 4,5,6,7-tetrabromobenzotriazole (TBB), or PP1-PP2A inhibition with okadaic acid (OA), to determine the roles of these enzymes in AHP plasticity, focusing on the peak current at 100 ms representing the SK-mediated, medium AHP (I). In slices from virgin and two groups of pregnant rats [embryonic days (E18-19, or E20-21], Is were evoked with 3-, 10-, and 17-spike trains (20 Hz). With 3-spike trains, TBB increased the I to the greatest extent in virgin compared with both groups of pregnant animals. A difference between virgins and E20-21 rats was also evident with a 10-spike train but the increases in Is were similar among groups with 17-spike trains. In contrast, OA, while consistently reducing the I in all cases, showed no differential effects among groups. In Western blots, CK2α, CK2β, PP2A-A, PP2A-B, and PP2A-C were found in supraoptic lysates, and expression of CK2α and CK2β was reduced in E20-21 rats. Coimmunoprecipitation revealed that calmodulin, CK2α, and PP2A-C were associated with SK3 protein. The results suggest that a downregulation of SK3-associated CK2α during late pregnancy may increase the sensitivity of the SK calmodulin (Ca) sensor for I, contributing to the enhanced I. NEW & NOTEWORTHY The article demonstrates for the first time that enhancement in spike afterhyperpolarizations in oxytocin neurons during pregnancy may be related to a downregulation in the small-conductance Ca-activated potassium channels (SK)/calmodulin binding protein casein kinase 2, which phosphorylates the SK channel complex and reduces its Ca sensitivity. 10.1152/jn.00608.2017
Hypobaric Hypoxia-Induced Learning and Memory Impairment: Elucidating the Role of Small Conductance Ca-Activated K Channels. Kushwah Neetu,Jain Vishal,Dheer Aastha,Kumar Rahul,Prasad Dipti,Khan Nilofar Neuroscience Hypobaric Hypoxia (HH) is well-known to cause cognitive impairment and synaptic dysfunction which results in neurodegeneration. Although the role of small conductance calcium-activated potassium channels (SK channels) has been reported in synaptic plasticity, cognition and different neurological disorders; however, the precise role of SK channels in HH-induced memory impairment remains yet to be explored. We, therefore, hypothesized the pivotal role of SK channels in HH-induced cognitive decline and investigated the SK channel expression during different duration of HH exposure (Control, 1, 3, 7 and 14 days) at mRNA and protein level in male Sprague-Dawley rats. Further the role of SK channels in spatial memory and neurodegeneration were explored by inhibiting SK channel through Apamin (a known SK channel blocker). Results from the present study revealed that acute exposure of HH for 3 days leads to significant increase in expression of SK1 and SK3 channels at mRNA and protein levels, which upon chronic exposure restored to normal. Remarkably, SK2 channel expression showed gradual increase from 3 days till 14 days. Immunohistochemical analysis revealed similar pattern in different regions of the hippocampus. Additionally, SK channel inhibition with Apamin prevented HH-induced neurodegeneration and memory impairment as evident from decreased number of Fluoro Jade-positive cells, pyknotic cells, and caspase-3 expression and improved performance in the Morris water maze task. Thus, the present study demonstrates that SK channels play a crucial role in HH-induced cognitive decline and neurodegeneration. 10.1016/j.neuroscience.2018.07.026
L-Type Ca(2+) Channels and SK Channels in Mouse Embryonic Stem Cells and Their Contribution to Cell Proliferation. Vegara-Meseguer Josefina M,Pérez-Sánchez Horacio,Araujo Raquel,Martín Franz,Soria Bernat The Journal of membrane biology Mouse embryonic stem cells (mESCs) are capable of both self-renewal and multilineage differentiation; thus, they can be expanded in vivo or in vitro and differentiated to produce different cell types. Despite their biological and medical interest, many physiological properties of undifferentiated mESCs, such as ion channel function, are not fully understood. Ion channels are thought to be involved in cell proliferation and differentiation. The aim of this study was to characterize functional ion channels in cultured undifferentiated mESCs and their role in cell proliferation. L-type voltage-activated Ca(2+) channels sensitive to nifedipine and small-conductance Ca(2+)-activated K(+) (SK) channels sensitive to apamin were identified. Ca(2+)-activated K(+) currents were blocked by millimolar concentrations of tetraethylammonium. The effects of Ca(2+) channel and Ca(2+)-activated K(+) channel blockers on the proliferation of undifferentiated mESCs were investigated by bromodeoxyuridine (BrdU) incorporation. Dihydropyridine derivatives, such as nifedipine, inhibited cell growth and BrdU incorporation into the cells, whereas apamin, which selectively blocks SK channels, had no effect on cell growth. These results demonstrate that functional voltage-operated Ca(2+) channels and Ca(2+)-activated K(+) channels are present in undifferentiated mESCs. Moreover, voltage-gated L-type Ca(2+) channels, but not SK channels, might be necessary for proliferation of undifferentiated mESCs. 10.1007/s00232-015-9779-8
Distinct Ca2+ sources in dendritic spines of hippocampal CA1 neurons couple to SK and Kv4 channels. Wang Kang,Lin Mike T,Adelman John P,Maylie James Neuron Small conductance Ca(2+)-activated K(+) (SK) channels and voltage-gated A-type Kv4 channels shape dendritic excitatory postsynaptic potentials (EPSPs) in hippocampal CA1 pyramidal neurons. Synaptically evoked Ca(2+) influx through N-methyl-D-aspartate receptors (NMDARs) activates spine SK channels, reducing EPSPs and the associated spine head Ca(2+) transient. However, results using glutamate uncaging implicated Ca(2+) influx through SNX-482-sensitive (SNX-sensitive) Cav2.3 (R-type) Ca(2+) channels as the Ca(2+) source for SK channel activation. The present findings show that, using Schaffer collateral stimulation, the effects of SNX and apamin are not mutually exclusive and SNX increases EPSPs independent of SK channel activity. Dialysis with 1,2-bis(o-aminophenoxy)ethane-N'N'N'-tetraacetic acid (BAPTA), application of 4-Aminopyridine (4-AP), expression of a Kv4.2 dominant negative subunit, and dialysis with a KChIPs antibody occluded the SNX-induced increase of EPSPs. The results suggest two distinct Ca(2+) signaling pathways within dendritic spines that link Ca(2+) influx through NMDARs to SK channels and Ca(2+) influx through R-type Ca(2+) channels to Kv4.2-containing channels. 10.1016/j.neuron.2013.11.004
SK channel blockade promotes burst firing in dorsal raphe serotonergic neurons. Rouchet Nathalie,Waroux Olivier,Lamy Cédric,Massotte Laurent,Scuvée-Moreau Jacqueline,Liégeois Jean-François,Seutin Vincent The European journal of neuroscience Previous in vivo studies have shown that blockade of small-conductance Ca(2+)-activated potassium (SK) channels enhances burst firing in dopaminergic neurons. As bursting has been found to be physiologically relevant for the synaptic release of serotonin (5-HT), we investigated the possible role of SK channels in the control of this firing pattern in 5-HT neurons of the dorsal raphe nucleus. In these cells, bursts are usually composed of doublets consisting of action potentials separated by a small interval (< 20 ms). Both in vivo and in vitro extracellular recordings were performed, using anesthetized rats and rat brain slices, respectively. In vivo, the specific SK blocker UCL 1684 (200 microm) iontophoresed onto presumed 5-HT neurons significantly increased the production of bursts in 13 out of 25 cells. Furthermore, the effect of UCL 1684 persisted in the presence of both the GABA(A) antagonist SR 95531 (10 mm) and the GABA(B) antagonist CGP 35348 (10 mm), whereas these agents by themselves did not significantly influence the neuronal firing pattern. In vitro, bath superfusion of the SK channel blocker apamin (300 nm) induced bursting in only three out of 18 neurons, although it increased the coefficient of variation of the interspike intervals in all the other cells. Our results suggest that SK channel blockade promotes bursting activity in 5-HT neurons via a direct action. An input which is present only in vivo seems to be important for the induction of this firing pattern in these cells. 10.1111/j.1460-9568.2008.06430.x
Modulation of SK channels regulates locomotor alternating bursting activity in the functionally-mature spinal cord. Mahrous Amr A,Elbasiouny Sherif M Channels (Austin, Tex.) The spinal cord contains specialized groups of cells called pattern generators, which are capable of orchestrating rhythmic firing activity in an isolated preparation. Different patterns of activity could be generated in vitro including right-left alternating bursting and bursting in which both sides are synchronized. The cellular and network mechanisms that enable these behaviors are not fully understood. We have recently shown that Ca-activated K channels (SK channels) control the initiation and amplitude of synchronized bursting in the spinal cord. It is unclear, however, whether SK channels play a similar role in the alternating rhythmic pattern. In the current study, we used a spinal cord preparation from functionally mature mice capable of weight bearing and walking. The present results extend our previous work and show that SK channel inhibition initiates and modulates the amplitude of alternating bursting. We also show that addition of methoxamine, an α-adrenergic agonist, to a cocktail of serotonin, dopamine, and NMDA evokes robust and consistent alternating bursting throughout the cord. 10.1080/19336950.2017.1389825
Modulation of SK channel trafficking by beta adrenoceptors enhances excitatory synaptic transmission and plasticity in the amygdala. Faber E S Louise,Delaney Andrew J,Power John M,Sedlak Petra L,Crane James W,Sah Pankaj The Journal of neuroscience : the official journal of the Society for Neuroscience Emotionally arousing events are particularly well remembered. This effect is known to result from the release of stress hormones and activation of beta adrenoceptors in the amygdala. However, the underlying cellular mechanisms are not understood. Small conductance calcium-activated potassium (SK) channels are present at glutamatergic synapses where they limit synaptic transmission and plasticity. Here, we show that beta adrenoceptor activation regulates synaptic SK channels in lateral amygdala pyramidal neurons, through activation of protein kinase A. We show that SK channels are constitutively recycled from the postsynaptic membrane and that activation of beta adrenoceptors removes SK channels from excitatory synapses. This results in enhanced synaptic transmission and plasticity. Our findings demonstrate a novel mechanism by which beta adrenoceptors control synaptic transmission and plasticity, through regulation of SK channel trafficking, and suggest that modulation of synaptic SK channels may contribute to beta adrenoceptor-mediated potentiation of emotional memories. 10.1523/JNEUROSCI.1796-08.2008
Small-conductance, Ca(2+) -activated K+ channel 2 is the key functional component of SK channels in mouse urinary bladder. Thorneloe K S,Knorn A M,Doetsch P E,Lashinger E S R,Liu A X,Bond C T,Adelman J P,Nelson M T American journal of physiology. Regulatory, integrative and comparative physiology Small-conductance Ca(2+)-activated K(+) (SK) channels play an important role in regulating the frequency and in shaping urinary bladder smooth muscle (UBSM) action potentials, thereby modulating contractility. Here we investigated a role for the SK2 member of the SK family (SK1-3) utilizing: 1) mice expressing beta-galactosidase (beta-gal) under the direction of the SK2 promoter (SK2 beta-gal mice) to localize SK2 expression and 2) mice lacking SK2 gene expression (SK2(-/-) mice) to assess SK2 function. In SK2 beta-gal mice, UBSM staining was observed, but staining was undetected in the urothelium. Consistent with this, urothelial SK2 mRNA was determined to be 4% of that in UBSM. Spontaneous phasic contractions in wild-type (SK2(+/+)) UBSM strips were potentiated (259% of control) by the selective SK channel blocker apamin (EC(50) = 0.16 nM), whereas phasic contractions of SK2(-/-) strips were unaffected. Nerve-mediated contractions of SK2(+/+) UBSM strips were also increased by apamin, an effect absent in SK2(-/-) strips. Apamin increased the sensitivity of SK2(+/+) UBSM strips to electrical field stimulation, since pretreatment with apamin decreased the frequency required to reach a 50% maximal contraction (vehicle, 21 +/- 4 Hz, n = 6; apamin, 12 +/- 2 Hz, n = 7; P < 0.05). In contrast, the sensitivity of SK2(-/-) UBSM strips was unaffected by apamin. Here we provide novel insight into the molecular basis of SK channels in the urinary bladder, demonstrating that the SK2 gene is expressed in the bladder and that it is essential for the ability of SK channels to regulate UBSM contractility. 10.1152/ajpregu.00840.2006
Specific enhancement of SK channel activity selectively potentiates the afterhyperpolarizing current I(AHP) and modulates the firing properties of hippocampal pyramidal neurons. Pedarzani Paola,McCutcheon Jaime E,Rogge Gregor,Jensen Bo Skaaning,Christophersen Palle,Hougaard Charlotte,Strøbaek Dorte,Stocker Martin The Journal of biological chemistry SK channels are Ca2+-activated K+ channels that underlie after hyperpolarizing (AHP) currents and contribute to the shaping of the firing patterns and regulation of Ca2+ influx in a variety of neurons. The elucidation of SK channel function has recently benefited from the discovery of SK channel enhancers, the prototype of which is 1-EBIO. 1-EBIO exerts profound effects on neuronal excitability but displays a low potency and limited selectivity. This study reports the effects of DCEBIO, an intermediate conductance Ca2+-activated K+ channel modulator, and the effects of the recently identified potent SK channel enhancer NS309 on recombinant SK2 channels, neuronal apamin-sensitive AHP currents, and the excitability of CA1 neurons. NS309 and DCEBIO increased the amplitude and duration of the apamin-sensitive afterhyperpolarizing current without affecting the slow afterhyperpolarizing current in contrast to 1-EBIO. The potentiation by DCEBIO and NS309 was reversed by SK channel blockers. In current clamp experiments, NS309 enhanced the medium afterhyperpolarization (but not the slow afterhyperpolarization sAHP) and profoundly affected excitability by facilitating spike frequency adaptation in a frequency-independent manner. The potent and specific effect of NS309 on the excitability of CA1 pyramidal neurons makes this compound an ideal tool to assess the role of SK channels as possible targets for the treatment of disorders linked to neuronal hyperexcitability. 10.1074/jbc.M509610200
Attenuation of the extracellular matrix increases the number of synapses but suppresses synaptic plasticity through upregulation of SK channels. Dembitskaya Yulia,Gavrilov Nikolay,Kraev Igor,Doronin Maxim,Tang Yong,Li Li,Semyanov Alexey Cell calcium The effect of brain extracellular matrix (ECM) on synaptic plasticity remains controversial. Here, we show that targeted enzymatic attenuation with chondroitinase ABC (ChABC) of ECM triggers the appearance of new glutamatergic synapses on hippocampal pyramidal neurons, thereby increasing the amplitude of field EPSPs while decreasing both the mean miniature EPSC amplitude and AMPA/NMDA ratio. Although the increased proportion of 'unpotentiated' synapses caused by ECM attenuation should promote long-term potentiation (LTP), surprisingly, LTP was suppressed. The upregulation of small conductance Ca-activated K (SK) channels decreased the excitability of pyramidal neurons, thereby suppressing LTP. A blockade of SK channels restored cell excitability and enhanced LTP; this enhancement was abolished by a blockade of Rho-associated protein kinase (ROCK), which is involved in the maturation of dendritic spines. Thus, targeting ECM elicits the appearance of new synapses, which can have potential applications in regenerative medicine. However, this process is compensated for by a reduction in postsynaptic neuron excitability, preventing network overexcitation at the expense of synaptic plasticity. 10.1016/j.ceca.2021.102406
The Drosophila Small Conductance Calcium-Activated Potassium Channel Negatively Regulates Nociception. Walcott Kia C E,Mauthner Stephanie E,Tsubouchi Asako,Robertson Jessica,Tracey W Daniel Cell reports Inhibition of nociceptor activity is important for the prevention of spontaneous pain and hyperalgesia. To identify the critical K channels that regulate nociceptor excitability, we performed a forward genetic screen using a Drosophila larval nociception paradigm. Knockdown of three K channel loci, the small conductance calcium-activated potassium channel (SK), seizure, and tiwaz, causes marked hypersensitive nociception behaviors. In more detailed studies of SK, we found that hypersensitive phenotypes can be recapitulated with a genetically null allele. Optical recordings from nociceptive neurons showed a significant increase in mechanically activated Ca signals in SK mutant nociceptors. SK is expressed in peripheral neurons, including nociceptive neurons. Interestingly, SK proteins localize to axons of these neurons but are not detected in dendrites. Our findings suggest a major role for SK channels in the regulation of nociceptor excitation and are inconsistent with the hypothesis that the important site of action is within dendrites. 10.1016/j.celrep.2018.08.070
Differential Regulation of NMDA Receptor-Mediated Transmission by SK Channels Underlies Dorsal-Ventral Differences in Dynamics of Schaffer Collateral Synaptic Function. Babiec Walter E,Jami Shekib A,Guglietta Ryan,Chen Patrick B,O'Dell Thomas J The Journal of neuroscience : the official journal of the Society for Neuroscience Behavioral, physiological, and anatomical evidence indicates that the dorsal and ventral zones of the hippocampus have distinct roles in cognition. How the unique functions of these zones might depend on differences in synaptic and neuronal function arising from the strikingly different gene expression profiles exhibited by dorsal and ventral CA1 pyramidal cells is unclear. To begin to address this question, we investigated the mechanisms underlying differences in synaptic transmission and plasticity at dorsal and ventral Schaffer collateral (SC) synapses in the mouse hippocampus. We find that, although basal synaptic transmission is similar, SC synapses in the dorsal and ventral hippocampus exhibit markedly different responses to θ frequency patterns of stimulation. In contrast to dorsal hippocampus, θ frequency stimulation fails to elicit postsynaptic complex-spike bursting and does not induce LTP at ventral SC synapses. Moreover, EPSP-spike coupling, a process that strongly influences information transfer at synapses, is weaker in ventral pyramidal cells. Our results indicate that all these differences in postsynaptic function are due to an enhanced activation of SK-type K channels that suppresses NMDAR-dependent EPSP amplification at ventral SC synapses. Consistent with this, mRNA levels for the SK3 subunit of SK channels are significantly higher in ventral CA1 pyramidal cells. Together, our findings indicate that a dorsal-ventral difference in SK channel regulation of NMDAR activation has a profound effect on the transmission, processing, and storage of information at SC synapses and thus likely contributes to the distinct roles of the dorsal and ventral hippocampus in different behaviors. Differences in short- and long-term plasticity at Schaffer collateral (SC) synapses in the dorsal and ventral hippocampus likely contribute importantly to the distinct roles of these regions in cognition and behavior. Although dorsal and ventral CA1 pyramidal cells exhibit markedly different gene expression profiles, how these differences influence plasticity at SC synapses is unclear. Here we report that increased mRNA levels for the SK3 subunit of SK-type K channels in ventral pyramidal cells is associated with an enhanced activation of SK channels that strongly suppresses NMDAR activation at ventral SC synapses. This leads to striking differences in multiple aspects of synaptic transmission at dorsal and ventral SC synapses and underlies the reduced ability of ventral SC synapses to undergo LTP. 10.1523/JNEUROSCI.3196-16.2017
SK channel function regulates the dopamine phenotype of neurons in the substantia nigra pars compacta. Aumann T D,Gantois I,Egan K,Vais A,Tomas D,Drago J,Horne M K Experimental neurology Parkinson's disease (PD) is characterized by loss of dopaminergic (DAergic) neurons in the substantia nigra pars compacta (SNc). It is widely believed that replacing lost SNc DA neurons is a key to longer-term effective treatment of PD motor symptoms, but generating new SNc DA neurons in PD patients has proven difficult. Following loss of tyrosine hydroxylase-positive (TH+) SNc neurons in the rodent 6-hydroxy-DA (6-OHDA) model of PD, the number of TH+ neurons partially recovers and there is evidence this occurs via phenotype "shift" from TH- to TH+ cells. Understanding how this putative phenotype shift occurs may help increase SNc DAergic neurons in PD patients. In this study we characterize the electrophysiology of SNc TH- and TH+ cells during recovery from 6-OHDA in mice. Three distinct phenotypes were observed: (1) TH- were fast discharging with a short duration action potential (AP), short afterhyperpolarization (AHP) and no small conductance Ca(2+)-activated K(+) (SK) current; (2) TH+ were slow discharging with a long AP, long AHP and prominent SK current; and (3) cells with features "intermediate" between these TH- and TH+ phenotypes. The same 3 phenotypes were present also in the normal and D2 DA receptor knock-out SNc suggesting they are more closely related to the biology of TH expression than recovery from 6-OHDA. Acute inhibition of SK channel function shifted the electrophysiological phenotype of TH+ neurons toward TH- and chronic (2 weeks) inhibition of SK channel function in normal mice shifted the neurochemical phenotype of SNc from TH+ to TH- (i.e. decreased TH+ and increased TH- cell numbers). Importantly, chronic facilitation of SK channel function shifted the neurochemical phenotype of SNc from TH- to TH+ (i.e. increased TH+ and decreased TH- cell numbers). We conclude that SK channel function bidirectionally regulates the DA phenotype of SNc cells and facilitation of SK channels may be a novel way to increase the number of SNc DAergic neurons in PD patients. 10.1016/j.expneurol.2008.07.005
Convergent Metabotropic Signaling Pathways Inhibit SK Channels to Promote Synaptic Plasticity in the Hippocampus. Tigaret Cezar M,Chamberlain Sophie E L,Sadowski Joseph H L P,Hall Jeremy,Ashby Michael C,Mellor Jack R The Journal of neuroscience : the official journal of the Society for Neuroscience Hebbian synaptic plasticity at hippocampal Schaffer collateral synapses is tightly regulated by postsynaptic small conductance (SK) channels that restrict NMDA receptor activity. SK channels are themselves modulated by G-protein-coupled signaling pathways, but it is not clear under what conditions these are activated to enable synaptic plasticity. Here, we show that muscarinic M1 receptor (M1R) and type 1 metabotropic glutamate receptor (mGluR1) signaling pathways, which are known to inhibit SK channels and thereby disinhibit NMDA receptors, converge to facilitate spine calcium transients during the induction of long-term potentiation (LTP) at hippocampal Schaffer collateral synapses onto CA1 pyramidal neurons of male rats. Furthermore, mGluR1 activation is required for LTP induced by reactivated place-cell firing patterns that occur in sharp-wave ripple events during rest or sleep. In contrast, M1R activation is required for LTP induced by place-cell firing patterns during exploration. Thus, we describe a common mechanism that enables synaptic plasticity during both encoding and consolidation of memories within hippocampal circuits. Memory ensembles in the hippocampus are formed during active exploration and consolidated during rest or sleep. These two distinct phases each require strengthening of synaptic connections by long-term potentiation (LTP). The neuronal activity patterns in each phase are very different, which makes it hard to map generalized rules for LTP induction onto both formation and consolidation phases. In this study, we show that inhibition of postsynaptic SK channels is a common necessary feature of LTP induction and that SK channel inhibition is achieved by separate but convergent metabotropic signaling pathways. Thus, we reveal a common mechanism for enabling LTP under distinct behavioral conditions. 10.1523/JNEUROSCI.1160-18.2018
Effect of the SK/IK channel modulator 4,5-dichloro-1,3-diethyl-1,3-dihydro-benzoimidazol-2-one (NS4591) on contractile force in rat, pig and human detrusor smooth muscle. Nielsen Jens Steen,Rode Frederik,Rahbek Mette,Andersson Karl-Erik,Rønn Lars Christian,Bouchelouche Kirsten,Nordling Jorgen,Bouchelouche Pierre BJU international OBJECTIVE:• To investigate the importance of small (SK)- and intermediate (IK)-conductance Ca2(+) -activated K(+) channels on bladder function, by studying the effects of 4,5-dichloro-1,3-diethyl-1,3-dihydro-benzoimidazol-2-one (NS4591), a new modulator of SK/IK channels, on contractions induced by electrical field stimulation (EFS) and carbachol in rat, pig and human detrusor. PATIENTS AND METHODS:• Detrusor biopsies were obtained from rats, pigs and male patients undergoing cystectomy because of bladder cancer. • Force was recorded using myographs. • Intracellular free Ca(2+) was measured in myocytes using microfluorimetry. RESULTS:• In rat bladder rings subjected to EFS, cumulative addition of NS4591 (0.1-30 µM) decreased force by 82 ± 2.9% (n = 6).This effect was reduced by 64 ± 5.2% in the presence of 0.3 µM apamin, a specific inhibitor of SK channels. Apamin increased the force evoked by EFS significantly: force was increased by 14.2 ± 3.4% (n = 5) and 10.1 ± 2.6% (n = 7) in pig and human detrusor strips, respectively (P = 0.04 and P = 0.02). • The cumulative addition of NS4591 (0.3-30 µM) significantly reduced the amplitude of carbachol-induced rhythmic oscillations by 62.0 ± 12.0% (n = 12) and the minimum force between oscillations by 30 ± 5% (n = 9) in pig detrusor strips (P < 0.005). In the presence of 10 µM NS4591, carbachol (1 µM) induced rhythmic contractions with an amplitude and normalized mean power frequency (nmeanPF) of 8.4 ± 5.1% and 0.11 ± 0.06 mN root mean square (rms) Hz (n = 12), respectively, vs. 21 ± 3.4% and 0.17 ± 0.04 mN rms Hz in control strips (n = 13). Apamin induced 6- and 11-fold increases in amplitude and nmeanPF vs. 1.3- and 2-fold increases in control strips. • In human detrusor strips (n = 15), the cumulative addition of NS4591 (1-30 µM) significantly reduced the amplitude by 69 ± 11%, the nmeanPF by 78 ± 6% and the minimum force between carbachol-induced oscillations by 59 ± 5% (P < 0.008). The addition of apamin (0.3 µM) before application of 1 µM carbachol abolished the effects of NS4591 on amplitude and partially abolished its effect on nmeanPF by 41 ± 7%, vs. a 78 ± 6% reduction in the absence of apamin (n = 8). • In spontaneously active detrusor preparations, NS4591 reduced or abolished contractions. • Furthermore, NS4591 (10 µM) decreased the carbachol-induced increase in the fura-2 ratio by 43 ± 3% compared with control (n = 12) (P < 0.03). CONCLUSIONS:• The SK/IK channel modulator NS4591 inhibits EFS- and carbachol-induced contractions in rat, pig and human detrusor muscle. • NS4591 may have therapeutic potential for treatment of detrusor overactivity. 10.1111/j.1464-410X.2010.10019.x
Expression and function of the small-conductance Ca-activated K channel is decreased in urinary bladder smooth muscle cells from female guinea pig with partial bladder outlet obstruction. Li Ning,Ding Honglin,He Xiaoning,Li Zizheng,Liu Yili International urology and nephrology PURPOSE:Overactive bladder (OAB), usually accompanied by partial bladder outlet obstruction (PBOO), is associated with detrusor overactivity (DO) which is related to the increased urinary bladder smooth muscle (UBSM) cells excitability. Small-conductance Ca-activated K (SK) channels play a constitutive regulatory role of UBSM excitability and contractility. PBOO is associated with the decreased SK channels mRNA expression and the attenuated regulative effect of SK channels on UBSM contractility. However, the regulation of SK channels in PBOO UBSM cell excitability is less clear. Here, we tested the hypothesis that PBOO is associated with decreased expression and function of SK channels in UBSM cells and that SK channels are a potential target for the treatment of OAB. METHODS:Cystometry indicated that DO was achieved 2 weeks after PBOO in female guinea pigs. Using this animal model, we conducted single-cell quantitative reverse transcription-polymerase chain reaction (qRT-PCR) and patch-clamp electrophysiology. RESULTS:The single-cell qRT-PCR experiments indicated the reduced SK channel mRNA expression in PBOO UBSM cells. Patch-clamp studies revealed that NS309 had a diminished effect on resting membrane potential hyperpolarization via the activation of SK channels in PBOO UBSM cells. Moreover, attenuated whole-cell SK channel currents were demonstrated in PBOO UBSM cells. CONCLUSIONS:The attenuated expression and function of SK channels, which results in the increased UBSM cells excitability and contributes to DO, was discovered in PBOO UBSM cells, suggesting that SK channels might be potential therapeutic targets for the control of OAB. 10.1007/s11255-017-1592-0
The effect of apamin, a small conductance calcium activated potassium (SK) channel blocker, on a mouse model of neurofibromatosis 1. Kallarackal Angy J,Simard J Marc,Bailey Aileen M Behavioural brain research Neurofibromatosis 1 (NF1) is a common genetic disorder known to cause a variety of physiological symptoms such as the formation of both benign and malignant tumors, and is also known to cause visuospatial learning deficits. Mouse models of NF1 show increased GTP activation of ras which may alter K+ channels. One candidate K+ channel that may contribute to deficits in NF1 is the SK (small conductance calcium-activated potassium) channel due to its role in regulation of long term potentiation (LTP), a mechanism of learning which has been shown to be impaired in Nf1(+/-) mice. We found that administration of apamin (SK antagonist) either through i.p. injection or micro-osmotic pump to Nf1(+/-) mice significantly improved performance on the water maze task in comparison to saline treated Nf1(+/-) mice on the third day of training and on the corresponding probe test. In this study we demonstrate a possible mechanism for the learning deficits seen in Nf1(+/-) mice and a possible drug therapy for rescuing these deficits. 10.1016/j.bbr.2012.09.009
A Mathematical Model of a Midbrain Dopamine Neuron Identifies Two Slow Variables Likely Responsible for Bursts Evoked by SK Channel Antagonists and Terminated by Depolarization Block. Yu Na,Canavier Carmen C Journal of mathematical neuroscience Midbrain dopamine neurons exhibit a novel type of bursting that we call "inverted square wave bursting" when exposed to Ca(2+)-activated small conductance (SK) K(+) channel blockers in vitro. This type of bursting has three phases: hyperpolarized silence, spiking, and depolarization block. We find that two slow variables are required for this type of bursting, and we show that the three-dimensional bifurcation diagram for inverted square wave bursting is a folded surface with upper (depolarized) and lower (hyperpolarized) branches. The activation of the L-type Ca(2+) channel largely supports the separation between these branches. Spiking is initiated at a saddle node on an invariant circle bifurcation at the folded edge of the lower branch and the trajectory spirals around the unstable fixed points on the upper branch. Spiking is terminated at a supercritical Hopf bifurcation, but the trajectory remains on the upper branch until it hits a saddle node on the upper folded edge and drops to the lower branch. The two slow variables contribute as follows. A second, slow component of sodium channel inactivation is largely responsible for the initiation and termination of spiking. The slow activation of the ether-a-go-go-related (ERG) K(+) current is largely responsible for termination of the depolarized plateau. The mechanisms and slow processes identified herein may contribute to bursting as well as entry into and recovery from the depolarization block to different degrees in different subpopulations of dopamine neurons in vivo. 10.1186/s13408-015-0017-6
Modulation of SK Channels: Insight Into Therapeutics of Atrial Fibrillation. Qi Miao-Miao,Qian Ling-Ling,Wang Ru-Xing Heart, lung & circulation Atrial fibrillation (AF) is the most prevalent cardiac arrhythmia in the world. Although much technological progress in the treatment of AF has been made, there is an urgent need for better treatment of AF due to its high rates of morbidity and mortality. The anti-arrhythmic drugs currently approved for marketing have significant limitations and side effects such as life-threatening ventricular arrhythmias and hypotension. The small conductance Ca-activated K channels (SK channels) are dependent on intracellular Ca concentrations, which tightly integrate with membrane potential. Given the predominant expression in the atria of many species, including humans, they are now emerging as a therapeutic target for treating AF. This review aimed to illustrate the characteristics and function of SK channels. Moreover, it discussed the regulation of SK channels and their potential as a therapeutic target of AF. 10.1016/j.hlc.2021.01.009
Natural and synthetic modulators of SK (K(ca)2) potassium channels inhibit magnesium-dependent activity of the kinase-coupled cation channel TRPM7. Chubanov V,Mederos y Schnitzler M,Meißner M,Schäfer S,Abstiens K,Hofmann T,Gudermann T British journal of pharmacology BACKGROUND AND PURPOSE:Transient receptor potential cation channel subfamily M member 7 (TRPM7) is a bifunctional protein comprising a TRP ion channel segment linked to an α-type protein kinase domain. TRPM7 is essential for proliferation and cell growth. Up-regulation of TRPM7 function is involved in anoxic neuronal death, cardiac fibrosis and tumour cell proliferation. The goal of this work was to identify non-toxic inhibitors of the TRPM7 channel and to assess the effect of blocking endogenous TRPM7 currents on the phenotype of living cells. EXPERIMENTAL APPROACH:We developed an aequorin bioluminescence-based assay of TRPM7 channel activity and performed a hypothesis-driven screen for inhibitors of the channel. The candidates identified were further assessed electrophysiologically and in cell biological experiments. KEY RESULTS:TRPM7 currents were inhibited by modulators of small conductance Ca²⁺ -activated K⁺ channels (K(Ca)2.1-2.3; SK) channels, including the antimalarial plant alkaloid quinine, CyPPA, dequalinium, NS8593, SKA31 and UCL 1684. The most potent compound NS8593 (IC₅₀ 1.6 µM) specifically targeted TRPM7 as compared with other TRP channels, interfered with Mg²⁺ -dependent regulation of TRPM7 channel and inhibited the motility of cultured cells. NS8593 exhibited full and reversible block of native TRPM7-like currents in HEK 293 cells, freshly isolated smooth muscle cells, primary podocytes and ventricular myocytes. CONCLUSIONS AND IMPLICATIONS:This study reveals a tight overlap in the pharmacological profiles of TRPM7 and K(Ca)2.1-2.3 channels. NS8593 acts as a negative gating modulator of TRPM7 and is well-suited to study functional features and cellular roles of endogenous TRPM7. 10.1111/j.1476-5381.2012.01855.x
SK channel blockade reverses cognitive and motor deficits induced by nigrostriatal dopamine lesions in rats. Chen Lin,Deltheil Thierry,Turle-Lorenzo Nathalie,Liberge Martine,Rosier Corinne,Watabe Isabelle,Sreng Leam,Amalric Marianne,Mourre Christiane The international journal of neuropsychopharmacology Parkinson's disease has traditionally been viewed as a motor disorder caused by the loss of dopamine (DA) neurons. However, emotional and cognitive syndromes can precede the onset of the motor deficits and provide an opportunity for therapeutic intervention. Potassium channels have recently emerged as potential new targets in the treatment of Parkinson's disease. The selective blockade of small conductance calcium-activated K+ channels (SK channels) by apamin is known to increase burst firing in midbrain DA neurons and therefore DA release. We thus investigated the effects of systemic administration of apamin on the motor, cognitive deficits and anxiety present after bilateral nigrostriatal 6-hydroxydopamine (6-OHDA) lesions in rats. Apamin administration (0.1 or 0.3 mg/kg i.p.) counteracted the depression, anxiety-like behaviors evaluated on sucrose consumption and in the elevated plus maze, social recognition and spatial memory deficits produced by partial 6-OHDA lesions. Apamin also reduced asymmetric motor deficits on circling behavior and postural adjustments in the unilateral extensive 6-OHDA model. The partial 6-OHDA lesions (56% striatal DA depletion) produced 20% decrease of iodinated apamin binding sites in the substantia nigra pars compacta in correlation with the loss of tyrosine hydroxylase positive cells, without modifying apamin binding in brain regions receiving DAergic innervation. Striatal extracellular levels of DA, not detectable after 6-OHDA lesions, were enhanced by apamin treatment as measured by in vivo microdialysis. These results indicate that blocking SK channels may reinstate minimal DA activity in the striatum to alleviate the non-motor symptoms induced by partial striatal DA lesions. 10.1017/S1461145714000236
Bisoprolol reversed small conductance calcium-activated potassium channel (SK) remodeling in a volume-overload rat model. Ni Yajuan,Wang Tingzhong,Zhuo Xiaozhen,Song Bingxue,Zhang Jing,Wei Feng,Bai Hongyuan,Wang Xuehui,Yang Dandan,Gao Li,Ma Aiqun Molecular and cellular biochemistry A recent study indicated that apamin-sensitive current (I KAS, mediated by apamin-sensitive small conductance calcium-activated potassium channels subunits) density significantly increased in heart failure and led to recurrent spontaneous ventricular fibrillation. While the underlying molecular correlation with SK channels is still undetermined, we hypothesized that they are remodeled in HF and that bisoprolol could reverse the remodeling. Volume-overload models were created on male Sprague-Dawley rats by producing an abdominal arteriovenous fistula. Confocal microscopy, quantitative real-time PCR, and western blot were performed to investigate the expression of SK channels and observe the influence of β-blocker bisoprolol on the expression of SK channels I KAS, and the effect of bisoprolol on I KAS and the sensitivity of I KAS to [Ca(2+)]i at single isolated cells were also explored using whole-cell patch clamp techniques. SK channels were remodeled in HF rats, displaying the significant increase of SK1 and SK3 channel expression. After the treatment of HF rats with bisoprolol, the expression of SK1 and SK3 channels was significantly downregulated, and bisoprolol effectively downregulated I KAS density as well as the sensitivity of I KAS to [Ca(2+)]i. Our data indicated that the expression of SK1 and SK3 increased in HF. Bisoprolol effectively attenuated the change and downregulated I KAS density as well as the sensitivity of I KAS to [Ca(2+)]i. 10.1007/s11010-013-1785-5
Selective phosphorylation modulates the PIP2 sensitivity of the CaM-SK channel complex. Zhang Miao,Meng Xuan-Yu,Cui Meng,Pascal John M,Logothetis Diomedes E,Zhang Ji-Fang Nature chemical biology Phosphatidylinositol bisphosphate (PIP2) regulates the activities of many membrane proteins, including ion channels, through direct interactions. However, the affinity of PIP2 is so high for some channel proteins that its physiological role as a modulator has been questioned. Here we show that PIP2 is a key cofactor for activation of small conductance Ca2+-activated potassium channels (SKs) by Ca(2+)-bound calmodulin (CaM). Removal of the endogenous PIP2 inhibits SKs. The PIP2-binding site resides at the interface of CaM and the SK C terminus. We further demonstrate that the affinity of PIP2 for its target proteins can be regulated by cellular signaling. Phosphorylation of CaM T79, located adjacent to the PIP2-binding site, by casein kinase 2 reduces the affinity of PIP2 for the CaM-SK channel complex by altering the dynamic interactions among amino acid residues surrounding the PIP2-binding site. This effect of CaM phosphorylation promotes greater channel inhibition by G protein-mediated hydrolysis of PIP2. 10.1038/nchembio.1592
Effect of high-fat diet-induced obesity on the small-conductance Ca-activated K channel function affecting the contractility of rat detrusor smooth muscle. Li Ning,Ding Honglin,Li Zizheng,Liu Yili,Wang Ping International urology and nephrology PURPOSE:Obesity usually induces overactive bladder (OAB) associated with detrusor overactivity, which is related to increased contractility of the detrusor smooth muscle (DSM). Small-conductance Ca-activated K (SK) channels play a constitutive role in the regulation of DSM contractility. However, the role of SK channels in the DSM changes in obesity-related OAB is still unknown. Here, we tested the hypothesis that obesity-related OAB is associated with reduced expression and activity of SK channels in DSM and that SK channels activation is a potential treatment for OAB. METHODS:Female Sprague-Dawley rats were fed a normal diet (ND) or a high-fat diet (HFD) and weighed after 12 weeks. Urodynamic studies, quantitative reverse transcription-polymerase chain reaction (qRT-PCR), and isometric tension recording were performed. RESULTS:Increased average body weights and urodynamically demonstrated OAB were observed in HFD rats. qRT-PCR experiments revealed a decrease in the mRNA expression level of SK channel in DSM tissue of the HFD rats. Isometric tension recordings indicated an attenuated relaxation effect of NS309 on the spontaneous phasic and electrical field stimulation-induced contractions that occurred via SK channel activation in HFD DSM strips. CONCLUSIONS:Reduced expression and activity of SK channels in the DSM contribute to obesity-related OAB, indicating that SK channels are a potential therapeutic target for OAB. 10.1007/s11255-018-2016-5
Ca(V)1.3-driven SK channel activation regulates pacemaking and spike frequency adaptation in mouse chromaffin cells. Vandael David H F,Zuccotti Annalisa,Striessnig Joerg,Carbone Emilio The Journal of neuroscience : the official journal of the Society for Neuroscience Mouse chromaffin cells (MCCs) fire spontaneous action potentials (APs) at rest. Ca(v)1.3 L-type calcium channels sustain the pacemaker current, and their loss results in depolarized resting potentials (V(rest)), spike broadening, and remarkable switches into depolarization block after BayK 8644 application. A functional coupling between Ca(v)1.3 and BK channels has been reported but cannot fully account for the aforementioned observations. Here, using Ca(v)1.3(-/-) mice, we investigated the role of Ca(v)1.3 on SK channel activation and how this functional coupling affects the firing patterns induced by sustained current injections. MCCs express SK1-3 channels whose tonic currents are responsible for the slow irregular firing observed at rest. Percentage of frequency increase induced by apamin was found inversely correlated to basal firing frequency. Upon stimulation, MCCs build-up Ca(v)1.3-dependent SK currents during the interspike intervals that lead to a notable degree of spike frequency adaptation (SFA). The major contribution of Ca(v)1.3 to the subthreshold Ca(2+) charge during an AP-train rather than a specific molecular coupling to SK channels accounts for the reduced SFA of Ca(v)1.3(-/-) MCCs. Low adaptation ratios due to reduced SK activation associated with Ca(v)1.3 deficiency prevent the efficient recovery of Na(V) channels from inactivation. This promotes a rapid decline of AP amplitudes and facilitates early onset of depolarization block following prolonged stimulation. Thus, besides serving as pacemaker, Ca(v)1.3 slows down MCC firing by activating SK channels that maintain Na(V) channel availability high enough to preserve stable AP waveforms, even upon high-frequency stimulation of chromaffin cells during stress responses. 10.1523/JNEUROSCI.3715-12.2012
Loose coupling between SK and P/Q-type Ca channels in cartwheel cells of the dorsal cochlear nucleus. Irie Tomohiko Journal of neurophysiology Small-conductance Ca-activated K (SK) and large-conductance voltage- and Ca-activated K (BK) channels are Ca-activated K channels that control action potential firing in diverse neurons in the brain. In cartwheel cells of the dorsal cochlear nucleus, blockade of either channel type leads to excessive production of spike bursts. In the same cells, P/Q-type Ca channels in plasma membrane and ryanodine receptors in endoplasmic reticulum supply Ca to BK channels through Ca nanodomain signaling. In this study, voltage-clamp experiments were performed in cartwheel cells in mouse brain slices to examine the Ca signaling pathways underlying activation of SK channels. As with BK channels, SK channels required the activity of P/Q-type Ca channels. However, this signaling occurred across Ca micro- rather than nanodomain distances and was independent of Ca release from endoplasmic reticulum. These differential modes of activation may lead to distinct time courses of the two K currents and therefore control excitability of auditory neurons across different timescales. This study has shown for the first time that in cartwheel cells of the dorsal cochlear nucleus, small-conductance Ca-activated K (SK) channels were triggered by the activation of P/Q-type Ca channels in which SK-P/Q-type coupling is mediated within the Ca microdomains (loose coupling). Although Ca-induced Ca release is able to activate large-conductance voltage- and Ca-activated K (BK) channels in cartwheel cells, it did not contribute to SK activation. 10.1152/jn.00515.2019
P2Y receptor-mediated transient relaxation of rat longitudinal ileum preparations involves phospholipase C activation, intracellular Ca(2+) release and SK channel activation. Mader Felix,Krause Ludwig,Tokay Tursonjan,Hakenberg Oliver W,Köhling Rüdiger,Kirschstein Timo Acta pharmacologica Sinica AIM:Purinergic signaling plays a major role in the enteric nervous system, where it governs gut motility through a number of P2X and P2Y receptors. The aim of this study was to investigate the P2Y receptor-mediated motility in rat longitudinal ileum preparations. METHODS:Ileum smooth muscle strips were prepared from rats, and fixed in an organ bath. Isometric contraction and relaxation responses of the muscle strips were measured with force transducers. Drugs were applied by adding of stock solutions to the organ bath to yield the individual final concentrations. RESULTS:Application of the non-hydrolyzable P2 receptor agonists α,β-Me-ATP or 2-Me-S-ADP (10, 100 μmol/L) dose-dependently elicited a transient relaxation response followed by a sustained contraction. The relaxation response was largely blocked by SK channel blockers apamin (500 nmol/L) and UCL1684 (10 μmol/L), PLC inhibitor U73122 (100 μmol/L), IP3 receptor blocker 2-APB (100 μmol/L) or sarcoendoplasmic Ca(2+) ATPase inhibitor thapsigargin (1 μmol/L), but not affected by atropine, NO synthase blocker L-NAME or tetrodotoxin. Furthermore, α,β-Me-ATP-induced relaxation was suppressed by P2Y1 receptor antagonist MRS2179 (50 μmol/L) or P2Y13 receptor antagonist MRS2211 (100 μmol/L), and was abolished by co-application of the two antagonists, whereas 2-Me-S-ADP-induced relaxation was abolished by P2Y6 receptor antagonist MRS2578 (50 μmol/L). In addition, P2Y1 receptor antagonist MRS2500 (1 μmol/L) not only abolished α,β-Me-ATP-induced relaxation, but also suppressed 2-Me-S-ADP-induced relaxation. CONCLUSION:P2Y receptor agonist-induced transient relaxation of rat ileum smooth muscle strips is mediated predominantly by P2Y1 receptor, but also by P2Y6 and P2Y13 receptors, and involves PLC, IP3, Ca(2+) release and SK channel activation, but is independent of acetylcholine and NO release. 10.1038/aps.2015.137
Elucidating the role of hypoxia/reoxygenation in hippocampus-dependent memory impairment: do SK channels play role? Kadam Manisha,Perveen Saba,Kushwah Neetu,Prasad Dipti,Panjwani Usha,Kumar Bhuvnesh,Khan Nilofar Experimental brain research Professionals and mountaineers often face the problem of reperfusion injury due to re-oxygenation, upon their return to sea-level after sojourn at high altitude. Small conductance calcium-activated potassium channels (SK channels) have a role in regulating hippocampal synaptic plasticity. However, the role of SK channels under hypoxia-reoxygenation (H/R) is unknown. The present study hypothesized that SK channels play a significant role in H/R induced cognitive dysfunction. Sprague-Dawley rats were exposed to simulated HH (25,000 ft) continuously for 7 days followed by reoxygenation periods 3, 6, 24, 48, 72 and 120 h. It was observed that H/R exposure caused impairment in spatial memory as indicated by increased latency (p < 0.001) and pathlength (p < 0.001). The SK1 channel expression increased upon HH exposure (102.89 ± 7.055), which abrogated upon reoxygenation. HH exposure results in an increase in SK2 (CA3, 297.67 ± 6.69) and SK3 (CA1, 246 ± 5.13) channels which continued to increase gradually upon reoxygenation. The number of pyknotic cells (24 ± 2.03) (p < 0.01) and the expression of caspase-3 increased with HH exposure, which continued in the reoxygenation group (177.795 ± 1.264). Similar pattern was observed in lipid peroxidation (p < 0.001), LDH activity (p < 0.001) and ROS production (p < 0.001). A positive correlation of memory, cell death and oxidative stress indicates that H/R exposure increases oxidative stress coupled with SK channel expression, which may play a role in H/R-induced cognitive decline and neurodegeneration. 10.1007/s00221-021-06095-8
Sex-specific density of ventricular SK currents: is this a general feature of SK channel function? The Journal of physiology 10.1113/JP276663
Functional coupling between NMDA receptors and SK channels in rat hypothalamic magnocellular neurons: altered mechanisms during heart failure. Ferreira-Neto Hildebrando C,Stern Javier E The Journal of physiology KEY POINTS:Glutamatergic NMDA receptors (NMDARs) and small conductance Ca -activated K (SK) channels are critical synaptic and intrinsic mechanisms, respectively, that regulate the activity of hypothalamic magnocellular neurosecretory neurons (MNNs). In this work, we investigated whether NMDARs and SK channels in MNNs are functionally coupled, and whether an altered coupling may contribute to exacerbated neuronal activity in this condition. We report that NMDARs and SK channels form a functional Ca -dependent negative feedback loop that restrains the excitatory effect on membrane potential and firing activity evoked by NMDAR activation. The negative feedback loop between NMDARs and SK channels was blunted or absent in MNNs of heart failure (HF) rats. These results help us better understand how synaptic and intrinsic mechanisms regulate hypothalamic neuronal activity, as well as how changes in the interaction among these disparate mechanisms contribute to altered neuronal activity during prevalent neurogenic cardiovascular diseases. ABSTRACT:Glutamatergic NMDA receptors (NMDARs) and small conductance Ca -activated K (SK) channels are critical synaptic and intrinsic mechanisms, respectively, that regulate the activity of hypothalamic magnocellular neurosecretory neurons (MNNs), both under physiological and pathological states, such as lactation and heart failure (HF). However, whether NMDARs and SK channels in MNNs are functionally coupled, and whether changes in this coupling contribute to exacerbated neuronal activity during HF is at present unknown. In the present study, we addressed these questions using patch-clamp electrophysiology and confocal Ca imaging in a rat model of ischaemic HF. We found that in MNNs of sham rats, blockade of SK channels with apamin (200 nM) significantly increased the magnitude of an NMDAR-evoked current (I ). We also observed that blockade of SK channels potentiated NMDAR-evoked firing, and abolished spike frequency adaptation in MNNs from sham, but not HF rats. Importantly, a larger I -ΔCa response was observed under basal conditions in HF compared to sham rats. Finally, we found that dialysing recorded cells with the Ca chelator BAPTA (10 mM) increased the magnitude of I in MNNs from both sham and HF rats, and occluded the effects of apamin in the former. Together our studies demonstrate that in MNNs, NMDARs and SK channels are functionally coupled, forming a local negative feedback loop that restrains the excitatory effect evoked by NMDAR activation. Moreover, our studies also support a blunted NMDAR-SK channel coupling in MNNs of HF rats, establishing it as a pathophysiological mechanism contributing to exacerbated hypothalamic neuronal activity during this prevalent neurogenic cardiovascular disease. 10.1113/JP278910
SK-Channel Activation Alters Peripheral Metabolic Pathways in Mice, but Not Lipopolysaccharide-Induced Fever or Inflammation. Journal of inflammation research PURPOSE:Previously, we have shown that CyPPA (cyclohexyl-[2-(3,5-dimethyl-pyrazol-1-yl)-6-methyl-pyrimidin-4-yl]-amine), a pharmacological small-conductance calcium-activated potassium (SK)-channel positive modulator, antagonizes lipopolysaccharide (LPS)-induced cytokine expression in microglial cells. Here, we aimed to test its therapeutic potential for brain-controlled sickness symptoms, brain inflammatory response during LPS-induced systemic inflammation, and peripheral metabolic pathways in mice. METHODS:Mice were pretreated with CyPPA (15 mg/kg IP) 24 hours before and simultaneously with LPS stimulation (2.5 mg/kg IP), and the sickness response was recorded by a telemetric system for 24 hours. A second cohort of mice were euthanized 2 hours after CyPPA or solvent treatment to assess underlying CyPPA-induced mechanisms. Brain, blood, and liver samples were analyzed for inflammatory mediators or nucleotide concentrations using immunohistochemistry, real-time PCR and Western blot, or HPLC. Moreover, we investigated CyPPA-induced changes of UCP1 expression in brown adipose tissue (BAT)-explant cultures. RESULTS:CyPPA treatment did not affect LPS-induced fever, anorexia, adipsia, or expression profiles of inflammatory mediators in the hypothalamus or plasma or microglial reactivity to LPS (CD11b staining and CD68 mRNA expression). However, CyPPA alone induced a rise in core body temperature linked to heat production via altered metabolic pathways like reduced levels of adenosine, increased protein content, and increased UCP1 expression in BAT-explant cultures, but no alteration in ATP/ADP concentrations in the liver. CyPPA treatment was accompanied by altered pathways, including NFκB signaling, in the hypothalamus and cortex, while circulating cytokines remained unaltered. CONCLUSION:Overall, while CyPPA has promise as a treatment strategy, in particular according to results from in vitro experiments, we did not reveal anti-inflammatory effects during severe LPS-induced systemic inflammation. Interestingly, we found that CyPPA alters metabolic pathways inducing short hyperthermia, most likely due to increased energy turnover in the liver and heat production in BAT. 10.2147/JIR.S338812
SK Channels Modulation Accelerates Equilibrium Recovery in Unilateral Vestibular Neurectomized Rats. Tighilet Brahim,Bourdet Audrey,Péricat David,Timon-David Elise,Rastoldo Guillaume,Chabbert Christian Pharmaceuticals (Basel, Switzerland) We have previously reported in a feline model of acute peripheral vestibulopathy (APV) that the sudden, unilateral, and irreversible loss of vestibular inputs induces selective overexpression of small conductance calcium-activated potassium (SK) channels in the brain stem vestibular nuclei. Pharmacological blockade of these ion channels by the selective antagonist apamin significantly alleviated the evoked vestibular syndrome and accelerated vestibular compensation. In this follow-up study, we aimed at testing, using a behavioral approach, whether the antivertigo (AV) effect resulting from the antagonization of SK channels was species-dependent or whether it could be reproduced in a rodent APV model, whether other SK channel antagonists reproduced similar functional effects on the vestibular syndrome expression, and whether administration of SK agonist could also alter the vestibular syndrome. We also compared the AV effects of apamin and acetyl-DL-leucine, a reference AV compound used in human clinic. We demonstrate that the AV effect of apamin is also found in a rodent model of APV. Other SK antagonists also produce a trend of AV effect when administrated during the acute phase of the vertigo syndrome. Conversely, the vertigo syndrome is worsened upon administration of SK channel agonist. It is noteworthy that the AV effect of apamin is superior to that of acetyl-DL-leucine. Taken together, these data reinforce SK channels as a pharmacological target for modulating the manifestation of the vertigo syndrome during APV. 10.3390/ph14121226
SK channel-selective opening by SKA-31 induces hyperpolarization and decreases contractility in human urinary bladder smooth muscle. Soder Rupal P,Parajuli Shankar P,Hristov Kiril L,Rovner Eric S,Petkov Georgi V American journal of physiology. Regulatory, integrative and comparative physiology Overactive bladder (OAB) is often associated with increased involuntary detrusor smooth muscle (DSM) contractions during the bladder-filling phase. To develop novel therapies for OAB, it is critical to better understand the mechanisms that control DSM excitability and contractility. Recent studies showed that small-conductance Ca(2+)-activated K(+) (SK) channels, SK3 channels, in particular, regulate human DSM function. However, the concept that SK channel-selective pharmacological activation can decrease the excitability and contractility directly in human DSM needs further exploration. Here, we studied the effect of the novel and potent SK channel activator, SKA-31 (or naphtho [1,2-d]thiazol-2-ylamine), on human DSM excitability and contractility at the cellular and tissue level. We used isometric tension recordings on human DSM-isolated strips and the perforated patch-clamp technique on freshly isolated native human DSM cells. SKA-31 significantly decreased spontaneous phasic contractions of DSM-isolated strips. In the presence of the SK channel blocker, apamin, the inhibitory effects of SKA-31 on the DSM spontaneous phasic contractions were significantly reduced. SKA-31 decreased the carbachol- and KCl-induced contractions in human DSM strips. Electrical field stimulation-induced contractions were significantly attenuated in the presence of SKA-31 at all stimulation frequencies (0.5-50 Hz). SKA-31 hyperpolarized the resting membrane potential of human DSM cells. Apamin abolished the hyperpolarizing effect of SKA-31, indicating the involvement of SK channel activation. These results support the concept that pharmacological activation of SK channels with selective openers may represent an attractive new pharmacological approach for decreasing DSM excitability and contractility, thus controlling OAB. 10.1152/ajpregu.00363.2012
Antiarrhythmic effect of the Ca-activated K (SK) channel inhibitor ICA combined with either amiodarone or dofetilide in an isolated heart model of atrial fibrillation. Kirchhoff Jeppe Egedal,Diness Jonas Goldin,Abildgaard Lea,Sheykhzade Majid,Grunnet Morten,Jespersen Thomas Pflugers Archiv : European journal of physiology Dose is an important parameter in terms of both efficacy and adverse effects in pharmacological treatment of atrial fibrillation (AF). Both of the class III antiarrhythmics dofetilide and amiodarone have documented anti-AF effects. While dofetilide has dose-related ventricular side effects, amiodarone primarily has adverse non-cardiac effects. Pharmacological inhibition of small conductance Ca-activated K (SK) channels has recently been reported to be antiarrhythmic in a number of animal AF models. In a Langendorff model of acutely induced AF on guinea pig hearts, it was investigated whether a combination of the SK channel blocker N-(pyridin-2-yl)-4-(pyridin-2-yl)thiazol-2-amine (ICA) together with either dofetilide or amiodarone provided a synergistic effect. The duration of AF was reduced with otherwise subefficacious concentrations of either dofetilide or amiodarone when combined with ICA, also at a subefficacious concentration. At a concentration level effective as monotherapy, dofetilide produced a marked increase in the QT interval. This QT prolonging effect was absent when combined with ICA at non-efficacious monotherapy concentrations. The results thereby reveal that combination of subefficacious concentrations of an SK channel blocker and either dofetilide or amiodarone can maintain anti-AF properties, while the risk of ventricular arrhythmias is reduced. 10.1007/s00424-016-1883-9
Network excitability in a model of chronic temporal lobe epilepsy critically depends on SK channel-mediated AHP currents. Schulz Robert,Kirschstein Timo,Brehme Hannes,Porath Katrin,Mikkat Ulrike,Köhling Rüdiger Neurobiology of disease Hippocampal CA1 pyramidal neurons generate an after-hyperpolarization (AHP) whose medium component is thought to be generated by small-conductance Ca(2+)-activated K(+) channels (SK channels). Neuronal excitability is increased in epilepsy, and the AHP in turn is fundamentally involved in regulation of cellular excitability. We therefore investigated the involvement of the SK channel-mediated AHP in controlling cell and network excitability in the pilocarpine model epilepsy. Both acutely isolated CA1 pyramidal cells and isolated hippocampal slices were investigated in terms of the impact of SK channel-mediated AHP on hyperexcitability. Our findings show that pilocarpine-treated chronically epileptic rats exhibit significantly reduced SK channel-mediated hyperpolarizing outward current which was accompanied by a significant decrease in the somatic AHP. Paradoxically, inhibiting SK channels strongly exacerbated 0-Mg(2+)-induced epileptiform activity in slices from pilocarpine-treated animals, while having a significantly smaller effect in control tissue. This suggests that in chronically epileptic tissue, network excitability very critically depends on the remaining SK-channel mediated AHP. Additional real-time RT-PCR and semiquantitative Western blot experiments revealed that both the SK2 channel transcript and protein were significantly downregulated in the epileptic CA1 region. We conclude that SK2 channels are down-regulated in chronic epilepsy underlying the impaired SK channel function in CA1 pyramidal cells, and a further reduction of the remaining critical mass of SK channels results in an acute network decompensation. 10.1016/j.nbd.2011.08.019
In vivo activation of the SK channel in the spinal cord reduces the NMDA receptor antagonist dose needed to produce antinociception in an inflammatory pain model. Pain N-methyl-D-aspartate receptor (NMDAR) antagonists have been shown to reduce mechanical hypersensitivity in animal models of inflammatory pain. However, their clinical use is associated with significant dose-limiting side effects. Small-conductance Ca-activated K channels (SK) have been shown to modulate NMDAR activity in the brain. We demonstrate that in vivo activation of SK channels in the spinal cord can alleviate mechanical hypersensitivity in a rat model of inflammatory pain. Intrathecal (i.t.) administration of the SK channel activator, 6,7-dichloro-1H-indole-2,3-dione 3-oxime (NS309), attenuates complete Freund adjuvant (CFA)-induced mechanical hypersensitivity in a dose-dependent manner. Postsynaptic expression of the SK channel subunit, SK3, and apamin-sensitive SK channel-mediated currents recorded from superficial laminae are significantly reduced in the dorsal horn (DH) after CFA. Complete Freund adjuvant-induced decrease in SK-mediated currents can be reversed in vitro by bath application of NS309. In addition, immunostaining for the SK3 subunit indicates that SK3-containing channels within DH neurons can have both somatic and dendritic localization. Double immunostaining shows coexpression of SK3 and NMDAR subunit, NR1, compatible with functional interaction. Moreover, we demonstrate that i.t. coadministration of NS309 with an NMDAR antagonist reduces the dose of NMDAR antagonist, DL-2-amino-5-phosphonopentanoic acid (DL-AP5), required to produce antinociceptive effects in the CFA model. This reduction could attenuate the unwanted side effects associated with NMDAR antagonists, giving this combination potential clinical implications. 10.1097/j.pain.0000000000000124
Antidepressant activity of pharmacological and genetic deactivation of the small-conductance calcium-activated potassium channel subtype-3. Psychopharmacology RATIONALE:The voltage-insensitive, small-conductance calcium-activated potassium (SK) channel is a key regulator of neuronal depolarization and is implicated in the pathophysiology of depressive disorders. OBJECTIVE:We ascertained whether the SK channel is impaired in the chronic unpredictable stress (CUS) model and whether it can serve as a molecular target of antidepressant action. METHODS:We assessed the depressive-like behavioral phenotype of CUS-exposed rats and performed post-mortem SK channel binding and activity-dependent zif268 mRNA analyses on their brains. To begin an assessment of SK channel subtypes involved, we examined the effects of genetic and pharmacological inhibition of the SK3 channel using conditional knockout mice and selective SK3 channel negative allosteric modulators (NAMs). RESULTS:We found that [I]apamin binding to SK channels is increased in the prefrontal cortex and decreased in the hippocampus, an effect that was associated with reciprocal levels of zif268 mRNA transcripts indicating abnormal regional cell activity in this model. We found that genetic and pharmacological manipulations significantly decreased immobility in the forced swim test without altering general locomotor activity, a hallmark of antidepressant-like activity. CONCLUSIONS:Taken together, these findings link depression-related neural and behavioral pathophysiology with abnormal SK channel functioning and suggest that this can be reversed by the selective inhibition of SK3 channels. 10.1007/s00213-021-06045-w
SK channel activation is neuroprotective in conditions of enhanced ER-mitochondrial coupling. Cell death & disease Alterations in the strength and interface area of contact sites between the endoplasmic reticulum (ER) and mitochondria contribute to calcium (Ca) dysregulation and neuronal cell death, and have been implicated in the pathology of several neurodegenerative diseases. Weakening this physical linkage may reduce Ca uptake into mitochondria, while fortifying these organelle contact sites may promote mitochondrial Ca overload and cell death. Small conductance Ca-activated K (SK) channels regulate mitochondrial respiration, and their activation attenuates mitochondrial damage in paradigms of oxidative stress. In the present study, we enhanced ER-mitochondrial coupling and investigated the impact of SK channels on survival of neuronal HT22 cells in conditions of oxidative stress. Using genetically encoded linkers, we show that mitochondrial respiration and the vulnerability of neuronal cells to oxidative stress was inversely linked to the strength of ER-mitochondrial contact points and the increase in mitochondrial Ca uptake. Pharmacological activation of SK channels provided protection against glutamate-induced cell death and also in conditions of increased ER-mitochondrial coupling. Together, this study revealed that SK channel activation provided persistent neuroprotection in the paradigm of glutamate-induced oxytosis even in conditions where an increase in ER-mitochondrial coupling potentiated mitochondrial Ca influx and impaired mitochondrial bioenergetics. 10.1038/s41419-018-0590-1
p75 regulates Purkinje cell firing by modulating SK channel activity through Rac1. The Journal of biological chemistry p75 is expressed among Purkinje cells in the adult cerebellum, but its function has remained obscure. Here we report that p75 is involved in maintaining the frequency and regularity of spontaneous firing of Purkinje cells. The overall spontaneous firing activity of Purkinje cells was increased in p75(-/-) mice during the phasic firing period due to a longer firing period and accompanying reduction in silence period than in the wild type. We attribute these effects to a reduction in small conductance Ca(2+)-activated potassium (SK) channel activity in Purkinje cells from p75(-/-) mice compared with the wild type littermates. The mechanism by which p75 regulates SK channel activity appears to involve its ability to activate Rac1. In organotypic cultures of cerebellar slices, brain-derived neurotrophic factor increased RacGTP levels by activating p75 but not TrkB. These results correlate with a reduction in RacGTP levels in synaptosome fractions from the p75(-/-) cerebellum, but not in that from the cortex of the same animals, compared with wild type littermates. More importantly, we demonstrate that Rac1 modulates SK channel activity and firing patterns of Purkinje cells. Along with the finding that spine density was reduced in p75(-/-) cerebellum, these data suggest that p75 plays a role in maintaining normalcy of Purkinje cell firing in the cerebellum in part by activating Rac1 in synaptic compartments and modulating SK channels. 10.1074/jbc.M114.589937
SK channel activation modulates mitochondrial respiration and attenuates neuronal HT-22 cell damage induced by H2O2. Richter Maren,Nickel Catharina,Apel Lisa,Kaas Alexander,Dodel Richard,Culmsee Carsten,Dolga Amalia M Neurochemistry international Previous studies established an essential role for small conductance calcium-activated potassium (SK) channels in neuronal cell death pathways induced by glutamate excitotoxicity in cortical neurons in vitro and after cerebral ischemia in vivo. In addition to the intracellular calcium deregulation, glutamate-induced cell death also involves mechanisms of oxidative stress and mitochondrial dysfunction. Therefore, we sought to investigate whether SK channel activation might also affect mechanisms of intrinsic death pathways induced by reactive oxygen species (ROS) such as hydrogen peroxide (H2O2). Exposure of immortalized hippocampal HT-22 cells to H2O2 imposed activation of a cascade of intracellular toxic events resulting in intracellular ROS production, mitochondrial loss of function, and ultimately cell death. Using a pharmacological approach to activate SK channels with CyPPA, we demonstrated a reduction of H2O2-mediated intracellular ROS production and cell death. Interestingly, CyPPA mediated neuroprotection in conditions of extracellular calcium and/or pyruvate depletion, pointing to a neuroprotective role of mitochondrial SK channels. Moreover, CyPPA partially inhibited H2O2-induced mitochondrial superoxide production, but did not prevent mitochondrial membrane depolarization. CyPPA treatment resulted in slight ATP depletion and a reduction of mitochondrial respiration/oxygen consumption. These findings postulate that SK channels mediate a protective effect by preventing neuronal death from subsequent oxidative stress through an adaptive metabolic response at the level of mitochondria. Therefore, SK channel activation may serve as a therapeutic target, where mitochondrial dysfunction and related mechanisms of oxidative stress contribute to progressive degeneration and death of neurons. 10.1016/j.neuint.2014.12.007
Paradoxical Excitatory Impact of SK Channels on Dendritic Excitability. Bock Tobias,Honnuraiah Suraj,Stuart Greg J The Journal of neuroscience : the official journal of the Society for Neuroscience Dendritic excitability regulates how neurons integrate synaptic inputs and thereby influences neuronal output. As active dendritic events are associated with significant calcium influx they are likely to be modulated by calcium-dependent processes, such as calcium-activated potassium channels. Here we investigate the impact of small conductance calcium-activated potassium channels (SK channels) on dendritic excitability in male and female rat cortical pyramidal neurons and Using local applications of the SK channel antagonist apamin , we show that blocking somatic SK channels enhances action potential output, whereas blocking dendritic SK channels paradoxically reduces the generation of dendritic calcium spikes and associated somatic burst firing. Opposite effects were observed using the SK channel enhancer NS309. The effect of apamin on dendritic SK channels was occluded when R-type calcium channels were blocked, indicating that the inhibitory impact of apamin on dendritic calcium spikes involved R-type calcium channels. Comparable effects were observed Intracellular application of apamin via the somatic whole-cell recording pipette reduced the medium afterhyperpolarization and increased action potential output during UP states. In contrast, extracellular application of apamin to the cortical surface to block dendritic SK channels shifted the distribution of action potentials within UP states from an initial burst to a more distributed firing pattern, while having no impact on overall action potential firing frequency or UP and DOWN states. These data indicate that somatic and dendritic SK channels have opposite effects on neuronal excitability, with dendritic SK channels counter-intuitively promoting rather than suppressing neuronal output. Neurons typically receive input from other neurons onto processes called dendrites, and use electrical events such as action potentials for signaling. As electrical events in neurons are usually associated with calcium influx they can be regulated by calcium-dependent processes. One such process is through the activation of calcium-dependent potassium channels, which usually act to reduce action potential signaling. Although this is the case for calcium-dependent potassium channels found at the cell body, we show here that calcium-dependent potassium channels in dendrites of cortical pyramidal neurons counter-intuitively promote rather than suppress action potential output. 10.1523/JNEUROSCI.0105-19.2019
Metabolic regulation of endothelial SK channels and human coronary microvascular function. International journal of cardiology BACKGROUND:Diabetic (DM) inactivation of small conductance calcium-activated potassium (SK) channels contributes to coronary endothelial dysfunction. However, the mechanisms responsible for this down-regulation of endothelial SK channels are poorly understood. Thus, we hypothesized that the altered metabolic signaling in diabetes regulates endothelial SK channels and human coronary microvascular function. METHODS:Human atrial tissue, coronary arterioles and coronary artery endothelial cells (HCAECs) obtained from DM and non-diabetic (ND) patients (n = 12/group) undergoing cardiac surgery were used to analyze metabolic alterations, endothelial SK channel function, coronary microvascular reactivity and SK gene/protein expression/localization. RESULTS:The relaxation response of DM coronary arterioles to the selective SK channel activator SKA-31 and calcium ionophore A23187 was significantly decreased compared to that of ND arterioles (p < 0.05). Diabetes increases the level of NADH and the NADH/NAD ratio in human myocardium and HCAECs (p < 0.05). Increase in intracellular NADH (100 μM) in the HCAECs caused a significant decrease in endothelial SK channel currents (p < 0.05), whereas, intracellular application of NAD (500 μM) increased the endothelial SK channel currents (p < 0.05). Mitochondrial reactive oxygen species (mROS) of HCAECs and NADPH oxidase (NOX) and PKC protein expression in the human myocardium and coronary microvasculature were increased respectively (p < 0.05). CONCLUSIONS:Diabetes is associated with metabolic changes in the human myocardium, coronary microvasculature and HCAECs. Endothelial SK channel function is regulated by the metabolite pyridine nucleotides, NADH and NAD, suggesting that metabolic regulation of endothelial SK channels may contribute to coronary endothelial dysfunction in the DM patients with diabetes. 10.1016/j.ijcard.2020.03.028
Firing pattern modulation through SK channel current increase underlies neuronal survival in an organotypic slice model of Parkinson's disease. Wang Yuan,Qu Liang,Wang Xue-Lian,Gao Li,Li Zhen-Zhen,Gao Guo-Dong,Yang Qian Molecular neurobiology Dopaminergic (DA) neurons in substantia nigra pars compacta (SNc) are vulnerable to excitotoxicity in Parkinson's disease (PD). Neurotoxic stimuli may alter the firing patterns of DA neurons. However, whether firing pattern change underlies neurotoxic stress-induced death of DA neurons remains unknown. In this study, we established long-term cultures of SNc organotypic slices and used this model to evaluate the neurotoxic effects on firing mode and DA neuronal viability following chronic treatment with neurotoxin 6-hydroxydopamine (6-OHDA). Using whole-cell patch clamp to explore the intrinsic membrane properties and firing mode, we showed that chronic exposure to 6-OHDA raised the resting membrane potential of SNc DA neurons and altered their firing pattern, causing it to switch from a regular rhythmic pacemaking firing to an irregular bursting. This firing pattern change correlated with increased death of SNc DA neurons. The 6-OHDA-induced firing pattern change correlated with an increase in the activity of the small conductance calcium-activated potassium channel (SK channel) and with an increase in both the level and activity of protein phosphatase 2A (PP2A). Activation of the SK channel by its agonist 1-EBIO attenuated 6-OHDA-induced firing irregularity and death, while the SK channel antagonist apamin exacerbated the toxic effects of 6-OHDA. Thus, SK channel current is a substantial element in sustaining the SNc DA neuronal rhythmic pacemaking and homeostasis and perturbing SK channel activity underlies 6-OHDA-induced neurotoxicity. 10.1007/s12035-014-8728-3
Positive Modulation of SK Channel Impedes Neuron-Specific Cytoskeletal Organization and Maturation. Developmental neuroscience N-methyl-D-aspartate receptor (NMDAR) modulates the structural plasticity of dendritic spines by impacting cytoskeletal organization and kinase signaling. In the developing nervous system, activation of NMDAR is pertinent for neuronal migration, neurite differentiation, and cellular organization. Given that small conductance potassium channels (SK2/3) repress NMDAR ionotropic signaling, this study highlights the impact of neonatal SK channel potentiation on adult cortical and hippocampal organization. Neonatal SK channel potentiation was performed by one injection of SK2/3 agonist (CyPPA) into the pallium of mice on postnatal day 2 (P2). When the animals reached adulthood (P55), the hippocampus and cortex were examined to assess neuronal maturation, lamination, and the distribution of synaptic cytoskeletal proteins. Immunodetection of neuronal markers in the brain of P2-treated P55 mice revealed the presence of immature neurons in the upper cortical layers (layers II-IV) and CA1 (hippocampus). Also, layer-dependent cortical-cell density was attenuated due to the ectopic localization of mature (NeuN+) and immature (Doublecortin+ [DCX+]) neurons in cortical layers II-IV. Similarly, the decreased count of NeuN+ neurons in the CA1 is accompanied by an increase in the number of immature DCX+ neurons. Ectopic localization of neurons in the upper cortex and CA1 caused the dramatic expression of neuron-specific cytoskeletal proteins. In line with this, structural deformity of neuronal projections and the loss of postsynaptic densities suggests that postsynaptic integrity is compromised in the SK2/3+ brain. From these results, we deduced that SK channel activity in the developing brain likely impacts neuronal maturation through its effects on cytoskeletal formation. 10.1159/000507989
SK channel enhancers attenuate Ca2+-dependent arrhythmia in hypertrophic hearts by regulating mito-ROS-dependent oxidation and activity of RyR. Kim Tae Yun,Terentyeva Radmila,Roder Karim H F,Li Weiyan,Liu Man,Greener Ian,Hamilton Shanna,Polina Iuliia,Murphy Kevin R,Clements Richard T,Dudley Samuel C,Koren Gideon,Choi Bum-Rak,Terentyev Dmitry Cardiovascular research Aims:Plasmamembrane small conductance Ca2+-activated K+ (SK) channels were implicated in ventricular arrhythmias in infarcted and failing hearts. Recently, SK channels were detected in the inner mitochondria membrane (IMM) (mSK), and their activation protected from acute ischaemia-reperfusion injury by reducing intracellular levels of reactive oxygen species (ROS). We hypothesized that mSK play an important role in regulating mitochondrial function in chronic cardiac diseases. We investigated the role of mSK channels in Ca2+-dependent ventricular arrhythmia using rat model of cardiac hypertrophy induced by banding of the ascending aorta thoracic aortic banding (TAB). Methods and results:Dual Ca2+ and membrane potential optical mapping of whole hearts derived from TAB rats revealed that membrane-permeable SK enhancer NS309 (2 μM) improved aberrant Ca2+ homeostasis and abolished VT/VF induced by β-adrenergic stimulation. Using whole cell patch-clamp and confocal Ca2+ imaging of cardiomyocytes derived from TAB hearts (TCMs) we found that membrane-permeable SK enhancers NS309 and CyPPA (10 μM) attenuated frequency of spontaneous Ca2+ waves and delayed afterdepolarizations. Furthermore, mSK inhibition enhanced (UCL-1684, 1 μM); while activation reduced mitochondrial ROS production in TCMs measured with MitoSOX. Protein oxidation assays demonstrated that increased oxidation of ryanodine receptors (RyRs) in TCMs was reversed by SK enhancers. Experiments in permeabilized TCMs showed that SK enhancers restored SR Ca2+ content, suggestive of substantial improvement in RyR function. Conclusion:These data suggest that enhancement of mSK channels in hypertrophic rat hearts protects from Ca2+-dependent arrhythmia and suggest that the protection is mediated via decreased mitochondrial ROS and subsequent decreased oxidation of reactive cysteines in RyR, which ultimately leads to stabilization of RyR-mediated Ca2+ release. 10.1093/cvr/cvx005
SK channel subtypes enable parallel optimized coding of behaviorally relevant stimulus attributes: A review. Huang Chengjie G,Chacron Maurice J Channels (Austin, Tex.) Ion channels play essential roles toward determining how neurons respond to sensory input to mediate perception and behavior. Small conductance calcium-activated potassium (SK) channels are found ubiquitously throughout the brain and have been extensively characterized both molecularly and physiologically in terms of structure and function. It is clear that SK channels are key determinants of neural excitability as they mediate important neuronal response properties such as spike frequency adaptation. However, the functional roles of the different known SK channel subtypes are not well understood. Here we review recent evidence from the electrosensory system of weakly electric fish suggesting that the function of different SK channel subtypes is to optimize the processing of independent but behaviorally relevant stimulus attributes. Indeed, natural sensory stimuli frequently consist of a fast time-varying waveform (i.e., the carrier) whose amplitude (i.e., the envelope) varies slowly and independently. We first review evidence showing how somatic SK2 channels mediate tuning and responses to carrier waveforms. We then review evidence showing how dendritic SK1 channels instead determine tuning and optimize responses to envelope waveforms based on their statistics as found in the organism's natural environment in an independent fashion. The high degree of functional homology between SK channels in electric fish and their mammalian orthologs, as well as the many important parallels between the electrosensory system and the mammalian visual, auditory, and vestibular systems, suggest that these functional roles are conserved across systems and species. 10.1080/19336950.2017.1299835
SK channel activation potentiates auranofin-induced cell death in glio- and neuroblastoma cells. Krabbendam Inge E,Honrath Birgit,Bothof Laura,Silva-Pavez Eduardo,Huerta Hernán,Peñaranda Fajardo Natalia M,Dekker Frank,Schmidt Martina,Culmsee Carsten,César Cárdenas Julio,Kruyt Frank,Dolga Amalia M Biochemical pharmacology Brain tumours are among the deadliest tumours being highly resistant to currently available therapies. The proliferative behaviour of gliomas is strongly influenced by ion channel activity. Small-conductance calcium-activated potassium (SK/K) channels are a family of ion channels that are associated with cell proliferation and cell survival. A combined treatment of classical anti-cancer agents and pharmacological SK channel modulators has not been addressed yet. We used the gold-derivative auranofin to induce cancer cell death by targeting thioredoxin reductases in combination with CyPPA to activate SK channels in neuro- and glioblastoma cells. Combined treatment with auranofin and CyPPA induced massive mitochondrial damage and potentiated auranofin-induced toxicity in neuroblastoma cells in vitro. In particular, mitochondrial integrity, respiration and associated energy generation were impaired. These findings were recapitulated in patient-derived glioblastoma neurospheres yet not observed in non-cancerous HT22 cells. Taken together, integrating auranofin and SK channel openers to affect mitochondrial health was identified as a promising strategy to increase the effectiveness of anti-cancer agents and potentially overcome resistance. 10.1016/j.bcp.2019.113714
Sympathoexcitation in ANG II-salt hypertension involves reduced SK channel function in the hypothalamic paraventricular nucleus. Larson Robert A,Gui Le,Huber Michael J,Chapp Andrew D,Zhu Jianhua,LaGrange Lila P,Shan Zhiying,Chen Qing-Hui American journal of physiology. Heart and circulatory physiology Hypertension (HTN) resulting from subcutaneous infusion of ANG II and dietary high salt (HS) intake involves sympathoexcitation. Recently, we reported reduced small-conductance Ca(2+)-activated K(+) (SK) current and increased excitability of presympathetic neurons in the paraventricular nucleus (PVN) in ANG II-salt HTN. Here, we hypothesized that ANG II-salt HTN would be accompanied by altered PVN SK channel activity, which may contribute to sympathoexcitation in vivo. In anesthetized rats with normal salt (NS) intake, bilateral PVN microinjection of apamin (12.5 pmol/50 nl each), the SK channel blocker, remarkably elevated splanchnic sympathetic nerve activity (SSNA), renal sympathetic nerve activity (RSNA), and mean arterial pressure (MAP). In contrast, rats with ANG II-salt HTN demonstrated significantly attenuated SSNA, RSNA, and MAP (P < 0.05) responses to PVN-injected apamin compared with NS control rats. Next, we sought to examine the individual contributions of HS and subcutaneous infusion of ANG II on PVN SK channel function. SSNA, RSNA, and MAP responses to PVN-injected apamin in rats with HS alone were significantly attenuated compared with NS-fed rats. In contrast, sympathetic nerve activity responses to PVN-injected apamin in ANG II-treated rats were slightly attenuated with SSNA, demonstrating no statistical difference compared with NS-fed rats, whereas MAP responses to PVN-injected apamin were similar to NS-fed rats. Finally, Western blot analysis showed no statistical difference in SK1-SK3 expression in the PVN between NS and ANG II-salt HTN. We conclude that reduced SK channel function in the PVN is involved in the sympathoexcitation associated with ANG II-salt HTN. Dietary HS may play a dominant role in reducing SK channel function, thus contributing to sympathoexcitation in ANG II-salt HTN. 10.1152/ajpheart.00832.2014
Tonic PKA Activity Regulates SK Channel Nanoclustering and Somatodendritic Distribution. Journal of molecular biology Small-conductance calcium-activated potassium (SK) channels mediate a potassium conductance in the brain and are involved in synaptic plasticity, learning, and memory. SK channels show a distinct subcellular localization that is crucial for their neuronal functions. However, the mechanisms that control this spatial distribution are unknown. We imaged SK channels labeled with fluorophore-tagged apamin and monitored SK channel nanoclustering at the single molecule level by combining atomic force microscopy and toxin (i.e., apamin) pharmacology. Using these two complementary approaches, we found that native SK channel distribution in pyramidal neurons, across the somatodendritic domain, depends on ongoing cyclic adenosine monophosphate (cAMP)-protein kinase A (PKA) levels, strongly limiting SK channel expression at the pyramidal neuron soma. Furthermore, tonic cAMP-PKA levels also controlled whether SK channels were expressed in nanodomains as single entities or as a group of multiple channels. Our study reveals a new level of regulation of SK channels by cAMP-PKA and suggests that ion channel topography and nanoclustering might be under the control of second messenger cascades. 10.1016/j.jmb.2016.04.014
The small neurotoxin apamin blocks not only small conductance Ca activated K channels (SK type) but also the voltage dependent Kv1.3 channel. Voos Patrick,Yazar Mehtap,Lautenschläger René,Rauh Oliver,Moroni Anna,Thiel Gerhard European biophysics journal : EBJ Apamin is frequently used as a specific blocker of small-conductance Ca-activated (SK type) K channels. Here we show that the small neurotoxin is not as specific as anticipated. It is also a high-affinity inhibitor with an IC of 13 nM of the Kv1.3 channel; it blocks the latter with potency similar to the Kv1.3 blocker PAP-1. Since SK type channels and Kv1.3 channels are frequently coexpressed in different tissues such as cells of the immune system, apamin must be used with caution as a pharmacological tool. 10.1007/s00249-016-1196-0
The Potassium SK Channel Activator NS309 Protects Against Experimental Traumatic Brain Injury Through Anti-Inflammatory and Immunomodulatory Mechanisms. Chen Tao,Zhu Jie,Hang Chun-Hua,Wang Yu-Hai Frontiers in pharmacology Neuroinflammation plays important roles in neuronal cell death and functional deficits after TBI. Small conductance Ca-activated K channels (SK) have been shown to be potential therapeutic targets for treatment of neurological disorders, such as stroke and Parkinson's disease (PD). The aim of the present study was to investigate the role of SK channels in an animal model of TBI induced by controlled cortical impact (CCI). The SK channels activator NS309 at a concentration of 2 mg/kg was administered by intraperitoneal injection, and no obviously organ-related toxicity of NS309 was found in Sprague-Dawley (SD) rats. Treatment with NS309 significantly reduced brain edema after TBI, but had no effect on contusion volume. This protection can be observed even when the administration was delayed by 4 h after injury. NS309 attenuated the TBI-induced deficits in neurological function, which was accompanied by the reduced neuronal apoptosis. The results of immunohistochemistry showed that NS309 decreased the number of neutrophils, lymphocytes, and microglia cells, with no effect on astrocytes. In addition, NS309 markedly decreased the levels of pro-inflammatory cytokines (IL-1β, IL-6 and TNF-α) and chemokines (MCP-1, MIP-2, and RANTES), but increased the levels of anti-inflammatory cytokines (IL-4, IL-10, and TGF-β1) after TBI. The results of RT-PCR and western blot showed that NS309 increased TSG-6 expression and inhibited NF-κB activation. Furthermore, knockdown of TSG-6 using transfection with TSG-6 specific shRNA partially reversed the protective and anti-inflammatory effects of NS309 against TBI. In summary, our results indicate that the SK channel activator NS309 could modulate inflammation-associated immune cells and cytokines regulating the TSG-6/NF-κB pathway after TBI. The present study offers a new sight into the mechanisms responsible for SK channels activation with implications for the treatment of TBI. 10.3389/fphar.2019.01432
Activation of SK/K Channel Attenuates Spinal Cord Ischemia-Reperfusion Injury via Anti-oxidative Activity and Inhibition of Mitochondrial Dysfunction in Rabbits. Zhu Jie,Yang Li-Kun,Chen Wei-Liang,Lin Wei,Wang Yu-Hai,Chen Tao Frontiers in pharmacology Spinal cord ischemia-reperfusion injury (SCI/R) is a rare but devastating disorder with a poor prognosis. Small conductance calcium-activated K (SK/K) channels are a family of voltage-independent potassium channels that are shown to participate in the pathological process of several neurological disorders. The aim of this study was to investigate the role of SK/K channels in experimental SCI/R in rabbits. The expression of SK/K1 protein significantly decreased in both cytoplasm and mitochondria in spinal cord tissues after SCI/R. Treatment with 2 mg/kg NS309, a pharmacological activator for SK/K channel, attenuated SCI/R-induced neuronal loss, spinal cord edema and neurological dysfunction. These effects were still observed when the administration was delayed by 6 h after SCI/R initiation. NS309 decreased the levels of oxidative products and promoted activities of antioxidant enzymes in both serum and spinal cord tissues. The results of ELISA assay showed that NS309 markedly decreased levels of pro-inflammatory cytokines while increased anti-inflammatory cytokines levels after SCI/R. In addition, treatment with NS309 was shown to preserve mitochondrial respiratory complexes activities and enhance mitochondrial biogenesis. The results of western blot analysis showed that NS309 differentially regulated the expression of mitochondrial dynamic proteins. In summary, our results demonstrated that the SK/K channel activator NS309 protects against SCI/R via anti-oxidative activity and inhibition of mitochondrial dysfunction, indicating a therapeutic potential of NS309 for SCI/R. 10.3389/fphar.2019.00325
SK channel-mediated metabolic escape to glycolysis inhibits ferroptosis and supports stress resistance in C. elegans. Cell death & disease Metabolic flexibility is an essential characteristic of eukaryotic cells in order to adapt to physiological and environmental changes. Especially in mammalian cells, the metabolic switch from mitochondrial respiration to aerobic glycolysis provides flexibility to sustain cellular energy in pathophysiological conditions. For example, attenuation of mitochondrial respiration and/or metabolic shifts to glycolysis result in a metabolic rewiring that provide beneficial effects in neurodegenerative processes. Ferroptosis, a non-apoptotic form of cell death triggered by an impaired redox balance is gaining attention in the field of neurodegeneration. We showed recently that activation of small-conductance calcium-activated K (SK) channels modulated mitochondrial respiration and protected neuronal cells from oxidative death. Here, we investigated whether SK channel activation with CyPPA induces a glycolytic shift thereby increasing resilience of neuronal cells against ferroptosis, induced by erastin in vitro and in the nematode C. elegans exposed to mitochondrial poisons in vivo. High-resolution respirometry and extracellular flux analysis revealed that CyPPA, a positive modulator of SK channels, slightly reduced mitochondrial complex I activity, while increasing glycolysis and lactate production. Concomitantly, CyPPA rescued the neuronal cells from ferroptosis, while scavenging mitochondrial ROS and inhibiting glycolysis reduced its protection. Furthermore, SK channel activation increased survival of C. elegans challenged with mitochondrial toxins. Our findings shed light on metabolic mechanisms promoted through SK channel activation through mitohormesis, which enhances neuronal resilience against ferroptosis in vitro and promotes longevity in vivo. 10.1038/s41419-020-2458-4
Different arrhythmia-associated calmodulin mutations have distinct effects on cardiac SK channel regulation. Ledford Hannah A,Park Seojin,Muir Duncan,Woltz Ryan L,Ren Lu,Nguyen Phuong T,Sirish Padmini,Wang Wenying,Sihn Choong-Ryoul,George Alfred L,Knollmann Björn C,Yamoah Ebenezer N,Yarov-Yarovoy Vladimir,Zhang Xiao-Dong,Chiamvimonvat Nipavan The Journal of general physiology Calmodulin (CaM) plays a critical role in intracellular signaling and regulation of Ca2+-dependent proteins and ion channels. Mutations in CaM cause life-threatening cardiac arrhythmias. Among the known CaM targets, small-conductance Ca2+-activated K+ (SK) channels are unique, since they are gated solely by beat-to-beat changes in intracellular Ca2+. However, the molecular mechanisms of how CaM mutations may affect the function of SK channels remain incompletely understood. To address the structural and functional effects of these mutations, we introduced prototypical human CaM mutations in human induced pluripotent stem cell-derived cardiomyocyte-like cells (hiPSC-CMs). Using structural modeling and molecular dynamics simulation, we demonstrate that human calmodulinopathy-associated CaM mutations disrupt cardiac SK channel function via distinct mechanisms. CaMD96V and CaMD130G mutants reduce SK currents through a dominant-negative fashion. By contrast, specific mutations replacing phenylalanine with leucine result in conformational changes that affect helix packing in the C-lobe, which disengage the interactions between apo-CaM and the CaM-binding domain of SK channels. Distinct mutant CaMs may result in a significant reduction in the activation of the SK channels, leading to a decrease in the key Ca2+-dependent repolarization currents these channels mediate. The findings in this study may be generalizable to other interactions of mutant CaMs with Ca2+-dependent proteins within cardiac myocytes. 10.1085/jgp.202012667
Small Conductance Ca-Activated K (SK) Channel mRNA Expression in Human Atrial and Ventricular Tissue: Comparison Between Donor, Atrial Fibrillation and Heart Failure Tissue. Darkow Elisa,Nguyen Thong T,Stolina Marina,Kari Fabian A,Schmidt Constanze,Wiedmann Felix,Baczkó István,Kohl Peter,Rajamani Sridharan,Ravens Ursula,Peyronnet Rémi Frontiers in physiology In search of more efficacious and safe pharmacological treatments for atrial fibrillation (AF), atria-selective antiarrhythmic agents have been promoted that target ion channels principally expressed in the atria. This concept allows one to engage antiarrhythmic effects in atria, but spares the ventricles from potentially proarrhythmic side effects. It has been suggested that cardiac small conductance Ca-activated K (SK) channels may represent an atria-selective target in mammals including humans. However, there are conflicting data concerning the expression of SK channels in different stages of AF, and recent findings suggest that SK channels are upregulated in ventricular myocardium when patients develop heart failure. To address this issue, RNA-sequencing was performed to compare expression levels of three SK channels (, , and ) in human atrial and ventricular tissue samples from transplant donor hearts (no cardiac disease), and patients with cardiac disease in sinus rhythm or with AF. In addition, for control purposes expression levels of several genes known to be either chamber-selective or differentially expressed in AF and heart failure were determined. In atria, as compared to ventricle from transplant donor hearts, we confirmed higher expression of and , and lower expression of , whereas and were statistically not differentially expressed. Overall expression of was low compared to and . Comparing atrial tissue from patients with AF to sinus rhythm samples we saw downregulation of in AF, as previously reported. When comparing ventricular tissue from heart failure patients to non-diseased samples, we found significantly increased ventricular expression of in heart failure, as previously published. The other channels showed no significant difference in expression in either disease. Our results add weight to the view that SK channels are not likely to be an atria-selective target, especially in failing human hearts, and modulators of these channels may prove to have less utility in treating AF than hoped. Whether targeting SK1 holds potential remains to be elucidated. 10.3389/fphys.2021.650964
Differential modulation of SK channel subtypes by phosphorylation. Cell calcium Small-conductance Ca-activated K (SK) channels are voltage-independent and are activated by Ca binding to the calmodulin constitutively associated with the channels. Both the pore-forming subunits and the associated calmodulin are subject to phosphorylation. Here, we investigated the modulation of different SK channel subtypes by phosphorylation, using the cultured endothelial cells as a tool. We report that casein kinase 2 (CK2) negatively modulates the apparent Ca sensitivity of SK1 and IK channel subtypes by more than 5-fold, whereas the apparent Ca sensitivity of the SK3 and SK2 subtypes is only reduced by ∼2-fold, when heterologously expressed on the plasma membrane of cultured endothelial cells. The SK2 channel subtype exhibits limited cell surface expression in these cells, partly as a result of the phosphorylation of its C-terminus by cyclic AMP-dependent protein kinase (PKA). SK2 channels expressed on the ER and mitochondria membranes may protect against cell death. This work reveals the subtype-specific modulation of the apparent Ca sensitivity and subcellular localization of SK channels by phosphorylation in cultured endothelial cells. 10.1016/j.ceca.2020.102346
Antiarrhythmic Mechanisms of SK Channel Inhibition in the Rat Atrium. Skibsbye Lasse,Wang Xiaodong,Axelsen Lene Nygaard,Bomholtz Sofia Hammami,Nielsen Morten Schak,Grunnet Morten,Bentzen Bo Hjorth,Jespersen Thomas Journal of cardiovascular pharmacology INTRODUCTION:SK channels have functional importance in the cardiac atrium of many species, including humans. Pharmacological blockage of SK channels has been reported to be antiarrhythmic in animal models of atrial fibrillation; however, the exact antiarrhythmic mechanism of SK channel inhibition remains unclear. OBJECTIVES:We speculated that together with a direct inhibition of repolarizing SK current, the previously observed depolarization of the atrial resting membrane potential (RMP) after SK channel inhibition reduces sodium channel availability, thereby prolonging the effective refractory period and slowing the conduction velocity (CV). We therefore aimed at elucidating these properties of SK channel inhibition and the underlying antiarrhythmic mechanisms using microelectrode action potential (AP) recordings and CV measurements in isolated rat atrium. Automated patch clamping and two-electrode voltage clamp were used to access INa and IK,ACh, respectively. RESULTS:The SK channel inhibitor N-(pyridin-2-yl)-4-(pyridin-2-yl)thiazol-2-amine (ICA) exhibited antiarrhythmic effects. ICA prevented electrically induced runs of atrial fibrillation in the isolated right atrium and induced atrial postrepolarization refractoriness and depolarized RMP. Moreover, ICA (1-10 μM) was found to slow CV; however, because of a marked prolongation of effective refractory period, the calculated wavelength was increased. Furthermore, at increased pacing frequencies, SK channel inhibition by ICA (10-30 μM) demonstrated prominent depression of other sodium channel-dependent parameters. ICA did not inhibit IK,ACh, but at concentrations above 10 μM, ICA use dependently inhibited INa. CONCLUSIONS:SK channel inhibition modulates multiple parameters of AP. It prolongs the AP duration and shifts the RMP towards more depolarized potentials through direct ISK block. This indirectly leads to sodium channel inhibition through accumulation of state dependently inactivated channels, which ultimately slows conduction and decreases excitability. However, a contribution from a direct sodium channel inhibition cannot be ruled. We here propose that the primary antiarrhythmic mechanism of SK channel inhibition is through direct potassium channel block and through indirect sodium channel inhibition. 10.1097/FJC.0000000000000259
Altered Activity of SK Channel Underpins Morphine Withdrawal Relevant Psychiatric Deficiency in Infralimbic to Accumbens Shell Pathway. Qu Liang,Wang Yuan,Ge Shun-Nan,Li Nan,Fu Jian,Zhang Yue,Wang Xin,Jing Jiang-Peng,Li Yang,Wang Qiang,Gao Guo-Dong,He Shi-Ming,Wang Xue-Lian Frontiers in psychiatry Drug addiction can be viewed as a chronic psychiatric disorder that is related to dysfunction of neural circuits, including reward deficits, stress surfeits, craving changes, and compromised executive function. The nucleus accumbens (NAc) plays a crucial role in regulating craving and relapse, while the medial prefrontal cortex (mPFC) represents a higher cortex projecting into the NAc that is active in the management of executive function. In this study, we investigated the role of the small conductance calcium-activated potassium channels (SK channels) in NAc and mPFC after morphine withdrawal. Action potential (AP) firing of neurons in the NAc shell was enhanced the downregulations of the SK channels after morphine withdrawal. Furthermore, the expression of SK2 and SK3 subunits in the NAc was significantly reduced after 3 weeks of morphine withdrawal, but was not altered in the dorsal striatum. In mPFC, the SK channel subunits were differentially expressed. To be specific, the expression of SK3 was upregulated, while the expression of SK2 was unchanged. Furthermore, the AP firing in layer 5 pyramidal neurons of the infralimbic (IL) cortex was decreased the upregulations of the SK channel-related tail current after 3 weeks of morphine withdrawal. These results suggest that the SK channel plays a specific role in reward circuits following morphine exposure and a period of drug withdrawal, making it a potential target for the prevention of relapse. 10.3389/fpsyt.2019.00240
SK Channel Block and Adrenergic Stimulation Counteract Acetylcholine-Induced Arrhythmogenic Effects in Human Atria. Celotto Chiara,Sanchez Carlos,Mountris Konstantinos A,Laguna Pablo,Pueyo Esther Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference There is increasing evidence on the role of the autonomic nervous system in the pathogenesis of atrial fibrillation. Interventions targeting autonomic modulation of atrial electrical activity have been shown to reduce the incidence of atrial arrhythmias. Additionally, recent investigations have proved that pharmacological therapies inhibiting small-conductance calcium-activated potassium (SK) channels are able to lessen cholinergic effects in the atria.In this study we use computational modeling and simulation to test individual and combined effects of SK channel block and adrenergic stimulation in counteracting detrimental effects induced by the parasympathetic neurotransmitter acetylcholine (ACh) on human atrial electrophysiology. Cell and tissue models are built that incorporate descriptions of SK channels as well as of isoproterenol (Iso)- and ACh-mediated regulation of the atrial action potential (AP). Three different cellular AP models, representing a range of physiological AP shapes, are considered and both homogeneous and heterogeneous ACh distributions in atrial tissue are simulated.At the cellular level, SK channel block is demonstrated to partially revert shortening of AP duration (APD) mediated by ACh at various doses, whereas 1 µM Iso has a variable response depending on the AP shape. The combination of SK block and Iso is in all cases able to take APD back to baseline levels, recovering between 82% and 120% of the APD shortening induced by 0.1 µM ACh. At the tissue level, SK block and Iso alone or in combination do not exert remarkable effects on conduction velocity, but the combination of the two is able to notably prolong the ACh-mediated APD shortening, thus increasing the wavelength for reentry.In conclusion, the results from this study support the combination of SK channel block and adrenergic stimulation as a potential option to counteract parasympathetically-mediated proarrhythmic effects in the human atria. 10.1109/EMBC44109.2020.9175886
SK channel blockade prevents hypoxia-induced ventricular arrhythmias through inhibition of Ca/voltage uncoupling in hypertrophied hearts. American journal of physiology. Heart and circulatory physiology Ventricular arrhythmia (VA) is the major cause of death in patients with left ventricular (LV) hypertrophy and/or acute ischemia. We hypothesized that apamin, a blocker of small-conductance Ca-activated K (SK) channels, alters Ca handling and exhibits anti-arrhythmic effects in ventricular myocardium. Spontaneous hypertensive rats were used as a model of LV hypertrophy. A dual optical mapping of membrane potential () and intracellular calcium (Ca) was performed during global hypoxia (GH) on the Langendorff perfusion system. The majority of pacing-induced VAs during GH were initiated by triggered activities. Pretreatment of apamin (100 nmol/L) significantly inhibited the VA inducibility. Compared with SK channel blockers (apamin and NS8593), non-SK channel blockers (glibenclamide and 4-AP) did not exhibit anti-arrhythmic effects. Apamin prevented not only action potential duration (APD) shortening (-18.7 [95% confidence interval, -35.2 to -6.05] ms vs. -2.75 [95% CI, -10.45 to 12.65] ms, = 0.04) but also calcium transient duration (CaTD) prolongation (14.52 [95% CI, 8.8-20.35] ms vs. 3.85 [95% CI, -3.3 to 12.1] ms, < 0.01), thereby reducing CaTD - APD, which denotes "Ca/ uncoupling" (33.22 [95% CI, 22-48.4] ms vs. 6.6 [95% CI, 0-14.85] ms, < 0.01). The reduction of Ca/ uncoupling was attributable to less prolonged Ca decay constant and suppression of diastolic Ca increase by apamin. The inhibition of VA inducibility and changes in APs/CaTs parameters caused by apamin was negated by the addition of ouabain, an inhibitor of Na/K pump. Apamin attenuates APD shortening, Ca handling abnormalities, and Ca/ uncoupling, leading to inhibition of VA occurrence in hypoxic hypertrophied hearts. We demonstrated that hypoxia-induced ventricular arrhythmias were mainly initiated by Ca-loaded triggered activities in hypertrophied hearts. The blockades of small-conductance Ca-activated K channels, especially "apamin," showed anti-arrhythmic effects by alleviation of not only action potential duration shortening but also Ca handling abnormalities, most notably the "Ca/voltage uncoupling." 10.1152/ajpheart.00777.2020
SK channel inhibition mediates the initiation and amplitude modulation of synchronized burst firing in the spinal cord. Mahrous Amr A,Elbasiouny Sherif M Journal of neurophysiology Burst firing in motoneurons represents the basis for generating meaningful movements. Neuromodulators and inhibitory receptor blocker cocktails have been used for years to induce burst firing in vitro; however, the ionic mechanisms in the motoneuron membrane that contribute to burst initiation and amplitude modulation are not fully understood. Small conductance Ca-activated potassium (SK) channels regulate excitatory inputs and firing output of motoneurons and interneurons and therefore, are a candidate for mediating bursting behavior. The present study examines the role of SK channels in the generation of synchronized bursting using an in vitro spinal cord preparation from adult mice. Our results show that SK channel inhibition is required for both initiation and amplitude modulation of burst firing. Specifically, administration of the synaptic inhibition blockers strychnine and picrotoxin amplified the spinal circuit excitatory drive but not enough to evoke bursting. However, when SK channels were inhibited using various approaches, the excitatory drive was further amplified, and synchronized bursting was always evoked. Furthermore, graded SK channel inhibition modulated the amplitude of the burst in a dose-dependent manner, which was reversed using SK channel activators. Importantly, modulation of neuronal excitability using multiple approaches failed to mimic the effects of SK modulators, suggesting a specific role for SK channel inhibition in generating bursting. Both NMDA (-methyl-d-aspartate) and AMPA (α-amino-3-hydroxy-5-methylisoxazole-4-propionate) receptors were found to drive the synchronized bursts. The blocking of gap junctions did not disturb the burst synchrony. These results demonstrate a novel mechanistic role for SK channels in initiating and modulating burst firing of spinal motoneurons. This study demonstrates that cholinergic inhibition or direct blockade of small conductance Ca-activated potassium (SK) channels facilitates burst firing in spinal motoneurons. The data provide a novel mechanistic explanation for synchronized bursting initiation and amplitude modulation through SK channel inhibition. Evidence also shows that synchronized bursting is driven by NMDA (-methyl-d-aspartate) and AMPA (α-amino-3-hydroxy-5-methylisoxazole-4-propionate) receptors and that gap junctions do not mediate motoneuron synchronization in this behavior. 10.1152/jn.00929.2016
Voltage-Independent SK-Channel Dysfunction Causes Neuronal Hyperexcitability in the Hippocampus of Knock-Out Mice. Deng Pan-Yue,Carlin Dan,Oh Young Mi,Myrick Leila K,Warren Stephen T,Cavalli Valeria,Klyachko Vitaly A The Journal of neuroscience : the official journal of the Society for Neuroscience Neuronal hyperexcitability is one of the major characteristics of fragile X syndrome (FXS), yet the molecular mechanisms of this critical dysfunction remain poorly understood. Here we report a major role of voltage-independent potassium (K)-channel dysfunction in hyperexcitability of CA3 pyramidal neurons in knock-out (KO) mice. We observed a reduction of voltage-independent small conductance calcium (Ca)-activated K (SK) currents in both male and female mice, leading to decreased action potential (AP) threshold and reduced medium afterhyperpolarization. These SK-channel-dependent deficits led to markedly increased AP firing and abnormal input-output signal transmission of CA3 pyramidal neurons. The SK-current defect was mediated, at least in part, by loss of FMRP interaction with the SK channels (specifically the SK2 isoform), without changes in channel expression. Intracellular application of selective SK-channel openers or a genetic reintroduction of an N-terminal FMRP fragment lacking the ability to associate with polyribosomes normalized all observed excitability defects in CA3 pyramidal neurons of KO mice. These results suggest that dysfunction of voltage-independent SK channels is the primary cause of CA3 neuronal hyperexcitability in KO mice and support the critical translation-independent role for the fragile X mental retardation protein as a regulator of neural excitability. Our findings may thus provide a new avenue to ameliorate hippocampal excitability defects in FXS. Despite two decades of research, no effective treatment is currently available for fragile X syndrome (FXS). Neuronal hyperexcitability is widely considered one of the hallmarks of FXS. Excitability research in the FXS field has thus far focused primarily on voltage-gated ion channels, while contributions from voltage-independent channels have been largely overlooked. Here we report that voltage-independent small conductance calcium-activated potassium (SK)-channel dysfunction causes hippocampal neuron hyperexcitability in the FXS mouse model. Our results support the idea that translation-independent function of fragile X mental retardation protein has a major role in regulating ion-channel activity, specifically the SK channels, in hyperexcitability defects in FXS. Our findings may thus open a new direction to ameliorate hippocampal excitability defects in FXS. 10.1523/JNEUROSCI.1593-18.2018
Role of SK channel activation in determining the action potential configuration in freshly isolated human atrial myocytes from the SKArF study. Shamsaldeen Yousif A,Culliford Lucy,Clout Madeleine,James Andrew F,Ascione Raimondo,Hancox Jules C,Marrion Neil V Biochemical and biophysical research communications Inhibition of SK channel function is being pursued in animal models as a possible therapeutic approach to treat atrial fibrillation (AF). However, the pharmacology of SK channels in human atria is unclear. SK channel function is inhibited by both apamin and UCL1684, with the former discriminating between SK channel subtypes. In this proof-of-principle study, the effects of apamin and UCL1684 on right atrial myocytes freshly isolated from patients in sinus rhythm undergoing elective cardiac surgery were investigated. Outward current evoked from voltage clamped human atrial myocytes was reduced by these two inhibitors of SK channel function. In contrast, membrane current underlying the atrial action potential was affected significantly only by UCL1684 and not by apamin. This pharmacology mirrors that observed in mouse atria, suggesting that mammalian atria possess two populations of SK channels, with only one population contributing to the action potential waveform. Immuno-visualization of the subcellular localization of SK2 and SK3 subunits showed a high degree of colocalization, consistent with the formation of heteromeric SK2/SK3 channels. These data reveal that human atrial myocytes express two SK channel subtypes, one exhibiting an unusual pharmacology. These channels contribute to the atrial action potential waveform and might be a target for novel therapeutic approaches to treat supraventricular arrhythmic conditions such as atrial fibrillation. 10.1016/j.bbrc.2019.03.074
Organization and regulation of small conductance Ca2+-activated K+ channel multiprotein complexes. Allen Duane,Fakler Bernd,Maylie James,Adelman John P The Journal of neuroscience : the official journal of the Society for Neuroscience Small conductance Ca2+-activated K+ channels (SK channels) are complexes of four alpha pore-forming subunits each bound by calmodulin (CaM) that mediate Ca2+ gating. Proteomic analysis indicated that SK2 channels also bind protein kinase CK2 (CK2) and protein phosphatase 2A (PP2A). Coexpression of SK2 with the CaM phosphorylation surrogate CaM(T80D) suggested that the apparent Ca2+ sensitivity of SK2 channels is reduced by CK2 phosphorylation of SK2-bound CaM. By using 4,5,6,7-tetrabromo-2-azabenzimidazole, a CK2-specific inhibitor, we confirmed that SK2 channels coassemble with CK2. PP2A also binds to SK2 channels and counterbalances the effects of CK2, as shown by coexpression of a dominant-negative mutant PP2A as well as a mutant SK2 channel no longer able to bind PP2A. In vitro binding studies have revealed interactions between the N and C termini of the channel subunits as well as interactions among CK2 alpha and beta subunits, PP2A, and distinct domains of the channel. In the channel complex, lysine residue 121 within the N-terminal domain of the channel activates SK2-bound CK2, and phosphorylation of CaM is state dependent, occurring only when the channels are closed. The effects of CK2 and PP2A indicate that native SK2 channels are multiprotein complexes that contain constitutively associated CaM, both subunits of CK2, and at least two different subunits of PP2A. The results also show that the Ca2+ sensitivity of SK2 channels is regulated in a dynamic manner, directly through CK2 and PP2A, and indirectly by Ca2+ itself via the state dependence of CaM phosphorylation by CK2. 10.1523/JNEUROSCI.3565-06.2007
Differential distribution of three Ca(2+)-activated K(+) channel subunits, SK1, SK2, and SK3, in the adult rat central nervous system. Stocker M,Pedarzani P Molecular and cellular neurosciences Ca(2+)-activated, voltage-independent K(+) channels are present in most neurons and mediate the afterhyperpolarizations (AHPs) following action potentials. They present distinct physiological and pharmacological properties and play an important role in controlling neuronal firing frequency and spike frequency adaptation. We used in situ hybridization to characterize the distribution patterns of the three cloned SK channel subunits (SK1-3), the prime candidates likely to underlie Ca(2+)-dependent AHPs in the central nervous system. We found high levels of expression in regions presenting prominent AHP currents, such as, for example, neocortex and CA1-3 layers of the hippocampus (SK1 and SK2), reticularis thalami (SK1 and SK2), supraoptic nucleus (SK3), and inferior olivary nucleus (SK2 and SK3). Our results reveal the functional role of SK channels with defined subunit compositions in some neurons and open the way to the identification of the molecular determinants of AHP currents in many brain regions. 10.1006/mcne.2000.0842
Small conductance calcium-activated potassium type 2 channels regulate alcohol-associated plasticity of glutamatergic synapses. Mulholland Patrick J,Becker Howard C,Woodward John J,Chandler L Judson Biological psychiatry BACKGROUND:Small conductance calcium-activated potassium type 2 channels (SK2) control excitability and contribute to plasticity by reducing excitatory postsynaptic potentials. Recent evidence suggests that SK2 channels form a calcium-dependent negative-feedback loop with synaptic N-methyl-D-aspartate (NMDA) receptors. Addiction to alcohol and other drugs of abuse induces plastic changes in glutamatergic synapses that include the targeting of NMDA receptors to synaptic sites; however, the role of SK2 channels in alcohol-associated homeostatic plasticity is unknown. METHODS:Electrophysiology, Western blot, and behavioral analyses were used to quantify changes in hippocampal small conductance calcium-activated potassium (SK) channel function and expression using well-characterized in vitro and in vivo models of chronic alcohol exposure. RESULTS:Chronic ethanol reduced apamin-sensitive SK currents in cornu ammonis 1 pyramidal neurons that were associated with a downregulation of surface SK2 channels. Blocking SK channels with apamin potentiated excitatory postsynaptic potentials in control but not ethanol-treated cornu ammonis 1 pyramidal neurons, suggesting that chronic ethanol disrupts the SK channel-NMDA receptor feedback loop. Alcohol reduced expression of SK2 channels and increased expression of NMDA receptors at synaptic sites in a mouse model. Positive modulation of SK function by 1-EBIO decreased alcohol withdrawal hyperexcitability and attenuated ethanol withdrawal neurotoxicity in hippocampus. The 1-EBIO also reduced seizure activity in mice undergoing withdrawal. CONCLUSIONS:These results provide evidence that SK2 channels contribute to alcohol-associated adaptive plasticity of glutamatergic synapses and that positive modulation of SK channels reduces the severity of withdrawal-related hyperexcitability. Therefore, SK2 channels appear to be critical regulators of alcohol-associated plasticity and may be novel therapeutic targets for the treatment of addiction. 10.1016/j.biopsych.2010.09.025
SK2 channel expression and function in cerebellar Purkinje cells. Hosy Eric,Piochon Claire,Teuling Eva,Rinaldo Lorenzo,Hansel Christian The Journal of physiology Small-conductance calcium-activated K(+) channels (SK channels) regulate the excitability of neurons and their responsiveness to synaptic input patterns. SK channels contribute to the afterhyperpolarization (AHP) following action potential bursts, and curtail excitatory postsynaptic potentials (EPSPs) in neuronal dendrites. Here we review evidence that SK2 channels are expressed in rat cerebellar Purkinje cells during development and throughout adulthood, and play a key role in diverse cellular processes such as the regulation of the spike firing frequency and the modulation of calcium transients in dendritic spines. In Purkinje cells as well as in other types of neurons, SK2 channel plasticity seems to provide an important mechanism allowing these cells to adjust their intrinsic excitability and to alter the probabilities for the induction of synaptic learning correlates, such as long-term potentiation (LTP). 10.1113/jphysiol.2011.205823
Alternative splice isoforms of small conductance calcium-activated SK2 channels differ in molecular interactions and surface levels. Scholl Elizabeth Storer,Pirone Antonella,Cox Daniel H,Duncan R Keith,Jacob Michele H Channels (Austin, Tex.) Small conductance Ca(2+)-sensitive potassium (SK2) channels are voltage-independent, Ca(2+)-activated ion channels that conduct potassium cations and thereby modulate the intrinsic excitability and synaptic transmission of neurons and sensory hair cells. In the cochlea, SK2 channels are functionally coupled to the highly Ca(2+) permeant α9/10-nicotinic acetylcholine receptors (nAChRs) at olivocochlear postsynaptic sites. SK2 activation leads to outer hair cell hyperpolarization and frequency-selective suppression of afferent sound transmission. These inhibitory responses are essential for normal regulation of sound sensitivity, frequency selectivity, and suppression of background noise. However, little is known about the molecular interactions of these key functional channels. Here we show that SK2 channels co-precipitate with α9/10-nAChRs and with the actin-binding protein α-actinin-1. SK2 alternative splicing, resulting in a 3 amino acid insertion in the intracellular 3' terminus, modulates these interactions. Further, relative abundance of the SK2 splice variants changes during developmental stages of synapse maturation in both the avian cochlea and the mammalian forebrain. Using heterologous cell expression to separately study the 2 distinct isoforms, we show that the variants differ in protein interactions and surface expression levels, and that Ca(2+) and Ca(2+)-bound calmodulin differentially regulate their protein interactions. Our findings suggest that the SK2 isoforms may be distinctly modulated by activity-induced Ca(2+) influx. Alternative splicing of SK2 may serve as a novel mechanism to differentially regulate the maturation and function of olivocochlear and neuronal synapses. 10.4161/chan.27470
Cardiac small-conductance calcium-activated potassium channels in health and disease. Zhang Xiao-Dong,Thai Phung N,Lieu Deborah K,Chiamvimonvat Nipavan Pflugers Archiv : European journal of physiology Small-conductance Ca-activated K (SK, K2) channels are encoded by KCNN genes, including KCNN1, 2, and 3. The channels play critical roles in the regulation of cardiac excitability and are gated solely by beat-to-beat changes in intracellular Ca. The family of SK channels consists of three members with differential sensitivity to apamin. All three isoforms are expressed in human hearts. Studies over the past two decades have provided evidence to substantiate the pivotal roles of SK channels, not only in healthy heart but also with diseases including atrial fibrillation (AF), ventricular arrhythmia, and heart failure (HF). SK channels are prominently expressed in atrial myocytes and pacemaking cells, compared to ventricular cells. However, the channels are significantly upregulated in ventricular myocytes in HF and pulmonary veins in AF models. Interests in cardiac SK channels are further fueled by recent studies suggesting the possible roles of SK channels in human AF. Therefore, SK channel may represent a novel therapeutic target for atrial arrhythmias. Furthermore, SK channel function is significantly altered by human calmodulin (CaM) mutations, linked to life-threatening arrhythmia syndromes. The current review will summarize recent progress in our understanding of cardiac SK channels and the roles of SK channels in the heart in health and disease. 10.1007/s00424-021-02535-0