logo logo
KCNN2 mutation in autosomal-dominant tremulous myoclonus-dystonia. Balint B,Guerreiro R,Carmona S,Dehghani N,Latorre A,Cordivari C,Bhatia K P,Bras J European journal of neurology BACKGROUND AND PURPOSE:Despite recent advances in neurogenetics that have facilitated the identification of a number of dystonia genes, many familial dystonia syndromes remain without known cause. The aim of the study was to identify the cause of autosomal dominant tremulous myoclonus-dystonia in a UK kindred with affected individuals in three generations. METHODS:Known genetic causes of myoclonus-dystonia were excluded. We combined clinical and electrophysiological phenotyping with whole-exome sequencing and Sanger sequencing to identify candidate causal variants in a family with tremulous myoclonus-dystonia. RESULTS:The core phenotype consisted of childhood-onset dystonia predominantly affecting hands and neck, with a fast tremor with superimposed myoclonus and, in some individuals, subtle cerebellar signs. We identified a novel missense variant in potassium calcium-activated channel subfamily N member 2 (KCNN2) [NM_021614:c.1112G>A:p.(Gly371Glu)], which was the only variant that we were able to identify as segregating with the phenotype over three generations. This variant, which is absent from the most recent version of gnomAD, was predicted to be deleterious by SIFT and PolyPhen-2 and had an overall CADD score of 29.7. CONCLUSIONS:KCNN2, a member of the KCNN family of potassium channel genes, is highly conserved across species and in humans is highly expressed in the brain, particularly the cerebellum. KCNN2 mutations have never been described as pathological in human disease, but are recognized abnormalities in two rodent models of fast, jerky tremor. Segregation, absence of the variant in the normal population and in-silico prediction of a deleterious effect together with animal models compatible with the clinical phenotype are all in line with KCNN2 mutations being a plausible cause underlying myoclonus-dystonia. 10.1111/ene.14228
Differential regulation of K 2.1 (KCNN1) K channel expression by histone deacetylases in atrial fibrillation with concomitant heart failure. Rahm Ann-Kathrin,Wieder Teresa,Gramlich Dominik,Müller Mara Elena,Wunsch Maximilian N,El Tahry Fadwa A,Heimberger Tanja,Sandke Steffi,Weis Tanja,Most Patrick,Katus Hugo A,Thomas Dierk,Lugenbiel Patrick Physiological reports Atrial fibrillation (AF) with concomitant heart failure (HF) poses a significant therapeutic challenge. Mechanism-based approaches may optimize AF therapy. Small-conductance, calcium-activated K (K , KCNN) channels contribute to cardiac action potential repolarization. KCNN1 exhibits predominant atrial expression and is downregulated in chronic AF patients with preserved cardiac function. Epigenetic regulation is suggested by AF suppression following histone deacetylase (HDAC) inhibition. We hypothesized that HDAC-dependent KCNN1 remodeling contributes to arrhythmogenesis in AF complicated by HF. The aim of this study was to assess KCNN1 and HDAC1-7 and 9 transcript levels in AF/HF patients and in a pig model of atrial tachypacing-induced AF with reduced left ventricular function. In HL-1 atrial myocytes, tachypacing and anti-Hdac siRNAs were employed to investigate effects on Kcnn1 mRNA levels. KCNN1 expression displayed side-specific remodeling in AF/HF patients with upregulation in left and suppression in right atrium. In pigs, KCNN1 remodeling showed intermediate phenotypes. HDAC levels were differentially altered in humans and pigs, reflecting highly variable epigenetic regulation. Tachypacing recapitulated downregulation of Hdacs 1, 3, 4, 6, and 7 with a tendency towards reduced Kcnn1 levels in vitro, indicating that atrial high rates induce remodeling. Finally, Kcnn1 expression was decreased by knockdown of Hdacs 2, 3, 6, and 7 and enhanced by genetic Hdac9 inactivation, while anti-Hdac 1, 4, and 5 siRNAs did not affect Kcnn1 transcript levels. In conclusion, KCNN1 and HDAC expression is differentially remodeled in AF complicated by HF. Direct regulation of KCNN1 by HDACs in atrial myocytes provides a basis for mechanism-based antiarrhythmic therapy. 10.14814/phy2.14835
KCNN2 Mutation in Pediatric Tremor Myoclonus Dystonia Syndrome with Electrophysiological Evaluation. Tremor and other hyperkinetic movements (New York, N.Y.) BACKGROUND:Here we combine clinical, electrophysiological, and genetic findings to phenotype an unusual childhood movement disorder in a patient with a rare form of KCNN2 mutation. CASE REPORT:A 10-year-old male presented with a clinical syndrome of tremor and myoclonus. Electrophysiology demonstrated muscle activity indicative of myoclonus dystonia, an observation that was not appreciated clinically. Genetic testing revealed an abnormality in the KCNN 2 gene, not present in the parents, known to cause dystonia, as the etiology. DISCUSSION:The value of utilizing noninvasive, electrophysiological recording in pediatric movement disorders expands the precision of diagnosis, potentially informing treatment when correlated with clinical and genetic findings. 10.5334/tohm.668
HDAC2-dependent remodeling of K2.2 (KCNN2) and K2.3 (KCNN3) K channels in atrial fibrillation with concomitant heart failure. Rahm Ann-Kathrin,Wieder Teresa,Gramlich Dominik,Müller Mara Elena,Wunsch Maximilian N,El Tahry Fadwa A,Heimberger Tanja,Weis Tanja,Most Patrick,Katus Hugo A,Thomas Dierk,Lugenbiel Patrick Life sciences AIMS:Atrial fibrillation (AF) with concomitant heart failure (HF) is associated with prolonged atrial refractoriness. Small-conductance, calcium-activated K (K, KCNN) channels promote action potential (AP) repolarization. KCNN2 and KCNN3 variants are associated with AF risk. In addition, histone deacetylase (HDAC)-related epigenetic mechanisms have been implicated in AP regulation. We hypothesized that HDAC2-dependent remodeling of KCNN2 and KCNN3 expression contributes to atrial arrhythmogenesis in AF complicated by HF. The objectives were to assess HDAC2 and KCNN2/3 transcript levels in AF/HF patients and in a pig model, and to investigate cellular epigenetic effects of HDAC2 inactivation on KCNN expression. MATERIALS AND METHODS:HDAC2 and KCNN2/3 transcript levels were quantified in patients with AF and HF, and in a porcine model of atrial tachypacing-induced AF and reduced left ventricular function. Tachypacing and anti-Hdac2 siRNA treatment were employed in HL-1 atrial myocytes to study effects on KCNN2/3 mRNA and K protein abundance. KEY FINDINGS:Atrial KCNN2 and KCNN3 expression was reduced in AF/HF patients and in a corresponding pig model. HDAC2 displayed significant downregulation in humans and a tendency towards reduced expression in right atrial tissue of pigs. Tachypacing recapitulated downregulation of Kcnn2/K2.2, Kcnn3/K2.3 and Hdac2/HDAC2, indicating that high atrial rates trigger epigenetic remodeling mechanisms. Finally, knock-down of Hdac2 in vitro reduced Kcnn3/K2.3 expression. SIGNIFICANCE:KCNN2/3 and HDAC2 expression is suppressed in AF complicated by HF. Hdac2 directly regulates Kcnn3 mRNA levels in atrial cells. The mechanistic and therapeutic significance of epigenetic electrophysiological effects in AF requires further validation. 10.1016/j.lfs.2020.118892
Activation of KCNN3/SK3/K(Ca)2.3 channels attenuates enhanced calcium influx and inflammatory cytokine production in activated microglia. Dolga Amalia M,Letsche Till,Gold Maike,Doti Nunzianna,Bacher Michael,Chiamvimonvat Nipavan,Dodel Richard,Culmsee Carsten Glia In neurons, small-conductance calcium-activated potassium (KCNN/SK/K(Ca)2) channels maintain calcium homeostasis after N-methyl-D-aspartate (NMDA) receptor activation, thereby preventing excitotoxic neuronal death. So far, little is known about the function of KCNN/SK/K(Ca)2 channels in non-neuronal cells, such as microglial cells. In this study, we addressed the question whether KCNN/SK/K(Ca)2 channels activation affected inflammatory responses of primary mouse microglial cells upon lipopolysaccharide (LPS) stimulation. We found that N-cyclohexyl-N-[2-(3,5-dimethyl-pyrazol-1-yl)-6-methyl-4-pyrimidinamine (CyPPA), a positive pharmacological activator of KCNN/SK/K(Ca)2 channels, significantly reduced LPS-stimulated activation of microglia in a concentration-dependent manner. The general KCNN/SK/K(Ca)2 channel blocker apamin reverted these effects of CyPPA on microglial proliferation. Since calcium plays a central role in microglial activation, we further addressed whether KCNN/SK/K(Ca)2 channel activation affected the changes of intracellular calcium levels, [Ca(2+)](i), in microglial cells. Our data show that LPS-induced elevation of [Ca(2+)](i) was attenuated following activation of KCNN2/3/K(Ca)2.2/K(Ca)2.3 channels by CyPPA. Furthermore, CyPPA reduced downstream events including tumor necrosis factor alpha and interleukin 6 cytokine production and nitric oxide release in activated microglia. Further, we applied specific peptide inhibitors of the KCNN/SK/K(Ca)2 channel subtypes to identify which particular channel subtype mediated the observed anti-inflammatory effects. Only inhibitory peptides targeting KCNN3/SK3/K(Ca)2.3 channels, but not KCNN2/SK2/K(Ca)2.2 channel inhibition, reversed the CyPPA-effects on LPS-induced microglial proliferation. These findings revealed that KCNN3/SK3/K(Ca)2.3 channels can modulate the LPS-induced inflammatory responses in microglial cells. Thus, KCNN3/SK3/K(Ca)2.3 channels may serve as a therapeutic target for reducing microglial activity and related inflammatory responses in the central nervous system. 10.1002/glia.22419
KCNN Genes that Encode Small-Conductance Ca2+-Activated K+ Channels Influence Alcohol and Drug Addiction. Padula Audrey E,Griffin William C,Lopez Marcelo F,Nimitvilai Sudarat,Cannady Reginald,McGuier Natalie S,Chesler Elissa J,Miles Michael F,Williams Robert W,Randall Patrick K,Woodward John J,Becker Howard C,Mulholland Patrick J Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology Small-conductance Ca(2+)-activated K(+) (KCa2) channels control neuronal excitability and synaptic plasticity, and have been implicated in substance abuse. However, it is unknown if genes that encode KCa2 channels (KCNN1-3) influence alcohol and drug addiction. In the present study, an integrative functional genomics approach shows that genetic datasets for alcohol, nicotine, and illicit drugs contain the family of KCNN genes. Alcohol preference and dependence QTLs contain KCNN2 and KCNN3, and Kcnn3 transcript levels in the nucleus accumbens (NAc) of genetically diverse BXD strains of mice predicted voluntary alcohol consumption. Transcript levels of Kcnn3 in the NAc negatively correlated with alcohol intake levels in BXD strains, and alcohol dependence enhanced the strength of this association. Microinjections of the KCa2 channel inhibitor apamin into the NAc increased alcohol intake in control C57BL/6J mice, while spontaneous seizures developed in alcohol-dependent mice following apamin injection. Consistent with this finding, alcohol dependence enhanced the intrinsic excitability of medium spiny neurons in the NAc core and reduced the function and protein expression of KCa2 channels in the NAc. Altogether, these data implicate the family of KCNN genes in alcohol, nicotine, and drug addiction, and identify KCNN3 as a mediator of voluntary and excessive alcohol consumption. KCa2.3 channels represent a promising novel target in the pharmacogenetic treatment of alcohol and drug addiction. 10.1038/npp.2015.42
Small-Conductance Ca2+-Activated Potassium Channels Negatively Regulate Aldosterone Secretion in Human Adrenocortical Cells. Yang Tingting,Zhang Hai-Liang,Liang Qingnan,Shi Yingtang,Mei Yan-Ai,Barrett Paula Q,Hu Changlong Hypertension (Dallas, Tex. : 1979) Aldosterone, which plays a key role in maintaining water and electrolyte balance, is produced by zona glomerulosa cells of the adrenal cortex. Autonomous overproduction of aldosterone from zona glomerulosa cells causes primary hyperaldosteronism. Recent clinical studies have highlighted the pathological role of the KCNJ5 potassium channel in primary hyperaldosteronism. Our objective was to determine whether small-conductance Ca(2+)-activated potassium (SK) channels may also regulate aldosterone secretion in human adrenocortical cells. We found that apamin, the prototypic inhibitor of SK channels, decreased membrane voltage, raised intracellular Ca(2+) and dose dependently increased aldosterone secretion from human adrenocortical H295R cells. By contrast, 1-Ethyl-2-benzimidazolinone, an agonist of SK channels, antagonized apamin's action and decreased aldosterone secretion. Commensurate with an increase in aldosterone production, apamin increased mRNA expression of steroidogenic acute regulatory protein and aldosterone synthase that control the early and late rate-limiting steps in aldosterone biosynthesis, respectively. In addition, apamin increased angiotensin II-stimulated aldosterone secretion, whereas 1-Ethyl-2-benzimidazolinone suppressed both angiotensin II- and high K(+)-stimulated production of aldosterone in H295R cells. These findings were supported by apamin-modulation of basal and angiotensin II-stimulated aldosterone secretion from acutely prepared slices of human adrenals. We conclude that SK channel activity negatively regulates aldosterone secretion in human adrenocortical cells. Genetic association studies are necessary to determine whether mutations in SK channel subtype 2 genes may also drive aldosterone excess in primary hyperaldosteronism. 10.1161/HYPERTENSIONAHA.116.07094
Regulation of excitability in tonic firing substantia gelatinosa neurons of the spinal cord by small-conductance Ca(2+)-activated K(+) channels. Yang Kun Neuropharmacology The excitability of substantia gelatinosa (SG) neurons in the spinal dorsal horn determines the processing of nociceptive information from the periphery to the central nervous system. Small conductance Ca(2+)-activated K(+) (SK) channels on neurons supply strong negative feedback control on neuronal excitability by affecting afterhyperpolarization (AHP). However, the role of SK channels in regulating tonic-firing SG neuron excitability remains elusive. In the present study, whole-cell recordings were conducted in SG neurons from acute spinal cord slices of adult rats. The SK channel opener 1-ethyl-2-benzimidazolinone (1-EBIO) attenuated spike discharges and increased AHP amplitudes; this effect was mimicked by a high Ca(2+) external solution. Systemic administration of 1-EBIO attenuated the thermal-induced nociception behavior. Conversely, the inhibition of SK channels with apamin, a specific SK channel inhibitor, increased neuronal excitability and decreased the AHP amplitudes; this effect was mimicked by a Ca(2+)-free external solution. Apamin increased excitatory synaptic transmission by increasing the amplitudes of evoked excitatory postsynaptic potentials (eEPSPs). This facilitation depended on N-methyl-d-aspartate (NMDA) receptors, extracellular Mg(2+) and intracellular Ca(2+). Voltage-gated Ca(2+) channels (VGCCs) were also involved in the apamin-induced effects. Strikingly, 1-EBIO action on decreasing excitability persisted in the presence of apamin, indicating that 1-EBIO manipulates SK channels via a pathway rather than via apamin-sensitive SK channels. The data reveal a previously uncharacterized mechanism for manipulating SG neuronal excitability by Ca(2+) conductances via both apamin-sensitive and apamin-insensitive pathways. Because SG neurons in the dorsal horn are involved in regulating nociception, manipulating neuronal excitability via SK channels indicates a potential therapeutic target. 10.1016/j.neuropharm.2016.01.001
Contribution of small conductance K channels to sinoatrial node pacemaker activity: insights from atrial-specific Na /Ca exchange knockout mice. Torrente Angelo G,Zhang Rui,Wang Heidi,Zaini Audrey,Kim Brian,Yue Xin,Philipson Kenneth D,Goldhaber Joshua I The Journal of physiology KEY POINTS:Repolarizing currents through K channels are essential for proper sinoatrial node (SAN) pacemaking, but the influence of intracellular Ca on repolarization in the SAN is uncertain. We identified all three isoforms of Ca -activated small conductance K (SK) channels in the murine SAN. SK channel blockade slows repolarization and subsequent depolarization of SAN cells. In the atrial-specific Na /Ca exchanger (NCX) knockout mouse, cellular Ca accumulation during spontaneous SAN pacemaker activity produces intermittent hyperactivation of SK channels, leading to arrhythmic pauses alternating with bursts of pacing. These findings suggest that Ca -sensitive SK channels can translate changes in cellular Ca into a repolarizing current capable of modulating pacemaking. SK channels are a potential pharmacological target for modulating SAN rate or treating SAN dysfunction, particularly under conditions characterized by abnormal increases in diastolic Ca . ABSTRACT:Small conductance K (SK) channels have been implicated as modulators of spontaneous depolarization and electrical conduction that may be involved in cardiac arrhythmia. However, neither their presence nor their contribution to sinoatrial node (SAN) pacemaker activity has been investigated. Using quantitative PCR (q-PCR), immunostaining and patch clamp recordings of membrane current and voltage, we identified all three SK isoforms (SK1, SK2 and SK3) in mouse SAN. Inhibition of SK channels with the specific blocker apamin prolonged action potentials (APs) in isolated SAN cells. Apamin also slowed diastolic depolarization and reduced pacemaker rate in isolated SAN cells and intact tissue. We investigated whether the Ca -sensitive nature of SK channels could explain arrhythmic SAN pacemaker activity in the atrial-specific Na /Ca exchange (NCX) knockout (KO) mouse, a model of cellular Ca overload. SAN cells isolated from the NCX KO exhibited higher SK current than wildtype (WT) and apamin prolonged their APs. SK blockade partially suppressed the arrhythmic burst pacing pattern of intact NCX KO SAN tissue. We conclude that SK channels have demonstrable effects on SAN pacemaking in the mouse. Their Ca -dependent activation translates changes in cellular Ca into a repolarizing current capable of modulating regular pacemaking. This Ca dependence also promotes abnormal automaticity when these channels are hyperactivated by elevated Ca . We propose SK channels as a potential target for modulating SAN rate, and for treating patients affected by SAN dysfunction, particularly in the setting of Ca overload. 10.1113/JP274249
Activation of SK channels inhibits epileptiform bursting in hippocampal CA3 neurons. Lappin Sarah C,Dale Tim J,Brown Jon T,Trezise Derek J,Davies Ceri H Brain research The role of calcium-activated potassium channels in the regulation of neuronal hyperexcitability, as in epilepsy, is unclear. To examine this issue, we have used the acute hippocampal slice model of epileptiform activity to investigate the effects of an enhancer of SK channel activity, 1-ethyl-benzimidazolinone (EBIO). That EBIO is an SK channel modulator was confirmed by its potentiation of hSK1, hSK2, hSK3 and hIK currents (EC(50) values in the range of 130-870 microM) and its apamin (1 microM) sensitive reduction of the number of action potentials fired in CA3 pyramidal neurons in response to a depolarizing current step. In addition, while EBIO did not significantly affect electrically evoked glutamatergic synaptic transmission, it did inhibit epileptiform activity (IC(50) values in the range of 150-325 microM) induced by (1) modifying the extracellular ionic environment by removing extracellular Mg(2+) or elevating extracellular K(+) from 3.0 to 8.5 mM and (2) disinhibiting the slice using 3 mM pentylenetetrazol or combined application of 10 microM gabazine and 10 microM CGP55845. Furthermore, its inhibitory effect in the full disinhibition model of epileptiform activity (10 microM gabazine + 10 microM CGP55845) was occluded by the SK channel blocker apamin (300 nM-1 microM) which in its own right increased the duration and reduced the frequency of individual epileptiform bursts. In conclusion, compounds that enhance the activation of small conductance Ca(2+) -activated K(+) channels are effective inhibitors of epileptiform activity in vitro. 10.1016/j.brainres.2005.10.024
Glucose-mediated inhibition of calcium-activated potassium channels limits α-cell calcium influx and glucagon secretion. American journal of physiology. Endocrinology and metabolism Pancreatic α-cells exhibit oscillations in cytosolic Ca (Ca), which control pulsatile glucagon (GCG) secretion. However, the mechanisms that modulate α-cell Ca oscillations have not been elucidated. As β-cell Ca oscillations are regulated in part by Ca-activated K (K) currents, this work investigated the role of K in α-cell Ca handling and GCG secretion. α-Cells displayed K currents that were dependent on Ca influx through L- and P/Q-type voltage-dependent Ca channels (VDCCs) as well as Ca released from endoplasmic reticulum stores. α-Cell K was decreased by small-conductance Ca-activated K (SK) channel inhibitors apamin and UCL 1684, large-conductance Ca-activated K (BK) channel inhibitor iberiotoxin (IbTx), and intermediate-conductance Ca-activated K (IK) channel inhibitor TRAM 34. Moreover, partial inhibition of α-cell K with apamin depolarized membrane potential ( V) (3.8 ± 0.7 mV) and reduced action potential (AP) amplitude (10.4 ± 1.9 mV). Although apamin transiently increased Ca influx into α-cells at low glucose (42.9 ± 10.6%), sustained SK (38.5 ± 10.4%) or BK channel inhibition (31.0 ± 11.7%) decreased α-cell Ca influx. Total α-cell Ca was similarly reduced (28.3 ± 11.1%) following prolonged treatment with high glucose, but it was not decreased further by SK or BK channel inhibition. Consistent with reduced α-cell Ca following prolonged K inhibition, apamin decreased GCG secretion from mouse (20.4 ± 4.2%) and human (27.7 ± 13.1%) islets at low glucose. These data demonstrate that K activation provides a hyperpolarizing influence on α-cell V that sustains Ca entry during hypoglycemic conditions, presumably by preventing voltage-dependent inactivation of P/Q-type VDCCs. Thus, when α-cell Ca is elevated during secretagogue stimulation, K activation helps to preserve GCG secretion. 10.1152/ajpendo.00342.2018
Ventricular tachyarrhythmias in rats with acute myocardial infarction involves activation of small-conductance Ca2+-activated K+ channels. Gui Le,Bao Zhiwei,Jia Yinyu,Qin Xiaotong,Cheng Zixi Jack,Zhu Jianhua,Chen Qing-Hui American journal of physiology. Heart and circulatory physiology In vitro experiments have shown that the upregulation of small-conductance Ca(2+)-activated K(+) (SK) channels in ventricular epicardial myocytes is responsible for spontaneous ventricular fibrillation (VF) in failing ventricles. However, the role of SK channels in regulating VF has not yet been described in in vivo acute myocardial infarction (AMI) animals. The present study determined the role of SK channels in regulating spontaneous sustained ventricular tachycardia (SVT) and VF, the inducibility of ventricular tachyarrhythmias, and the effect of inhibition of SK channels on spontaneous SVT/VF and electrical ventricular instability in AMI rats. AMI was induced by ligation of the left anterior descending coronary artery in anesthetized rats. Spontaneous SVT/VF was analyzed, and programmed electrical stimulation was performed to evaluate the inducibility of ventricular tachyarrhythmias, ventricular effective refractory period (VERP), and VF threshold (VFT). In AMI, the duration and episodes of spontaneous SVT/VF were increased, and the inducibility of ventricular tachyarrhythmias was elevated. Pretreatment in the AMI group with the SK channel blocker apamin or UCL-1684 significantly reduced SVT/VF and inducibility of ventricular tachyarrhythmias (P < 0.05). Various doses of apamin (7.5, 22.5, 37.5, and 75.0 μg/kg iv) inhibited SVT/VF and the inducibility of ventricular tachyarrhythmias in a dose-dependent manner. Notably, no effects were observed in sham-operated controls. Additionally, VERP was shortened in AMI animals. Pretreatment in AMI animals with the SK channel blocker significantly prolonged VERP (P < 0.05). No effects were observed in sham-operated controls. Furthermore, VFT was reduced in AMI animals, and block of SK channels increased VFT in AMI animals, but, again, this was without effect in sham-operated controls. Finally, the monophasic action potential duration at 90% repolarization (MAPD(90)) was examined in the myocardial infarcted (MI) and nonmyocardial infarcted areas (NMI) of the left ventricular epicardium. Electrophysiology recordings showed that MAPD(90) in the MI area was shortened in AMI animals, and pretreatment with SK channel blocker apamin or UCL-1684 significantly prolonged MAPD(90) (P < 0.05) in the MI area but was without effect in the NMI area or in sham-operated controls. We conclude that the activation of SK channels may underlie the mechanisms of spontaneous SVT/VF and susceptibility to ventricular tachyarrhythmias in AMI. Inhibition of SK channels normalized the shortening of MAPD(90) in the MI area, which may contribute to the inhibitory effect on spontaneous SVT/VF and inducibility of ventricular tachyarrhythmias in AMI. 10.1152/ajpheart.00820.2011
Nucleus accumbens shell small conductance potassium channels underlie adolescent ethanol exposure-induced anxiety. Shan Lili,Galaj Ewa,Ma Yao-Ying Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology Alcohol use typically begins in adolescence, increasing the likelihood of adult mental disorders such as anxiety. However, the cellular mechanisms underlying the consequences of adolescent alcohol exposure as well as the behavioral consequences remain poorly understood. We examined the effects of adolescent or adult chronic intermittent ethanol (CIE) exposure on intrinsic excitability of striatal medium-sized spiny neurons (MSNs) and anxiety levels. Rats underwent one of the following procedures: (1) light-dark transition (LDT) and open-field (OF) tests to evaluate anxiety levels and general locomotion; (2) whole-cell patch clamp recordings and biocytin labeling to assess excitability of striatal MSNs, as well as morphological properties; and (3) western blot immunostaining to determine small conductance (SK) calcium-activated potassium channel protein levels. Three weeks, but not 2 days, after CIE treatment, adolescent CIE-treated rats showed shorter crossover latency from the light to dark side in the LDT test and higher MSN excitability in the nucleus accumbens shell (NAcS). Furthermore, the amplitude of the medium afterhyperpolarization (mAHP), mediated by SK channels, and SK3 protein levels in the NAcS decreased concomitantly. Finally, increased anxiety levels, increased excitability, and decreased amplitude of mAHP of NAcS MSNs were reversed by SK channel activator 1-EBIO and mimicked by the SK channel blocker apamin. Thus, adolescent ethanol exposure increases adult anxiety-like behavior by downregulating SK channel function and protein expression, which leads to an increase of intrinsic excitability in NAcS MSNs. SK channels in the NAcS may serve as a target to treat adolescent alcohol binge exposure-induced mental disorders, such as anxiety in adulthood. 10.1038/s41386-019-0415-7
Role of small-conductance calcium-activated potassium channels in atrial electrophysiology and fibrillation in the dog. Qi Xiao-Yan,Diness Jonas G,Brundel Bianca J J M,Zhou Xiao-Bo,Naud Patrice,Wu Chia-Tung,Huang Hai,Harada Masahide,Aflaki Mona,Dobrev Dobromir,Grunnet Morten,Nattel Stanley Circulation BACKGROUND:Recent evidence points to functional Ca²⁺-dependent K⁺ (SK) channels in the heart that may govern atrial fibrillation (AF) risk, but the underlying mechanisms are unclear. This study addressed the role of SK channels in atrial repolarization and AF persistence in a canine AF model. METHODS AND RESULTS:Electrophysiological variables were assessed in dogs subjected to atrial remodeling by 7-day atrial tachypacing (AT-P), as well as controls. Ionic currents and single-channel properties were measured in isolated canine atrial cardiomyocytes by patch clamp. NS8593, a putative selective SK blocker, suppressed SK current with an IC₅₀ of ≈5 μmol/L, without affecting Na⁺, Ca²⁺, or other K⁺ currents. Whole-cell SK current sensitive to NS8593 was significantly larger in pulmonary vein (PV) versus left atrial (LA) cells, without a difference in SK single-channel open probability (P(o)), whereas AT-P enhanced both whole-cell SK currents and single-channel P(o). SK-current block increased action potential duration in both PV and LA cells after AT-P; but only in PV cells in absence of AT-P. SK2 expression was more abundant at both mRNA and protein levels for PV versus LA in control dogs, in both control and AT-P; AT-P upregulated only SK1 at the protein level. Intravenous administration of NS8593 (5 mg/kg) significantly prolonged atrial refractoriness and reduced AF duration without affecting the Wenckebach cycle length, left ventricular refractoriness, or blood pressure. CONCLUSIONS:SK currents play a role in canine atrial repolarization, are larger in PVs than LA, are enhanced by atrial-tachycardia remodeling, and appear to participate in promoting AF maintenance. These results are relevant to the potential mechanisms underlying the association between SK single-nucleotide polymorphisms and AF and suggest SK blockers as potentially interesting anti-AF drugs. 10.1161/CIRCULATIONAHA.113.003019
Apamin Boosting of Synaptic Potentials in CaV2.3 R-Type Ca2+ Channel Null Mice. Wang Kang,Kelley Melissa H,Wu Wendy W,Adelman John P,Maylie James PloS one SK2- and KV4.2-containing K+ channels modulate evoked synaptic potentials in CA1 pyramidal neurons. Each is coupled to a distinct Ca2+ source that provides Ca2+-dependent feedback regulation to limit AMPA receptor (AMPAR)- and NMDA receptor (NMDAR)-mediated postsynaptic depolarization. SK2-containing channels are activated by Ca2+ entry through NMDARs, whereas KV4.2-containing channel availability is increased by Ca2+ entry through SNX-482 (SNX) sensitive CaV2.3 R-type Ca2+ channels. Recent studies have challenged the functional coupling between NMDARs and SK2-containing channels, suggesting that synaptic SK2-containing channels are instead activated by Ca2+ entry through R-type Ca2+ channels. Furthermore, SNX has been implicated to have off target affects, which would challenge the proposed coupling between R-type Ca2+ channels and KV4.2-containing K+ channels. To reconcile these conflicting results, we evaluated the effect of SK channel blocker apamin and R-type Ca2+ channel blocker SNX on evoked excitatory postsynaptic potentials (EPSPs) in CA1 pyramidal neurons from CaV2.3 null mice. The results show that in the absence of CaV2.3 channels, apamin application still boosted EPSPs. The boosting effect of CaV2.3 channel blockers on EPSPs observed in neurons from wild type mice was not observed in neurons from CaV2.3 null mice. These data are consistent with a model in which SK2-containing channels are functionally coupled to NMDARs and KV4.2-containing channels to CaV2.3 channels to provide negative feedback regulation of EPSPs in the spines of CA1 pyramidal neurons. 10.1371/journal.pone.0139332
Functional coupling of TRPV4, IK, and SK channels contributes to Ca(2+)-dependent endothelial injury in rodent lung. Lin Mike T,Jian Ming-Yuan,Taylor Mark S,Cioffi Donna L,Yap Fui C,Liedtke Wolfgang,Townsley Mary I Pulmonary circulation Our previous work has shown that the increased lung endothelial permeability response to 14,15-epoxyeicosatrienoic acid (14,15-EET) in rat lung requires Ca(2+) entry via vanilloid type-4 transient receptor potential (TRPV4) channels. Recent studies suggest that activation of TRPV4 channels in systemic vascular endothelium prolongs agonist-induced hyperpolarization and amplifies Ca(2+) entry by activating Ca(2+)-activated K(+) (KCa) channels, resulting in vessel relaxation. Activation of endothelial KCa channels thus has potential to increase the electrochemical driving force for Ca(2+) influx via TRPV4 channels and to amplify permeability responses to TRPV4 activation in lung. To examine this hypothesis, we used Western blot analysis, electrophysiological recordings, and isolated-lung permeability measurements to document expression of TRPV4 and KCa channels and the potential for functional coupling. The results show that rat pulmonary microvascular endothelial cells express TRPV4 and 3 KCa channels of different conductances: large (BK), intermediate (IK), and small (SK3). However, TRPV4 channel activity modulates the IK and SK3, but not the BK, channel current density. Furthermore, the TRPV4-mediated permeability response to 14,15-EET in mouse lung is significantly attenuated by pharmacologic blockade of IK and SK3, but not BK, channels. Collectively, this functional coupling suggests that endothelial TRPV4 channels in rodent lung likely form signaling microdomains with IK and SK3 channels and that the integrated response dictates the extent of lung endothelial injury caused by 14,15-EET. 10.1086/680166
Calcium-activated SK channels influence voltage-gated ion channels to determine the precision of firing in globus pallidus neurons. Deister Christopher A,Chan C Savio,Surmeier D James,Wilson Charles J The Journal of neuroscience : the official journal of the Society for Neuroscience Globus pallidus (GP) neurons fire rhythmically in the absence of synaptic input, suggesting that they may encode their inputs as changes in the phase of their rhythmic firing. Action potential afterhyperpolarization (AHP) enhances precision of firing by ensuring that the ion channels recover from inactivation by the same amount on each cycle. Voltage-clamp experiments in slices showed that the longest component of the GP neuron's AHP is blocked by apamin, a selective antagonist of calcium-activated SK channels. Application of 100 nm apamin also disrupted the precision of firing in perforated-patch and cell-attached recordings. SK channel blockade caused a small depolarization in spike threshold and made it more variable, but there was no reduction in the maximal rate of rise during an action potential. Thus, the firing irregularity was not caused solely by a reduction in voltage-gated Na(+) channel availability. Subthreshold voltage ramps triggered a large outward current that was sensitive to the initial holding potential and had properties similar to the A-type K(+) current in GP neurons. In numerical simulations, the availability of both Na(+) and A-type K(+) channels during autonomous firing were reduced when SK channels were removed, and a nearly equal reduction in Na(+) and K(+) subthreshold-activated ion channel availability produced a large decrease in the neuron's slope conductance near threshold. This change made the neuron more sensitive to intrinsically generated noise. In vivo, this change would also enhance the sensitivity of GP neurons to small synaptic inputs. 10.1523/JNEUROSCI.0576-09.2009
Maternal diabetes increases small conductance Ca2+-activated K+ (SK) currents that alter action potential properties and excitability of cardiac motoneurons in the nucleus ambiguus. Lin Min,Chen Qing-Hui,Wurster Robert D,Hatcher Jeff T,Liu Ye-Qi,Li Lihua,Harden Scott W,Cheng Zixi Jack Journal of neurophysiology Parasympathetic cardiac motoneurons (PCMNs) in the nucleus ambiguus (NA) play a key role in regulating cardiac functions. In this study, we examined the effects of maternal diabetes on excitability, action potential (AP) properties, and small conductance Ca(2+)-activated K(+) (SK) currents of PCMNs. Neonatal mice from diabetic (OVE26 female, NMDM) and normal (FVB female, control) mothers that had been mated with nondiabetic fathers (FVB male) were used. Tracer XRITC was injected into the pericardial sac at P7-9 to retrogradely label PCMNs. Two days later, XRITC-labeled PCMNs were identified in brain stem slices. The responses of spike frequency, AP repolarization (half-width) and afterhyperpolarization (AHP) of PCMNs to current injections were studied using whole cell current clamp. Outward and afterhyperpolarization currents (I(AHP)) in response to voltage steps were measured using whole cell voltage clamp. In examining the effects of maternal diabetes on excitability and AP properties, we found that in NMDM spike frequency decreased, the half-width and AHP peak amplitude increased, and the peak amplitude of outward transient currents and I(AHP) increased compared with those measured in control. In examining the effects of maternal diabetes on SK channels, we found that after blockage of SK channels with a specific SK channel blocker apamin, maternal diabetes significantly increased apamin-sensitive outward transient currents and I(AHP), and suppressed AHP amplitude in NMDM more than those in control. Further, apamin application increased the firing rate to current injections and completely abolished the difference of the firing rate between control and NMDM. We suggest that the augmented SK-mediated currents may contribute to the increased AHP amplitude and the attenuated excitability of PCMNs in NMDM. 10.1152/jn.00671.2009
PKA phosphorylation underlies functional recruitment of sarcolemmal SK2 channels in ventricular myocytes from hypertrophic hearts. Hamilton Shanna,Polina Iuliia,Terentyeva Radmila,Bronk Peter,Kim Tae Yun,Roder Karim,Clements Richard T,Koren Gideon,Choi Bum-Rak,Terentyev Dmitry The Journal of physiology KEY POINTS:Small-conductance Ca -activated K (SK) channels expressed in ventricular myocytes are dormant in health, yet become functional in cardiac disease. SK channels are voltage independent and their gating is controlled by intracellular [Ca ] in a biphasic manner. Submicromolar [Ca ] activates the channel via constitutively-bound calmodulin, whereas higher [Ca ] exerts inhibitory effect during depolarization. Using a rat model of cardiac hypertrophy induced by thoracic aortic banding, we found that functional upregulation of SK2 channels in hypertrophic rat ventricular cardiomyocytes is driven by protein kinase A (PKA) phosphorylation. Using site-directed mutagenesis, we identified serine-465 as the site conferring PKA-dependent effects on SK2 channel function. PKA phosphorylation attenuates I rectification by reducing the Ca /voltage-dependent inhibition of SK channels without changing their sensitivity to activating submicromolar [Ca ] . This mechanism underlies the functional recruitment of SK channels not only in cardiac disease, but also in normal physiology, contributing to repolarization under conditions of enhanced adrenergic drive. ABSTRACT:Small-conductance Ca -activated K (SK) channels expressed in ventricular myocytes (VMs) are dormant in health, yet become functional in cardiac disease. We aimed to test the hypothesis that post-translational modification of SK channels under conditions accompanied by enhanced adrenergic drive plays a central role in disease-related activation of the channels. We investigated this phenomenon using a rat model of hypertrophy induced by thoracic aortic banding (TAB). Western blot analysis using anti-pan-serine/threonine antibodies demonstrated enhanced phosphorylation of immunoprecipitated SK2 channels in VMs from TAB rats vs. Shams, which was reversible by incubation of the VMs with PKA inhibitor H89 (1 μmol L ). Patch clamped VMs under basal conditions from TABs but not Shams exhibited outward current sensitive to the specific SK inhibitor apamin (100 nmol L ), which was eliminated by inhibition of PKA (1 μmol L ). Beta-adrenergic stimulation (isoproterenol, 100 nmol L ) evoked I in VMs from Shams, resulting in shortening of action potentials in VMs and ex vivo optically mapped Sham hearts. Using adenoviral gene transfer, wild-type and mutant SK2 channels were overexpressed in adult rat VMs, revealing serine-465 as the site that elicits PKA-dependent phosphorylation effects on SK2 channel function. Concurrent confocal Ca imaging experiments established that PKA phosphorylation lessens rectification of I via reduction Ca /voltage-dependent inhibition of the channels at high [Ca ] without affecting their sensitivity to activation by Ca in the submicromolar range. In conclusion, upregulation of SK channels in diseased VMs is mediated by hyperadrenergic drive in cardiac hypertrophy, with functional effects on the channel conferred by PKA-dependent phosphorylation at serine-465. 10.1113/JP277618
The SK channel blocker apamin inhibits slow afterhyperpolarization currents in rat gonadotropin-releasing hormone neurones. Kato Masakatsu,Tanaka Nobuyuki,Usui Sumiko,Sakuma Yasuo The Journal of physiology Gonadotropin-releasing hormone (GnRH) neurones play an essential role in the hypothalamo-pituitary-gonadal axis. As for other neurones, the discharge pattern of action potentials is important for GnRH neurones to properly function. In the case of a luteinizing hormone (LH) surge, for example, GnRH neurones are likely to continuously fire for more than an hour. For this type of firing, GnRH neurones must have a certain intrinsic property. To address this issue, we investigated the voltage-gated Ca(2+) currents and Ca(2+)-activated voltage-independent K(+) currents underlying afterhyperpolarization, because they affect cell excitability. Dispersed GnRH neurones from adult GnRH-EGFP (enhanced green fluorescent protein) transgenic rats were cultured overnight and then used for an electrophysiological experiment involving the perforated patch-clamp configuration. The GnRH neurones showed five subtypes of voltage-gated Ca(2+) currents, i.e. the T-, L-, N-, P/Q- and R-types. The GnRH neurones also showed a slow afterhyperpolarization current (I(sAHP)), but not a medium one. It is reported that the SK channel blocker apamin (10 pm-100 nm) blocks a medium afterhyperpolarization current but not an I(sAHP). In contrast to previous reports, the I(sAHP) observed in rat GnRH neurones was potently blocked by apamin. In addition, the GnRH neurones expressed transcripts for SK1-3 channels. The results indicate that rat GnRH neurones express all five subtypes of voltage-gated Ca(2+) channels and exhibit an apamin-sensitive I(sAHP), which may allow continuous firing in response to a relatively strong depolarizing input. 10.1113/jphysiol.2006.110155
Altered expression and function of small-conductance (SK) Ca(2+)-activated K+ channels in pilocarpine-treated epileptic rats. Oliveira Mauro S,Skinner Frank,Arshadmansab Massoud F,Garcia Ileana,Mello Carlos F,Knaus Hans-Günther,Ermolinsky Boris S,Otalora Luis F Pacheco,Garrido-Sanabria Emilio R Brain research Small conductance calcium (Ca(2+)) activated SK channels are critical regulators of neuronal excitability in hippocampus. Accordingly, these channels are thought to play a key role in controlling neuronal activity in acute models of epilepsy. In this study, we investigate the expression and function of SK channels in the pilocarpine model of mesial temporal lobe epilepsy. For this purpose, protein expression was assessed using western blotting assays and gene expression was analyzed using TaqMan-based probes and the quantitative real-time polymerase chain reaction (qPCR) comparative method delta-delta cycle threshold ( big up tri, open big up tri, openCT) in samples extracted from control and epileptic rats. In addition, the effect of SK channel antagonist UCL1684 and agonist NS309 on CA1 evoked population spikes was studied in hippocampal slices. Western blotting analysis showed a significant reduction in the expression of SK1 and SK2 channels at 10days following status epilepticus (SE), but levels recovered at 1month and at more than 2months after SE. In contrast, a significant down-regulation of SK3 channels was detected after 10days of SE. Analysis of gene expression by qPCR revealed a significant reduction of transcripts for SK2 (Kcnn1) and SK3 (Kcnn3) channels as early as 10days following pilocarpine-induced SE and during the chronic phase of the pilocarpine model. Moreover, bath application of UCL1684 (100nM for 15min) induced a significant increase of the population spike amplitude and number of spikes in the hippocampal CA1 area of slices obtained control and chronic epileptic rats. This effect was obliterated by co-administration of UCL1684 with SK channel agonist NS309 (1microM). Application of NS309 failed to modify population spikes in the CA1 area of slices taken from control and epileptic rats. These data indicate an abnormal expression of SK channels and a possible dysfunction of these channels in experimental MTLE. 10.1016/j.brainres.2010.05.095
Effects on atrial fibrillation in aged hypertensive rats by Ca(2+)-activated K(+) channel inhibition. Diness Jonas G,Skibsbye Lasse,Jespersen Thomas,Bartels Emil D,Sørensen Ulrik S,Hansen Rie S,Grunnet Morten Hypertension (Dallas, Tex. : 1979) We have shown previously that inhibition of small conductance Ca(2+)-activated K(+) (SK) channels is antiarrhythmic in models of acutely induced atrial fibrillation (AF). These models, however, do not take into account that AF derives from a wide range of predisposing factors, the most prevalent being hypertension. In this study we assessed the effects of two different SK channel inhibitors, NS8593 and UCL1684, in aging, spontaneously hypertensive rats to examine their antiarrhythmic properties in a setting of hypertension-induced atrial remodeling. Male spontaneously hypertensive rats and the normotensive Wistar-Kyoto rat strain were divided in 2×3 groups of animals aged 3, 8, and 11 months, respectively. The animals were randomly assigned to treatment with NS8593, UCL1684, or vehicle, and open chest in vivo experiments including burst pacing-induced AF were performed. The aging spontaneously hypertensive rats were more vulnerable to AF induction both by S2 stimulation and burst pacing. Vehicle affected neither the atrial effective refractory period nor AF duration. SK channel inhibition with NS8593 and UCL1684 significantly increased the atrial effective refractory period and decreased AF duration in both the normotensive and hypertensive strains with no decline in efficacy as age increased. In conclusion, SK channel inhibition with NS8593 and UCL1684 possesses antiarrhythmic properties in a rat in vivo model of paroxysmal AF with hypertension-induced atrial remodeling. The present results support the notion that SK channels may offer a promising new therapeutic target in the treatment of AF. 10.1161/HYPERTENSIONAHA.111.170613
The sigma agonist 1,3-di-o-tolyl-guanidine directly blocks SK channels in dopaminergic neurons and in cell lines. Lamy Cédric,Scuvée-Moreau Jacqueline,Dilly Sébastien,Liégeois Jean-François,Seutin Vincent European journal of pharmacology Small conductance Ca(2+)-activated K(+) (SK) channels are widely expressed in the brain and underlie medium-duration afterhyperpolarizations (mAHPs) in many types of neurons. It was recently reported that the activation of sigma-1 (sigma(1)) receptors inhibits SK currents in rat hippocampus. Because many interactions between sigma receptors and brain dopaminergic systems have been reported, we set out to examine putative effects of sigma receptor ligands on the SK mediated mAHP in midbrain dopaminergic neurons. We found that 1,3-di-o-tolyl-guanidine (DTG) inhibited the mAHP in a concentration-dependent manner (approximately 60% inhibition at 100 microM), while other sigma receptor agonists (carbetapentane, (+)-SKF10047 and PRE-084) had little effect. Moreover, the effect of DTG was not affected by high concentrations of the sigma(1) receptor antagonist BD 1047. A role for sigma(2) receptors could also be excluded by the lack of effect of the sigma(2) receptor ligand 5-bromo-tetrahydroisoquinolinylbenzamide. These results argue against a coupling of sigma receptors to SK channels in dopaminergic neurons. We next hypothesized that DTG could directly block the channel. This hypothesis was tested in HEK-293 cells which were transiently transfected with rSK2 or hSK3 subunits. DTG inhibited the current flowing through both subtypes with mean IC(50)s approximately 200 microM. This action was also unaffected by BD 1047. Other sigma receptor ligands had little or no effect. We conclude that DTG directly blocks SK channels. This pharmacological action may be important to consider in future experimental settings. 10.1016/j.ejphar.2010.05.008
Expression of a Diverse Array of Ca2+-Activated K+ Channels (SK1/3, IK1, BK) that Functionally Couple to the Mechanosensitive TRPV4 Channel in the Collecting Duct System of Kidney. Li Yue,Hu Hongxiang,Butterworth Michael B,Tian Jin-Bin,Zhu Michael X,O'Neil Roger G PloS one The voltage- and Ca2+-activated, large conductance K+ channel (BK, maxi-K) is expressed in the collecting duct system of kidney where it underlies flow- and Ca2+-dependent K+ excretion. To determine if other Ca2+-activated K+ channels (KCa) may participate in this process, mouse kidney and the K+-secreting mouse cortical collecting duct (CCD) cell line, mCCDcl1, were assessed for TRPV4 and KCa channel expression and cross-talk. qPCR mRNA analysis and immunocytochemical staining demonstrated TRPV4 and KCa expression in mCCDcl1 cells and kidney connecting tubule (CNT) and CCD. Three subfamilies of KCa channels were revealed: the high Ca2+-binding affinity small-conductance SK channels, SK1and SK3, the intermediate conductance channel, IK1, and the low Ca2+-binding affinity, BK channel (BKα subunit). Apparent expression levels varied in CNT/CCD where analysis of CCD principal cells (PC) and intercalated cells (IC) demonstrated differential staining: SK1:PC<IC, and SK3:PC>IC, IK1:PC>IC, BKα:PC = IC, and TRPV4:PC>IC. Patch clamp analysis and fluorescence Ca2+ imaging of mCCDcl1 cells demonstrated potent TRPV4-mediated Ca2+ entry and strong functional cross-talk between TRPV4 and KCa channels. TRPV4-mediated Ca2+ influx activated each KCa channel, as evidenced by selective inhibition of KCa channels, with each active KCa channel enhancing Ca2+ entry (due to membrane hyperpolarization). Transepithelial electrical resistance (TEER) analysis of confluent mCCDcl1 cells grown on permeable supports further demonstrated this cross-talk where TRPV4 activation induce a decrease in TEER which was partially restored upon selective inhibition of each KCa channel. It is concluded that SK1/SK3 and IK1 are highly expressed along with BKα in CNT and CCD and are closely coupled to TRPV4 activation as observed in mCCDcl1 cells. The data support a model in CNT/CCD segments where strong cross talk between TRPV4-mediated Ca2+ influx and each KCa channel leads to enhance Ca2+ entry which will support activation of the low Ca2+-binding affinity BK channel to promote BK-mediated K+ secretion. 10.1371/journal.pone.0155006
Antiarrhythmic Effect of Either Negative Modulation or Blockade of Small Conductance Ca2+-activated K+ Channels on Ventricular Fibrillation in Guinea Pig Langendorff-perfused Heart. Diness Jonas G,Kirchhoff Jeppe E,Sheykhzade Majid,Jespersen Thomas,Grunnet Morten Journal of cardiovascular pharmacology During recent years, small conductance Ca-activated K (SK) channels have been reported to play a role in cardiac electrophysiology. SK channels seem to be expressed in atria and ventricles, but from a functional perspective, atrial activity is predominant. A general notion seems to be that cardiac SK channels are predominantly coming into play during arrhythmogenic events where intracellular concentration of Ca is increased. During ventricular fibrillation (VF), a surge of [Ca]i has the potential to bind to and open SK channels. To obtain mechanistic insight into possible roles of SK channels during VF, we conducted experiments with an SK channel pore blocker (ICA) and a negatively allosteric modulator (NS8395) in a Langendorff-perfused heart model. Both compounds increased the action potential duration, effective refractory period, and Wenckebach cycle length to comparable extents. Despite these similarities, the SK channel modulator was found to revert and prevent VF more efficiently than the SK channel pore blocker. In conclusion, either negative allosteric modulation of the SK channel with NS8593 is more favorable than pure channel block with ICA or the 2 compounds have different selectivity profiles that makes NS8593 more antiarrhythmic than ICA in a setting of VF. 10.1097/FJC.0000000000000278
Hypertension induced by angiotensin II and a high salt diet involves reduced SK current and increased excitability of RVLM projecting PVN neurons. Chen Qing-Hui,Andrade Mary Ann,Calderon Alfredo S,Toney Glenn M Journal of neurophysiology Although evidence indicates that activation of presympathetic paraventricular nucleus (PVN) neurons contributes to the pathogenesis of salt-sensitive hypertension, the underlying cellular mechanisms are not fully understood. Recent evidence indicates that small conductance Ca(2+)-activated K(+) (SK) channels play a significant role in regulating the excitability of a key group of sympathetic regulatory PVN neurons, those with axonal projections to the rostral ventrolateral medulla (RVLM; i.e., PVN-RVLM neurons). In the present study, rats consuming a high salt (2% NaCl) diet were made hypertensive by systemic infusion of angiotensin II (AngII), and whole cell patch-clamp recordings were made in brain slice from retrogradely labeled PVN-RVLM neurons. To determine if the amplitude of SK current was altered in neurons from hypertensive rats, voltage-clamp recordings were performed to isolate SK current. Results indicate that SK current amplitude (P < 0.05) and density (P < 0.01) were significantly smaller in the hypertensive group. To investigate the impact of this on intrinsic excitability, current-clamp recordings were performed in separate groups of PVN-RVLM neurons. Results indicate that the frequency of spikes evoked by current injection was significantly higher in the hypertensive group (P < 0.05-0.01). Whereas bath application of the SK channel blocker apamin significantly increased discharge of neurons from normotensive rats (P < 0.05-0.01), no effect was observed in the hypertensive group. In response to ramp current injections, subthreshold depolarizing input resistance was greater in the hypertensive group compared with the normotensive group (P < 0.05). Blockade of SK channels increased depolarizing input resistance in normotensive controls (P < 0.05) but had no effect in the hypertensive group. On termination of current pulses, a medium afterhyperpolarization potential (mAHP) was observed in most neurons of the normotensive group. In the hypertensive group, the mAHP was either small or absent. In the latter case, an afterdepolarization potential (ADP) was observed that was unaffected by apamin. Apamin treatment in the normotensive group blocked the mAHP and revealed an ADP resembling that seen in the hypertensive group. We conclude that diminished SK current likely underlies the absence of mAHPs in PVN-RVLM neurons from hypertensive rats. Both the ADP and greater depolarizing input resistance likely contribute to increased excitability of PVN-RVLM neurons from rats with AngII-Salt hypertension. 10.1152/jn.01013.2009
Pharmacological enhancement of calcium-activated potassium channel function reduces the effects of repeated stress on fear memory. Atchley Derek,Hankosky Emily R,Gasparotto Kaylyn,Rosenkranz J Amiel Behavioural brain research Repeated stress impacts emotion, and can induce mood and anxiety disorders. These disorders are characterized by imbalance of emotional responses. The amygdala is fundamental in expression of emotion, and is hyperactive in many patients with mood or anxiety disorders. Stress also leads to hyperactivity of the amygdala in humans. In rodent studies, repeated stress causes hyperactivity of the amygdala, and increases fear conditioning behavior that is mediated by the basolateral amygdala (BLA). Calcium-activated potassium (K(Ca)) channels regulate BLA neuronal activity, and evidence suggests reduced small conductance K(Ca) (SK) channel function in male rats exposed to repeated stress. Pharmacological enhancement of SK channels reverses the BLA neuronal hyperexcitability caused by repeated stress. However, it is not known if pharmacological targeting of SK channels can repair the effects of repeated stress on amygdala-dependent behaviors. The purpose of this study was to test whether enhancement of SK channel function reverses the effects of repeated restraint on BLA-dependent auditory fear conditioning. We found that repeated restraint stress increased the expression of cued conditioned fear in male rats. However, 1-Ethyl-2-benzimidazolinone (1-EBIO, 1 or 10 mg/kg) or CyPPA (5 mg/kg) administered 30 min prior to testing of fear expression brought conditioned freezing to control levels, with little impact on fear expression in control handled rats. These results demonstrate that enhancement of SK channel function can reduce the abnormalities of BLA-dependent fear memory caused by repeated stress. Furthermore, this indicates that pharmacological targeting of SK channels may provide a novel target for alleviation of psychiatric symptoms associated with amygdala hyperactivity. 10.1016/j.bbr.2012.03.037
Role of small conductance Ca²⁺-activated K⁺ channels in controlling CA1 pyramidal cell excitability. Chen Shmuel,Benninger Felix,Yaari Yoel The Journal of neuroscience : the official journal of the Society for Neuroscience Small-conductance Ca(2+)-activated K(+) (SK or K(Ca)2) channels are widely expressed in the CNS. In several types of neurons, these channels were shown to become activated during repetitive firing, causing early spike frequency adaptation. In CA1 pyramidal cells, SK channels in dendritic spines were shown to regulate synaptic transmission. However, the presence of functional SK channels in the somata and their role in controlling the intrinsic firing of these neurons has been controversial. Using whole-cell voltage-clamp and current-clamp recordings in acute hippocampal slices and focal applications of irreversible and reversible SK channel blockers, we provide evidence that functional SK channels are expressed in the somata and proximal dendrites of adult rat CA1 pyramidal cells. Although these channels can generate a medium duration afterhyperpolarizing current, they play only an auxiliary role in controlling the intrinsic excitability of these neurons, secondary to the low voltage-activating, noninactivating K(V)7/M channels. As long as K(V)7/M channels are operative, activation of SK channels during repetitive firing does not notably affect the spike output of CA1 pyramidal cells. However, when K(V)7/M channel activity is compromised, SK channel activation significantly and uniquely reduces spike output of these neurons. Therefore, proximal SK channels provide a "second line of defense" against intrinsic hyperexcitability, which may play a role in multiple conditions in which K(V)7/M channels activity is compromised, such as hyposmolarity. 10.1523/JNEUROSCI.0936-14.2014
Topography of native SK channels revealed by force nanoscopy in living neurons. Maciaszek Jamie L,Soh Heun,Walikonis Randall S,Tzingounis Anastasios V,Lykotrafitis George The Journal of neuroscience : the official journal of the Society for Neuroscience The spatial distribution of ion channels is an important determinant of neuronal excitability. However, there are currently no quantitative techniques to map endogenous ion channels with single-channel resolution in living cells. Here, we demonstrate that integration of pharmacology with single-molecule atomic force microscopy (AFM) allows for the high-resolution mapping of native potassium channels in living neurons. We focus on calcium-activated small conductance (SK) potassium channels, which play a critical role in brain physiology. By linking apamin, a toxin that specifically binds to SK channels, to the tip of an AFM cantilever, we are able to detect binding events between the apamin and SK channels. We find that native SK channels from rat hippocampal neurons reside primarily in dendrites as single entities and in pairs. We also show that SK channel dendritic distribution is dynamic and under the control of protein kinase A. Our study demonstrates that integration of toxin pharmacology with single-molecule AFM can be used to quantitatively map individual native ion channels in living cells, and thus provides a new tool for the study of ion channels in cellular physiology. 10.1523/JNEUROSCI.1785-12.2012
In vivo characterisation of the small-conductance KCa (SK) channel activator 1-ethyl-2-benzimidazolinone (1-EBIO) as a potential anticonvulsant. Anderson Neil J,Slough Scott,Watson William P European journal of pharmacology Owing to their activation by increased intracellular Ca(2+) levels following burst firing, and the resultant hyperpolarisation and dampening of neuronal excitability, the small-conductance Ca(2+)-activated K(+) (SK(Ca)) channels have been proposed as a potential target for novel antiepileptic drugs. Indeed, the channel activator 1-ethyl-2-benzimidazolinone (1-EBIO) has been shown to reduce epileptiform activity in vitro. Accordingly, this study has investigated the therapeutic potential of 1-EBIO using a range of in vivo seizure models, and assessed the adverse effect liability with the rotarod and locomotor activity paradigms. To aid benchmarking of 1-EBIO's therapeutic and adverse effect potential, it was tested alongside two currently marketed antiepileptic drugs, phenytoin and levetiracetam. 1-EBIO was found to be effective at reducing seizure incidence in mice following maximal electroshock (ED(50) 36.0 mg/kg) as well as increasing the threshold to electrically- and pentylenetetrazole-induced seizures (TID(10)s 7.3 and 21.5 mg/kg, respectively). However, results from the mouse rotarod test revealed a strong adverse effect potential within the therapeutic dose range (ID(50) 35.6 mg/kg), implying a significantly inferior therapeutic index with respect to the comparator compounds. These results, therefore, support the in vitro data detailing 1-EBIO's reduction of epileptiform activity. However, the use of in vivo models has revealed a significant adverse effect potential within the therapeutic dose range. Nevertheless, given the multiplicity of SK(Ca) channel subunits and that 1-EBIO has been shown to enhance additional, non-SK(Ca) carried currents, these findings do not preclude the possibility that more selective enhancers of SK(Ca) function could prove to be effective as antiepileptic medications. 10.1016/j.ejphar.2006.07.007
Impairment of endothelial SK(Ca) channels and of downstream hyperpolarizing pathways in mesenteric arteries from spontaneously hypertensive rats. Weston A H,Porter E L,Harno E,Edwards G British journal of pharmacology BACKGROUND AND PURPOSE:Previous studies have shown that endothelium-dependent hyperpolarization of myocytes is reduced in resistance arteries from spontaneously hypertensive rats (SHRs). The aim of the present study was to determine whether this reflects down-regulation of endothelial K(+) channels or their associated pathways. EXPERIMENTAL APPROACH:Changes in vascular K(+) channel responses and expression were determined by a combination of membrane potential recordings and Western blotting. KEY RESULTS:Endothelium-dependent myocyte hyperpolarizations induced by acetylcholine, 6,7-dichloro-1H-indole-2,3-dione 3-oxime (NS309) (opens small- and intermediate-conductance calcium-sensitive K(+) channels, SK(Ca) and IK(Ca), respectively) or cyclohexyl-[2-(3,5-dimethyl-pyrazol-1-yl)-6-methyl-pyrimidin-4-yl]-amine (SK(Ca) opener) were reduced in mesenteric arteries from SHRs. After blocking SK(Ca) channels with apamin, hyperpolarizations to acetylcholine and NS309 in SHR arteries were similar to those of controls. Hyperpolarization to 5 mM KCl was reduced in SHR arteries due to loss of the Ba(2+)-sensitive, inward-rectifier channel (K(IR)) component; the contribution of ouabain-sensitive, Na(+)/K(+)-ATPases was unaffected. Protein expression of both SK(Ca) and K(IR) channels was reduced in SHR arteries; the caveolin-1 monomer/dimer ratio was increased. CONCLUSIONS AND IMPLICATIONS:In SHRs, the distinct pathway that generates endothelium-dependent hyperpolarization in vascular myocyte by activation of IK(Ca) channels and Na(+)/K(+)-ATPases remains intact. The second pathway, initiated by endothelial SK(Ca) channel activation and amplified by K(IR) opening on both endothelial cells and myocytes is compromised in SHRs due to down-regulation of both SK(Ca) and K(IR) and to changes in caveolin-1 oligomers. These impairments in the SK(Ca)-K(IR) pathway shed new light on vascular control mechanisms and on the underlying vascular changes in hypertension. 10.1111/j.1476-5381.2010.00657.x
Metformin restores electrophysiology of small conductance calcium-activated potassium channels in the atrium of GK diabetic rats. Fu Xi,Pan Yilong,Cao Qian,Li Bin,Wang Shuo,Du Hongjiao,Duan Na,Li Xiaodong BMC cardiovascular disorders BACKGROUND:Small conductance calcium-activated potassium channels (SK channels) play a critical role in action potential repolarization in cardiomyocytes. Recently, the potential anti-arrhythmic effect of metformin in diabetic patients has been recognized, yet the underlying mechanism remains elusive. METHODS:Diabetic Goto-Kakizaki (GK) rats were untreated or treated with metformin (300 mg/kg/day) for 12 weeks, and age-matched Wistar rats were used as control (n = 6 per group). Electrocardiography, Hematoxylin-eosin staining and Masson's trichome staining were performed to assess cardiac function, histology and fibrosis. The expression levels of the SK channels in the myocardium were determined by real-time PCR and Western blotting. The electrophysiology of the SK channels in the cardiomyocytes isolated from the three groups of rats was examined by patch clamp assay, with specific blockade of the SK channels with apamin. RESULTS:Metformin treatment significantly reduced cardiac fibrosis and alleviated arrhythmia in the diabetic rats. In the atrial myocytes from control, GK and metformin-treated GK rats, the expression of KCa2.2 (SK2 channel) was down-regulated and the expression of KCa2.3 (SK3 channel) was up-regulated in the atrium of GK rats as compared with that of control rats, and metformin reversed diabetes-induced alterations in atrial SK channel expression. Moreover, patch clamp assay revealed that the SK current was markedly reduced and the action potential duration was prolonged in GK atrial myocytes, and the SK channel function was partially restored in the atrial myocytes from metformin-treated GK rats. CONCLUSIONS:Our data suggests an involvement of the SK channels in the development of arrhythmia under diabetic conditions, and supports a potential beneficial effect of metformin on atrial electrophysiology. 10.1186/s12872-018-0805-5
Functional expression of SK channels in murine detrusor PDGFR+ cells. Lee Haeyeong,Koh Byoung H,Peri Lauren E,Sanders Kenton M,Koh Sang Don The Journal of physiology We sought to characterize molecular expression and ionic conductances in a novel population of interstitial cells (PDGFRα(+) cells) in murine bladder to determine how these cells might participate in regulation of detrusor excitability. PDGFRα(+) cells and smooth muscle cells (SMCs) were isolated from detrusor muscles of PDGFRα(+)/eGFP and smMHC/Cre/eGFP mice and sorted by FACS. PDGFRα(+) cells were highly enriched in Pdgfra (12 fold vs. unsorted cell) and minimally positive for Mhc (SMC marker), Kit (ICC marker) and Pgp9.5 (neuronal marker). SK3 was dominantly expressed in PDGFRα(+) cells in comparison to SMCs. αSlo (BK marker) was more highly expressed in SMCs. SK3 protein was observed in PDGFRα(+) cells by immunohistochemistry but could not be resolved in SMCs. Depolarization evoked voltage-dependent Ca(2+) currents in SMCs, but inward current conductances were not activated in PDGFRα(+) cells under the same conditions. PDGFRα(+) cells displayed spontaneous transient outward currents (STOCs) at potentials positive to -60 mV that were inhibited by apamin. SK channel modulators, CyPPA and SKA-31, induced significant hyperpolarization of PDGFRα(+) cells and activated SK currents under voltage clamp. Similar responses were not resolved in SMCs at physiological potentials. Single channel measurements confirmed the presence of functional SK3 channels (i.e. single channel conductance of 10 pS and sensitivity to intracellular Ca(2+)) in PDGFRα(+) cells. The apamin-sensitive stabilizing factor regulating detrusor excitability is likely to be due to the expression of SK3 channels in PDGFRα(+) cells because SK agonists failed to elicit resolvable currents and hyperpolarization in SMCs at physiological potentials. 10.1113/jphysiol.2012.241505
Tuning the excitability of midbrain dopamine neurons by modulating the Ca2+ sensitivity of SK channels. Ji Huifang,Hougaard Charlotte,Herrik Kjartan Frisch,Strøbaek Dorte,Christophersen Palle,Shepard Paul D The European journal of neuroscience Small conductance Ca(2+) -activated K(+) (SK) channels play a prominent role in modulating the spontaneous activity of dopamine (DA) neurons as well as their response to synaptically-released glutamate. SK channel gating is dependent on Ca(2+) binding to constitutively bound calmodulin, which itself is subject to endogenous and exogenous modulation. In the present study, patch-clamp recording techniques were used to examine the relationship between the apparent Ca(2+) affinity of cloned SK3 channels expressed in cultured human embryonic kidney 293 cells and the excitability of DA neurons in slices from rat substantia nigra using the positive and negative SK channel modulators, 6,7-dichloro-1H-indole-2,3-dione-3-oxime and R-N-(benzimidazol-2-yl)-1,2,3,4-tetrohydro-1-naphtylamine. Increasing the apparent Ca(2+) affinity of SK channels decreased the responsiveness of DA neurons to depolarizing current pulses, enhanced spike frequency adaptation and slowed spontaneous firing, effects attributable to an increase in the amplitude and duration of an apamin-sensitive afterhyperpolarization. In contrast, decreasing the apparent Ca(2+) affinity of SK channels enhanced DA neuronal excitability and changed the firing pattern from a pacemaker to an irregular or bursting discharge. Both the reduction in apparent Ca(2+) affinity and the bursting associated with negative SK channel modulation were gradually surmounted by co-application of the positive SK channel modulator. These results underscore the importance of SK channels in 'tuning' the excitability of DA neurons and demonstrate that gating modulation, in a manner analogous to physiological regulation of SK channels in vivo, represents a means of altering the response of DA neurons to membrane depolarization. 10.1111/j.1460-9568.2009.06735.x
Cardiac small conductance Ca2+-activated K+ channel subunits form heteromultimers via the coiled-coil domains in the C termini of the channels. Tuteja Dipika,Rafizadeh Sassan,Timofeyev Valeriy,Wang Shuyun,Zhang Zheng,Li Ning,Mateo Robertino K,Singapuri Anil,Young J Nilas,Knowlton Anne A,Chiamvimonvat Nipavan Circulation research RATIONALE:Ca(2+)-activated K(+) channels are present in a wide variety of cells. We have previously reported the presence of small conductance Ca(2+)-activated K(+) (SK or K(Ca)) channels in human and mouse cardiac myocytes that contribute functionally toward the shape and duration of cardiac action potentials. Three isoforms of SK channel subunits (SK1, SK2, and SK3) are found to be expressed. Moreover, there is differential expression with more abundant SK channels in the atria and pacemaking tissues compared with the ventricles. SK channels are proposed to be assembled as tetramers similar to other K(+) channels, but the molecular determinants driving their subunit interaction and assembly are not defined in cardiac tissues. OBJECTIVE:To investigate the heteromultimeric formation and the domain necessary for the assembly of 3 SK channel subunits (SK1, SK2, and SK3) into complexes in human and mouse hearts. METHODS AND RESULTS:Here, we provide evidence to support the formation of heteromultimeric complexes among different SK channel subunits in native cardiac tissues. SK1, SK2, and SK3 subunits contain coiled-coil domains (CCDs) in the C termini. In vitro interaction assay supports the direct interaction between CCDs of the channel subunits. Moreover, specific inhibitory peptides derived from CCDs block the Ca(2+)-activated K(+) current in atrial myocytes, which is important for cardiac repolarization. CONCLUSIONS:The data provide evidence for the formation of heteromultimeric complexes among different SK channel subunits in atrial myocytes. Because SK channels are predominantly expressed in atrial myocytes, specific ligands of the different isoforms of SK channel subunits may offer a unique therapeutic opportunity to directly modify atrial cells without interfering with ventricular myocytes. 10.1161/CIRCRESAHA.109.215269
SK channel regulation of dendritic excitability and dendrodendritic inhibition in the olfactory bulb. Maher Brady J,Westbrook Gary L Journal of neurophysiology Small-conductance calcium-activated potassium channels (SK) regulate dendritic excitability in many neurons. In the olfactory bulb, regulation of backpropagating action potentials and dendrodendritic inhibition depend on the dendritic excitability of mitral cells. We report here that SK channel currents are present in mitral cells but are not detectable in granule cells in the olfactory bulb. In brain slices from PND 14-21 mice, long step depolarizations (100 ms) in the mitral cell soma evoked a cadmium- and apamin-sensitive outward SK current lasting several hundred milliseconds. Block of the SK current unmasked an inward N-methyl-D-aspartate (NMDA) autoreceptor current due to glutamate released from mitral cell dendrites. In low extracellular Mg(2+) (100 microM), brief step depolarizations (2 ms) evoked an apamin-sensitive current that was reduced by D,L-2-amino-5-phosphonopentanoic acid. In current- clamp, block of SK channels increased action potential firing in mitral cells as well as dendrodendritic inhibition. Our results indicate that SK channels can be activated either by calcium channels or NMDA channels in mitral cell dendrites, providing a mechanism for local control of dendritic excitability. 10.1152/jn.00797.2005
SK (KCa2) channels do not control somatic excitability in CA1 pyramidal neurons but can be activated by dendritic excitatory synapses and regulate their impact. Gu Ning,Hu Hua,Vervaeke Koen,Storm Johan F Journal of neurophysiology Calcium-activated K(+) channels of the K(Ca)2 type (SK channels) are prominently expressed in the mammalian brain, including hippocampus. These channels are thought to underlie neuronal excitability control and have been implicated in plasticity, memory, and neural disease. Contrary to previous reports, we found that somatic spike-evoked medium afterhyperpolarizations (mAHPs) and corresponding excitability control were not caused by SK channels but mainly by Kv7/KCNQ/M channels in CA1 hippocampal pyramidal neurons. Thus apparently, these SK channels are hardly activated by somatic Na(+) spikes. To further test this conclusion, we used sharp electrode, whole cell, and perforated-patch recordings from rat CA1 pyramidal neurons. We found that SK channel blockers consistently failed to suppress mAHPs under a range of experimental conditions: mAHPs following single spikes or spike trains, at -60 or -80 mV, at 20-30 degrees C, in low or elevated extracellular [K(+)], or spike trains triggered by synaptic stimulation after blocking N-methyl-d-aspartic acid receptors (NMDARs). Nevertheless, we found that SK channels in these cells were readily activated by artificially enhanced Ca(2+) spikes, and an SK channel opener (1-ethyl-2-benzimidazolinone) enhanced somatic AHPs following Na(+) spikes, thus reducing excitability. In contrast to CA1 pyramidal cells, bursting pyramidal cells in the subiculum showed a Na(+) spike-evoked mAHP that was reduced by apamin, indicating cell-type-dependent differences in mAHP mechanisms. Testing for other SK channel functions in CA1, we found that field excitatory postsynaptic potentials mediated by NMDARs were enhanced by apamin, supporting the idea that dendritic SK channels are activated by NMDAR-dependent calcium influx. We conclude that SK channels in rat CA1 pyramidal cells can be activated by NMDAR-mediated synaptic input and cause feedback regulation of synaptic efficacy but are normally not appreciably activated by somatic Na(+) spikes in this cell type. 10.1152/jn.90433.2008
Control of Ca2+ Influx and Calmodulin Activation by SK-Channels in Dendritic Spines. Griffith Thom,Tsaneva-Atanasova Krasimira,Mellor Jack R PLoS computational biology The key trigger for Hebbian synaptic plasticity is influx of Ca2+ into postsynaptic dendritic spines. The magnitude of [Ca2+] increase caused by NMDA-receptor (NMDAR) and voltage-gated Ca2+ -channel (VGCC) activation is thought to determine both the amplitude and direction of synaptic plasticity by differential activation of Ca2+ -sensitive enzymes such as calmodulin. Ca2+ influx is negatively regulated by Ca2+ -activated K+ channels (SK-channels) which are in turn inhibited by neuromodulators such as acetylcholine. However, the precise mechanisms by which SK-channels control the induction of synaptic plasticity remain unclear. Using a 3-dimensional model of Ca2+ and calmodulin dynamics within an idealised, but biophysically-plausible, dendritic spine, we show that SK-channels regulate calmodulin activation specifically during neuron-firing patterns associated with induction of spike timing-dependent plasticity. SK-channel activation and the subsequent reduction in Ca2+ influx through NMDARs and L-type VGCCs results in an order of magnitude decrease in calmodulin (CaM) activation, providing a mechanism for the effective gating of synaptic plasticity induction. This provides a common mechanism for the regulation of synaptic plasticity by neuromodulators. 10.1371/journal.pcbi.1004949
SK channel blocker apamin attenuates the effect of SSRI fluoxetine upon cell firing in dorsal raphe nucleus: a concomitant electrophysiological and electrochemical in vivo study reveals implications for modulating extracellular 5-HT. Crespi Francesco Brain research A dual probing methodology was implemented so that combined in vivo voltammetric (electrochemical) and in vivo electrophysiological analysis could be carried out concomitantly in two distinct brain regions of the same anaesthetized animal, i.e., cell body such as the dorsal raphe nucleus (DRN) and related terminal region such as the hippocampus, the frontal cortex, and the amygdala. In particular, this methodology allowed: In addition, the dual probing methodology has been applied to verify the original proposal that a combined treatment with a potassium (SK) channel blocker such as apamin and an SSRI (i.e., fluoxetine) could overcome the slow onset of the SSRI upon central 5-HT activity that could be related to the slow onset of its therapeutic action. Briefly, the effect of apamin either alone or followed by fluoxetine upon cell firing in the DRN (in vivo electrophysiology) and concomitantly upon 5-HT levels (in vivo voltammetry) in the amygdala (forebrain structure involved in mood regulation and innervated by ascending 5-HT projections from the DRN) was studied. 10.1016/j.brainres.2010.03.081
Inhibition of SK and M channel-mediated currents by 5-HT enables parallel processing by bursts and isolated spikes. Journal of neurophysiology Although serotonergic innervation of sensory brain areas is ubiquitous, its effects on sensory information processing remain poorly understood. We investigated these effects in pyramidal neurons within the electrosensory lateral line lobe (ELL) of weakly electric fish. Surprisingly, we found that 5-HT is present at different levels across the different ELL maps; the presence of 5-HT fibers was highest in the map that processes intraspecies communication signals. Electrophysiological recordings revealed that 5-HT increased excitability and burst firing through a decreased medium afterhyperpolarization resulting from reduced small-conductance calcium-activated (SK) currents as well as currents mediated by an M-type potassium channel. We next investigated how 5-HT alters responses to sensory input. 5-HT application decreased the rheobase current, increased the gain, and decreased first spike latency. Moreover, it reduced discriminability between different stimuli, as quantified by the mutual information rate. We hypothesized that 5-HT shifts pyramidal neurons into a burst-firing mode where bursts, when considered as events, can detect the presence of particular stimulus features. We verified this hypothesis using signal detection theory. Our results indeed show that serotonin-induced bursts of action potentials, when considered as events, could detect specific stimulus features that were distinct from those detected by isolated spikes. Moreover, we show the novel result that isolated spikes transmit more information after 5-HT application. Our results suggest a novel function for 5-HT in that it enables differential processing by action potential patterns in response to current injection. 10.1152/jn.00792.2010
Long-Term High Salt Intake Involves Reduced SK Currents and Increased Excitability of PVN Neurons with Projections to the Rostral Ventrolateral Medulla in Rats. Chapp Andrew D,Wang Renjun,Cheng Zixi Jack,Shan Zhiying,Chen Qing-Hui Neural plasticity Evidence indicates that high salt (HS) intake activates presympathetic paraventricular nucleus (PVN) neurons, which contributes to sympathoexcitation of salt-sensitive hypertension. The present study determined whether 5 weeks of HS (2% NaCl) intake alters the small conductance Ca-activated potassium channel (SK) current in presympathetic PVN neurons and whether this change affects the neuronal excitability. In whole-cell voltage-clamp recordings, HS-treated rats had significantly decreased SK currents compared to rats with normal salt (NS, 0.4% NaCl) intake in PVN neurons. The sensitivity of PVN neuronal excitability in response to current injections was greater in HS group compared to NS controls. The SK channel blocker apamin augmented the neuronal excitability in both groups but had less effect on the sensitivity of the neuronal excitability in HS group compared to NS controls. In the HS group, the interspike interval (ISI) was significantly shorter than that in NS controls. Apamin significantly shortened the ISI in NS controls but had less effect in the HS group. This data suggests that HS intake reduces SK currents, which contributes to increased PVN neuronal excitability at least in part through a decrease in spike frequency adaptation and may be a precursor to the development of salt-sensitive hypertension. 10.1155/2017/7282834
Electrophysiological characterization of the SK channel blockers methyl-laudanosine and methyl-noscapine in cell lines and rat brain slices. British journal of pharmacology We have recently shown that the alkaloid methyl-laudanosine blocks SK channel-mediated afterhyperpolarizations (AHPs) in midbrain dopaminergic neurones. However, the relative potency of the compound on the SK channel subtypes and its ability to block AHPs of other neurones were unknown. Using whole-cell patch-clamp experiments in transfected cell lines, we found that the compound blocks SK1, SK2 and SK3 currents with equal potency: its mean IC(50)s were 1.2, 0.8 and 1.8 microM, respectively. IK currents were unaffected. In rat brain slices, methyl-laudanosine blocked apamin-sensitive AHPs in serotonergic neurones of the dorsal raphe and noradrenergic neurones of the locus coeruleus with IC(50)s of 21 and 19 microM, as compared to 15 microM in dopaminergic neurones. However, at 100 microM, methyl-laudanosine elicited a constant hyperpolarization of serotonergic neurones of about 9 mV, which was inconsistently (i.e. not in a reproducible manner) antagonized by atropine and hence partly due to the activation of muscarinic receptors. While exploring the pharmacology of related compounds, we found that methyl-noscapine also blocked SK channels. In cell lines, methyl-noscapine blocked SK1, SK2 and SK3 currents with mean IC(50)s of 5.9, 5.6 and 3.9 microM, respectively. It also did not block IK currents. Methyl-noscapine was slightly less potent than methyl-laudanosine in blocking AHPs in brain slices, its IC(50)s being 42, 37 and 29 microM in dopaminergic, serotonergic and noradrenergic neurones, respectively. Interestingly, no significant non-SK effects were observed with methyl-noscapine in slices. At a concentration of 300 microM, methyl-noscapine elicited the same changes in excitability in the three neuronal types than did a supramaximal concentration of apamin (300 nM). Methyl-laudanosine and methyl-noscapine produced a rapidly reversible blockade of SK channels as compared with apamin. The difference between the IC(50)s of apamin (0.45 nM) and methyl-laudanosine (1.8 microM) in SK3 cells was essentially due to a major difference in their k(-1) (0.028 s(-1) for apamin and >or=20 s(-1) for methyl-laudanosine). These experiments demonstrate that both methyl-laudanosine and methyl-noscapine are medium potency, quickly dissociating, SK channel blockers with a similar potency on the three SK subtypes. Methyl-noscapine may be superior in terms of specificity for the SK channels. 10.1038/sj.bjp.0705979
Chronic Inhibition of mROS Protects Against Coronary Endothelial Dysfunction in Mice With Diabetes. Xing Hang,Zhang Zhiqi,Shi Guangbin,He Yixin,Song Yi,Liu Yuhong,Harrington Elizabeth O,Sellke Frank W,Feng Jun Frontiers in cell and developmental biology Diabetes is associated with coronary endothelial dysfunction. Persistent oxidative stress during diabetes contributes to coronary endothelial dysfunction. The mitochondria are main sources of reactive oxygen species (ROS) in diabetes, and mitochondria-targeted antioxidant mito-Tempo can prevent mitochondrial reactive oxygen species (mROS) generation in a variety of disorders. Inhibition/inactivation of small-conductance Ca-activated K (SK) channels contribute to diabetic downregulation of coronary endothelial function/relaxation. However, few investigated the role of mROS on endothelial dysfunction/vasodilation and endothelial SK channel downregulation in diabetes. The aim of present study was to investigate the chronic administration of mito-Tempo, on coronary vasodilation, and endothelial SK channel activity of mice with or without diabetes. Mito-Tempo (1 mg/kg/day) was applied to the mice with or without diabetes ( = 10/group) for 4 weeks. relaxation response of pre-contracted arteries was examined in the presence or absence of the vasodilatory agents. SK channel currents of the isolated mouse heart endothelial cells were measured using whole-cell patch clamp methods. At baseline, coronary endothelium-dependent relaxation responses to ADP and the selective SK channel activator NS309 and endothelial SK channel currents were decreased in diabetic mice compared with that in non-diabetic (ND) mice ( < 0.05). After a 4-week treatment with mito-Tempo, coronary endothelium-dependent relaxation response to ADP or NS309 and endothelial SK channel currents in the diabetic mice was significantly improved when compared with that in untreated diabetic mice ( < 0.05). Interestingly, coronary relaxation responses to ADP and NS309 and endothelial SK channel currents were not significantly changed in ND mice after mito-Tempo treatment, as compared to that of untreated control group. Chronic inhibition of endothelial mROS appears to improve coronary endothelial function/dilation and SK channel activity in diabetes, and mROS inhibitors may be a novel strategy to treat vascular complications in diabetes. 10.3389/fcell.2021.643810
Synergistic antiarrhythmic effect of combining inhibition of Ca²⁺-activated K⁺ (SK) channels and voltage-gated Na⁺ channels in an isolated heart model of atrial fibrillation. Kirchhoff Jeppe Egedal,Diness Jonas Goldin,Sheykhzade Majid,Grunnet Morten,Jespersen Thomas Heart rhythm BACKGROUND:Application of antiarrhythmic compounds is limited by both proarrhythmic and extracardiac toxicities, as well as incomplete antiarrhythmic efficacy. An improved antiarrhythmic potential may be obtained by combining antiarrhythmic drugs with different modes of action, and a reduction of the adverse effect profile could be an additional advantage if compound concentrations could be reduced. OBJECTIVE:The purpose of this study was to test the hypothesis that combined inhibition of Ca(2+)-activated K(+) channels (SK channels) and voltage-gated Na(+) channels, in concentrations that would be subefficacious as monotherapy, may prevent atrial fibrillation (AF) and have reduced proarrhythmic potential in the ventricles. METHODS:Subefficacious concentrations of ranolazine, flecainide, and lidocaine were tested alone or in combination with the SK channel blocker N-(pyridin-2-yl)-4-(pyridin-2-yl)thiazol-2-amine (ICA) in a Langendorff-perfused guinea pig heart model in which AF was induced after acetylcholine application and burst pacing. RESULTS:AF duration was reduced when both flecainide and ranolazine were combined with ICA in doses that did not reduce AF as monotherapy. At higher concentrations, both flecainide and ranolazine revealed proarrhythmic properties. CONCLUSION:A synergistic effect in AF treatment was obtained by combining low concentrations of SK and Na(+) channel blockers. 10.1016/j.hrthm.2014.12.010
Sex-specific activation of SK current by isoproterenol facilitates action potential triangulation and arrhythmogenesis in rabbit ventricles. Chen Mu,Yin Dechun,Guo Shuai,Xu Dong-Zhu,Wang Zhuo,Chen Zhenhui,Rubart-von der Lohe Michael,Lin Shien-Fong,Everett Iv Thomas H,Weiss James N,Chen Peng-Sheng The Journal of physiology KEY POINTS:It is unknown if a sex difference exists in cardiac apamin-sensitive small conductance Ca -activated K (SK) current (I ). There is no sex difference in I in the basal condition. However, there is larger I in female rabbit ventricles than in male during isoproterenol infusion. I activation by isoproterenol leads to action potential triangulation in females, indicating its abundant activation at early phases of repolarization. I activation in females induces negative Ca -voltage coupling and promotes electromechanically discordant phase 2 repolarization alternans. I is important in the mechanisms of ventricular fibrillation in females during sympathetic stimulation. ABSTRACT:Sex has a large influence on cardiac electrophysiological properties. Whether sex differences exist in apamin-sensitive small conductance Ca -activated K (SK) current (I ) remains unknown. We performed optical mapping, transmembrane potential, patch clamp, western blot and immunostaining in 62 normal rabbit ventricles, including 32 females and 30 males. I blockade by apamin only minimally prolonged action potential (AP) duration (APD) in the basal condition for both sexes, but significantly prolonged APD in the presence of isoproterenol in females. Apamin prolonged APD at the level of 25% repolarization (APD ) more prominently than APD at the level of 80% repolarization (APD ), consequently reversing isoproterenol-induced AP triangulation in females. In comparison, apamin prolonged APD to a significantly lesser extent in males and failed to restore the AP plateau during isoproterenol infusion. I in males did not respond to the L-type calcium current agonist BayK8644, but was amplified by the casein kinase 2 (CK2) inhibitor 4,5,6,7-tetrabromobenzotriazole. In addition, whole-cell outward I densities in ventricular cardiomyocytes were significantly larger in females than in males. SK channel subtype 2 (SK2) protein expression was higher and the CK2/SK2 ratio was lower in females than in males. I activation in females induced negative intracellular Ca -voltage coupling, promoted electromechanically discordant phase 2 repolarization alternans and facilitated ventricular fibrillation (VF). Apamin eliminated the negative Ca -voltage coupling, attenuated alternans and reduced VF inducibility, phase singularities and dominant frequencies in females, but not in males. We conclude that β-adrenergic stimulation activates ventricular I in females to a much greater extent than in males. I activation plays an important role in ventricular arrhythmogenesis in females during sympathetic stimulation. 10.1113/JP275681
Small conductance calcium activated K channel inhibitor decreases stretch induced vulnerability to atrial fibrillation. International journal of cardiology. Heart & vasculature BACKGROUND:Atrial dilation is an important risk factor for atrial fibrillation (AF) and animal studies have found that acute atrial dilation shortens the atrial effective refractory period (AERP) and increases the risk of AF. Stretch activated ion channels (SACs) and calcium channels play a role in this. The expression profile and calcium dependent activation makes the small conductance calcium activated K channel (K2.x) a candidate for coupling stretch induced increases in intracellular calcium through K-efflux and thereby shortening of atrial refractoriness. OBJECTIVES:We hypothesized that K2.x channel inhibitors can prevent the stretch induced shortening of AERP and protect the heart from AF. METHODS:The effect of K2 channel inhibitor (N-(pyridin-2-yl)-4-(pyridin-2-yl)thiazol-2-amine (ICA) 1 µM) was investigated using the isolated perfused rabbit heart preparation. To stretch the left atrium (LA) a balloon was inserted and inflated. AERP and action potential duration (APD) were recorded before and after atrial stretch. AF was induced by burst pacing the LA at different degrees of atrial stretch. RESULTS:Stretching of the LA by increasing the balloon pressure from 0 to 20 mmHg shortened the AERP by 8.6 ± 1 ms. In comparison, the K2 inhibitor ICA significantly attenuated the stretch induced shortening of AERP to 2.5 ± 1.1 ms. Total AF duration increased linearly with atrial balloon pressure. This relationship was not found in the presence of ICA. ICA lowered the incidence of AF induction and total AF duration. CONCLUSION:The K2 channel inhibitor ICA attenuates the acute stretch induced shortening of AERP and decreases stretch induced vulnerability to AF. 10.1016/j.ijcha.2021.100898
Modulating fear extinction memory by manipulating SK potassium channels in the infralimbic cortex. Criado-Marrero Marangelie,Santini Edwin,Porter James T Frontiers in behavioral neuroscience Fear extinction correlates with increased infralimbic (IL) neuronal excitability. Since small conductance Ca(2+)-dependent K(+) (SK) channels modulate neuronal excitability and certain types of learning and memory, pharmacological modulation of SK channels could be used to regulate IL excitability and fear extinction. To test this, we first determined the effect of blocking SK channels with apamin on the intrinsic excitability of IL pyramidal neurons in brain slices. In whole-cell patch-clamp recordings, apamin increased the number of spikes evoked by a depolarizing current pulse, increased the firing frequency, and reduced the fast afterhyperpolarizing potential (fAHP) indicating that blockade of SK channels could be used to enhance the intrinsic excitability of IL neurons. Next, we assessed whether SK channels in IL regulate extinction of conditioned fear by infusing apamin into IL of fear conditioned rats prior to extinction training. Apamin infusion did not affect conditioned freezing at the beginning of the extinction session or within-session extinction. However, the following day, apamin-infused rats showed significantly less conditioned freezing. To further examine the importance of SK channels in IL in fear extinction, we assessed the effect of the SK channel activator DCEBIO on IL neuronal excitability and fear extinction. Activation of SK channels with DCEBIO decreased the number of evoked spikes, reduced the firing frequency, and enhanced the fAHP of IL neurons. Infusion of DCEBIO into IL prior to fear extinction impaired recall of fear extinction without affecting acquisition of extinction. Taken together, these findings suggest that SK channels are involved in regulating IL excitability and extinction-induced plasticity. Therefore, SK channels are a potential target for the development of new pharmacological treatments to facilitate extinction in patients suffering from anxiety disorders. 10.3389/fnbeh.2014.00096
Antiarrhythmic principle of SK channel inhibition in atrial fibrillation. Skibsbye Lasse Danish medical journal
Expanding role of SK channels in cardiac electrophysiology. Mahida Saagar Heart rhythm The small conductance calcium-activated potassium (SK) channels are an important group of potassium-selective ion channels. SK channels display more pronounced expression in the atrium relative to the ventricle. Current evidence relating to the functional role of SK channels in the atria is conflicting and whether these channels contribute to atrial repolarization under physiological circumstances is a matter of debate. Multiple studies have, however, reported that SK channels are important mediators of proarrhythmogenic electrical remodeling in the atria. In keeping with their expression profile, SK channels do not appear to play a prominent role in ventricular repolarization. SK channels represent potentially attractive therapeutic targets for atrial fibrillation. A number of pharmacological modulators of SK channels have been tested in animal models of atrial fibrillation. However, these studies have also demonstrated inconsistent results and have raised important questions regarding the proarrhythmogenic potential of SK channel modulation. These findings have important implications for drug development. This review summarizes the role of SK channels in cardiac electrophysiology and discusses the potential role of these channels as therapeutic targets. 10.1016/j.hrthm.2014.03.045
SK but not IK channels regulate human detrusor smooth muscle spontaneous and nerve-evoked contractions. American journal of physiology. Renal physiology Animal studies suggest that the small (SK) and intermediate (IK) conductance Ca(2+)-activated K(+) channels may contribute to detrusor smooth muscle (DSM) excitability and contractility. However, the ability of SK and IK channels to control DSM spontaneous phasic and nerve-evoked contractions in human DSM remains unclear. We first investigated SK and IK channels molecular expression in native human DSM and further assessed their functional role using isometric DSM tension recordings and SK/IK channel-selective inhibitors. Quantitative PCR experiments revealed that SK3 channel mRNA expression in isolated DSM single cells was ∼12- to 44-fold higher than SK1, SK2, and IK channels. RT-PCR studies at the single-cell level detected mRNA messages for SK3 channels but not SK1, SK2, and IK channels. Western blot and immunohistochemistry analysis further confirmed protein expression for the SK3 channel and lack of detectable protein expression for IK channel in whole DSM tissue. Apamin (1 μM), a selective SK channel inhibitor, significantly increased the spontaneous phasic contraction amplitude, muscle force integral, phasic contraction duration, and muscle tone of human DSM isolated strips. Apamin (1 μM) also increased the amplitude of human DSM electrical field stimulation (EFS)-induced contractions. However, TRAM-34 (1 μM), a selective IK channel inhibitor, had no effect on the spontaneous phasic and EFS-induced DSM contractions suggesting a lack of IK channel functional role in human DSM. In summary, our molecular and functional studies revealed that the SK, particularly the SK3 subtype, but not IK channels are expressed and regulate the spontaneous and nerve-evoked contractions in human DSM. 10.1152/ajprenal.00615.2011
Activation of BK and SK channels by efferent synapses on outer hair cells in high-frequency regions of the rodent cochlea. Rohmann Kevin N,Wersinger Eric,Braude Jeremy P,Pyott Sonja J,Fuchs Paul Albert The Journal of neuroscience : the official journal of the Society for Neuroscience Cholinergic neurons of the brainstem olivary complex project to and inhibit outer hair cells (OHCs), refining acoustic sensitivity of the mammalian cochlea. In all vertebrate hair cells studied to date, cholinergic inhibition results from the combined action of ionotropic acetylcholine receptors and associated calcium-activated potassium channels. Although inhibition was thought to involve exclusively small conductance (SK potassium channels), recent findings have shown that BK channels also contribute to inhibition in basal, high-frequency OHCs after the onset of hearing. Here we show that the waveform of randomly timed IPSCs (evoked by high extracellular potassium) in high-frequency OHCs is altered by blockade of either SK or BK channels, with BK channels supporting faster synaptic waveforms and SK channels supporting slower synaptic waveforms. Consistent with these findings, IPSCs recorded from high-frequency OHCs that express BK channels are briefer than IPSCs recorded from low-frequency (apical) OHCs that do not express BK channels and from immature high-frequency OHCs before the developmental onset of BK channel expression. Likewise, OHCs of BKα(-/-) mice lacking the pore-forming α-subunit of BK channels have longer IPSCs than do the OHCs of BKα(+/+) littermates. Furthermore, serial reconstruction of electron micrographs showed that postsynaptic cisterns of BKα(-/-) OHCs were smaller than those of BKα(+/+) OHCs, and immunofluorescent quantification showed that efferent presynaptic terminals of BKα(-/-) OHCs were smaller than those of BKα(+/+) OHCs. Together, these findings indicate that BK channels contribute to postsynaptic function, and influence the structural maturation of efferent-OHC synapses. 10.1523/JNEUROSCI.2790-14.2015
The Small Conductance Calcium-Activated Potassium Channel Inhibitors NS8593 and UCL1684 Prevent the Development of Atrial Fibrillation Through Atrial-Selective Inhibition of Sodium Channel Activity. Journal of cardiovascular pharmacology The mechanisms underlying atrial-selective prolongation of effective refractory period (ERP) and suppression of atrial fibrillation (AF) by NS8593 and UCL1684, small conductance calcium-activated potassium (SK) channel blockers, are poorly defined. The purpose of the study was to confirm the effectiveness of these agents to suppress AF and to probe the underlying mechanisms. Transmembrane action potentials and pseudoelectrocardiograms were recorded from canine isolated coronary-perfused canine atrial and ventricular wedge preparations. Patch clamp techniques were used to record sodium channel current (INa) in atrial and ventricular myocytes and human embryonic kidney cells. In both atria and ventricles, NS8593 (3-10 µM) and UCL1684 (0.5 µM) did not significantly alter action potential duration, suggesting little to no SK channel inhibition. Both agents caused atrial-selective: (1) prolongation of ERP secondary to development of postrepolarization refractoriness, (2) reduction of Vmax, and (3) increase of diastolic threshold of excitation (all are sodium-mediated parameters). NS8593 and UCL1684 significantly reduced INa density in human embryonic kidney cells as well as in atrial but not in ventricular myocytes at physiologically relevant holding potentials. NS8593 caused a shift of steady-state inactivation to negative potentials in atrial but not ventricular cells. NS8593 and UCL1684 prevented induction of acetylcholine-mediated AF in 6/6 and 8/8 preparations, respectively. This anti-AF effect was associated with strong rate-dependent depression of excitability. The SK channel blockers, NS8593 and UCL1684, are effective in preventing the development of AF due to potent atrial-selective inhibition of INa, causing atrial-selective prolongation of ERP secondary to induction of postrepolarization refractoriness. 10.1097/FJC.0000000000000855
SK channels and ventricular arrhythmias in heart failure. Chang Po-Cheng,Chen Peng-Sheng Trends in cardiovascular medicine Small-conductance Ca(2+)-activated K(+) (SK) currents are important in the repolarization of normal atrial (but not ventricular) cardiomyocytes. However, recent studies showed that the SK currents are upregulated in failing ventricular cardiomyocytes, along with increased SK channel protein expression and enhanced sensitivity to intracellular Ca(2+). The SK channel activation may be either anti-arrhythmic or pro-arrhythmic, depending on the underlying clinical situations. While the SK channel is a new target of anti-arrhythmic therapy, drug safety is still one of the major concerns. 10.1016/j.tcm.2015.01.010
Protein kinase CK2 contributes to diminished small conductance Ca2+-activated K+ channel activity of hypothalamic pre-sympathetic neurons in hypertension. Pachuau Judith,Li De-Pei,Chen Shao-Rui,Lee Hae-Ahm,Pan Hui-Lin Journal of neurochemistry Small conductance calcium-activated K(+) (SK) channels regulate neuronal excitability. However, little is known about changes in SK channel activity of pre-sympathetic neurons in the hypothalamic paraventricular nucleus (PVN) in essential hypertension. SK channels, calmodulin, and casein kinase II (CK2) form a molecular complex. Because CK2 is up-regulated in the PVN in spontaneously hypertensive rats (SHRs), we hypothesized that CK2 increases calmodulin phosphorylation and contributes to diminished SK channel activity in PVN pre-sympathetic neurons in SHRs. Perforated whole-cell recordings were performed on retrogradely labeled spinally projecting PVN neurons in Wistar-Kyoto (WKY) rats and SHRs. Blocking SK channels with apamin significantly increased the firing rate of PVN neurons in WKY rats but not in SHRs. CK2 inhibition restored the stimulatory effect of apamin on the firing activity of PVN neurons in SHRs. Furthermore, apamin-sensitive SK currents and depolarization-induced medium after-hyperpolarization potentials of PVN neurons were significantly larger in WKY rats than in SHRs. CK2 inhibition significantly increased the SK channel current and medium after-depolarization potential of PVN neurons in SHRs. In addition, CK2-mediated calmodulin phosphorylation level in the PVN was significantly higher in SHRs than in WKY rats. Although SK3 was detected in the PVN, its expression level did not differ significantly between SHRs and WKY rats. Our findings suggest that CK2-mediated calmodulin phosphorylation is increased and contributes to diminished SK channel function of PVN pre-sympathetic neurons in SHRs. This information advances our understanding of the mechanisms underlying hyperactivity of PVN pre-sympathetic neurons and increased sympathetic vasomotor tone in hypertension. Small conductance calcium-activated K(+) (SK) channels, calmodulin, and protein kinase CK2 form a molecular complex and regulate neuronal excitability. Our study suggests that augmented CK2 activity in hypertension can increase calmodulin (CaM) phosphorylation, which leads to diminished SK channel function in pre-sympathetic neurons. Diminished SK channel activity plays a role in hyperactivity of pre-sympathetic neurons in the hypothalamus in hypertension. 10.1111/jnc.12758
Developmental mapping of small-conductance calcium-activated potassium channel expression in the rat nervous system. Gymnopoulos Marco,Cingolani Lorenzo A,Pedarzani Paola,Stocker Martin The Journal of comparative neurology Early electrical activity and calcium influx regulate crucial aspects of neuronal development. Small-conductance calcium-activated potassium (SK) channels regulate action potential firing and shape calcium influx through feedback regulation in mature neurons. These functions, observed in the adult nervous system, make them ideal candidates to regulate activity- and calcium-dependent processes in neurodevelopment. However, to date little is known about the onset of expression and regions expressing SK channel subunits in the embryonic and postnatal development of the central nervous system (CNS). To allow studies on the contribution of SK channels to different phases of development of single neurons and networks, we have performed a detailed in situ hybridization mapping study, providing comprehensive distribution profiles of all three SK subunits (SK1, SK2, and SK3) in the rat CNS during embryonic and postnatal development. SK channel transcripts are expressed at early stages of prenatal CNS development. The three SK channel subunits display different developmental expression gradients in distinct CNS regions, with time points of expression and up- or downregulation that can be associated with a range of diverse developmental events. Their early expression in embryonic development suggests an involvement of SK channels in the regulation of developmental processes. Additionally, this study shows how the postnatal ontogenetic patterns lead to the adult expression map for each SK channel subunit and how their coexpression in the same regions or neurons varies throughout development. 10.1002/cne.23466
SK channel modulation rescues striatal plasticity and control over habit in cannabinoid tolerance. Nazzaro Cristiano,Greco Barbara,Cerovic Milica,Baxter Paul,Rubino Tiziana,Trusel Massimo,Parolaro Daniela,Tkatch Tatiana,Benfenati Fabio,Pedarzani Paola,Tonini Raffaella Nature neuroscience Endocannabinoids (eCBs) regulate neuronal activity in the dorso-lateral striatum (DLS), a brain region that is involved in habitual behaviors. How synaptic eCB signaling contributes to habitual behaviors under physiological and pathological conditions remains unclear. Using a mouse model of cannabinoid tolerance, we found that persistent activation of the eCB pathway impaired eCB-mediated long-term depression (LTD) and synaptic depotentiation in the DLS. The loss of eCB LTD, occurring preferentially at cortical connections to striatopallidal neurons, was associated with a shift in behavioral control from goal-directed action to habitual responding. eCB LTD and behavioral alterations were rescued by in vivo modulation of small-conductance calcium activated potassium channel (SK channel) activity in the DLS, which potentiates eCB signaling. Our results reveal a direct relationship between drug tolerance and changes in control of instrumental performance by establishing a central role for eCB LTD in habit expression. In addition, SK channels emerge as molecular targets to fine tune the eCB pathway under pathological conditions. 10.1038/nn.3022
Reduced nucleus accumbens SK channel activity enhances alcohol seeking during abstinence. Hopf F Woodward,Bowers M Scott,Chang Shao-Ju,Chen Billy T,Martin Miguel,Seif Taban,Cho Saemi L,Tye Kay,Bonci Antonello Neuron The cellular mechanisms underlying pathological alcohol seeking remain poorly understood. Here, we show an enhancement of nucleus accumbens (NAcb) core action potential firing ex vivo after protracted abstinence from alcohol but not sucrose self-administration. Increased firing is associated with reduced small-conductance calcium-activated potassium channel (SK) currents and decreased SK3 but not SK2 subunit protein expression. Furthermore, SK activation ex vivo produces greater firing suppression in NAcb core neurons from alcohol- versus sucrose-abstinent rats. Accordingly, SK activation in the NAcb core significantly reduces alcohol but not sucrose seeking after abstinence. In contrast, NAcb shell and lateral dorsal striatal firing ex vivo are not altered after abstinence from alcohol, and SK activation in these regions has little effect on alcohol seeking. Thus, decreased NAcb core SK currents and increased excitability represents a critical mechanism that facilitates motivation to seek alcohol after abstinence. 10.1016/j.neuron.2010.02.015
Activation of the SK potassium channel-calmodulin complex by nanomolar concentrations of terbium. Li Weiyan,Aldrich Richard W Proceedings of the National Academy of Sciences of the United States of America Small conductance Ca(2+)-activated K(+) (SK) channels sense intracellular Ca(2+) concentrations via the associated Ca(2+)-binding protein calmodulin. Structural and functional studies have revealed essential properties of the interaction between calmodulin and SK channels. However, it is not fully understood how the binding of Ca(2+) to calmodulin leads to channel opening. Drawing on previous biochemical studies of free calmodulin using lanthanide ions as Ca(2+) substitutes, we have used the lanthanide ion, Tb(3+), as an alternative ligand to study the activation properties of SK channels. We found that SK channels can be fully activated by nanomolar concentrations of Tb(3+), indicating an apparent affinity >100-fold higher than Ca(2+). Competition experiments show that Tb(3+) binds to the same sites as Ca(2+) to activate the channels. Additionally, SK channels activated by Tb(3+) demonstrate a remarkably slow deactivation process. Comparison of our results with previous biochemical studies suggests that in the intact SK channel complex, the N-lobe of calmodulin provides ligand-binding sites for channel gating, and that its ligand-binding properties are comparable to those of the N-lobe in isolated calmodulin. 10.1073/pnas.0812008106
Small-conductance Ca-activated K channel activation deteriorates hypoxic ventricular arrhythmias via CaMKII in cardiac hypertrophy. Tenma Taro,Mitsuyama Hirofumi,Watanabe Masaya,Kakutani Naoya,Otsuka Yutaro,Mizukami Kazuya,Kamada Rui,Takahashi Masayuki,Takada Shingo,Sabe Hisataka,Tsutsui Hiroyuki,Yokoshiki Hisashi American journal of physiology. Heart and circulatory physiology The molecular and electrophysiological mechanisms of acute ischemic ventricular arrhythmias in hypertrophied hearts are not well known. We hypothesized that small-conductance Ca-activated K (SK) channels are activated during hypoxia via the Ca/calmodulin-dependent protein kinase II (CaMKII)-dependent pathway. We used normotensive Wistar-Kyoto (WKY) rats and spontaneous hypertensive rats (SHRs) as a model of cardiac hypertrophy. The inhibitory effects of SK channels and ATP-sensitive K channels on electrophysiological changes and genesis of arrhythmias during simulated global hypoxia (GH) were evaluated. Hypoxia-induced abbreviation of action potential duration (APD) occurred earlier in ventricles from SHRs versus. WKY rats. Apamin, a SK channel blocker, prevented this abbreviation in SHRs in both the early and delayed phase of GH, whereas in WKY rats only the delayed phase was prevented. In contrast, SHRs were less sensitive to glibenclamide, a ATP-sensitive K channel blocker, which inhibited the APD abbreviation in both phases of GH in WKY rats. SK channel blockers (apamin and UCL-1684) reduced the incidence of hypoxia-induced sustained ventricular arrhythmias in SHRs but not in WKY rats. Among three SK channel isoforms, SK2 channels were directly coimmunoprecipitated with CaMKII phosphorylated at Thr (p-CaMKII). We conclude that activation of SK channels leads to the APD abbreviation and sustained ventricular arrhythmias during simulated hypoxia, especially in hypertrophied hearts. This mechanism may result from p-CaMKII-bound SK2 channels and reveal new molecular targets to prevent lethal ventricular arrhythmias during acute hypoxia in cardiac hypertrophy. NEW & NOTEWORTHY We now show a new pathophysiological role of small-conductance Ca-activated K channels, which shorten the action potential duration and induce ventricular arrhythmias during hypoxia. We also demonstrate that small-conductance Ca-activated K channels interact with phosphorylated Ca/calmodulin-dependent protein kinase II at Thr in hypertrophied hearts. 10.1152/ajpheart.00636.2017
Partial bladder outlet obstruction is associated with decreased expression and function of the small-conductance Ca-activated K channel in guinea pig detrusor smooth muscle. Li Ning,He Xiaoning,Li Zizheng,Liu Yili,Wang Ping International urology and nephrology PURPOSE:Partial bladder outlet obstruction (PBOO) usually induces overactive bladder (OAB) associated with detrusor overactivity (DO) which is related to the increased contractility of detrusor smooth muscle (DSM). The pharmacological activation of small-conductance Ca-activated K (SK) channels dramatically attenuates DSM contractility. However, the role of SK channels in the PBOO DSM is less clear. Here, we tested the hypothesis that PBOO is associated with decreased expression and function of SK channels in DSM and that the activation of SK channels is a potential target to regulate DO. METHODS:Two weeks after surgically inducing PBOO in female guinea pigs, cystometry indicated that DO was achieved. Using this animal model, we conducted quantitative reverse transcription-polymerase chain reaction (qRT-PCR) and isometric tension recordings. RESULTS:The qRT-PCR experiments indicated that PBOO DSM had reduced SK channel mRNA expression. Isometric tension recordings showed a decreased inhibitory effect of NS309 on spontaneous phasic and electrical field stimulation-induced contractions via the activation of SK channels in PBOO DSM. CONCLUSIONS:This study presents the novel finding that PBOO is associated with attenuated DSM SK channel expression and function, which results in increased DSM contractility and contributes to DO. Therefore, SK channels could be a therapeutic target to control OAB. 10.1007/s11255-016-1455-0
SK Channels Regulate Resting Properties and Signaling Reliability of a Developing Fast-Spiking Neuron. Zhang Yihui,Huang Hai The Journal of neuroscience : the official journal of the Society for Neuroscience Reliable and precise signal transmission is essential in circuits of the auditory brainstem to encode timing with submillisecond accuracy. Globular bushy cells reliably and faithfully transfer spike signals to the principal neurons of the medial nucleus of the trapezoid body (MNTB) through the giant glutamatergic synapse, the calyx of Held. Thus, the MNTB works as a relay nucleus that preserves the temporal pattern of firing at high frequency. Using whole-cell patch-clamp recordings, we observed a K conductance mediated by small-conductance calcium-activated potassium (SK) channels in the MNTB neurons from rats of either sex. SK channels were activated by intracellular Ca sparks and mediated spontaneous transient outward currents in developing MNTB neurons. SK channels were also activated by Ca influx through voltage-gated Ca channels and synaptically activated NMDA receptors. Blocking SK channels with apamin depolarized the resting membrane potential, reduced resting conductance, and affected the responsiveness of MNTB neurons to signal inputs. Moreover, SK channels were activated by action potentials and affected the spike afterhyperpolarization. Blocking SK channels disrupted the one-to-one signal transmission from presynaptic calyces to postsynaptic MNTB neurons and induced extra postsynaptic action potentials in response to presynaptic firing. These data reveal that SK channels play crucial roles in regulating the resting properties and maintaining reliable signal transmission of MNTB neurons. Reliable and precise signal transmission is required in auditory brainstem circuits to localize the sound source. The calyx of Held synapse in the mammalian medial nucleus of the trapezoid body (MNTB) plays an important role in sound localization. We investigated the potassium channels that shape the reliability of signal transfer across the calyceal synapse and observed a potassium conductance mediated by small-conductance calcium-activated potassium (SK) channels in rat MNTB principal neurons. We found that SK channels are tonically activated and contribute to the resting membrane properties of MNTB neurons. Interestingly, SK channels are transiently activated by calcium sparks and calcium influx during action potentials and control the one-to-one signal transmission from presynaptic calyces to postsynaptic MNTB neurons. 10.1523/JNEUROSCI.1243-17.2017
Transient Activation of GABAB Receptors Suppresses SK Channel Currents in Substantia Nigra Pars Compacta Dopaminergic Neurons. PloS one Dopaminergic (DA) neurons in the substantia nigra pars compacta (SNc) are richly innervated by GABAergic neurons. The postsynaptic effects of GABA on SNc DA neurons are mediated by a mixture of GABAA and GABAB receptors. Although activation of GABAA receptors inhibits spike generation, the consequences of GABAB receptor activation are less well characterized. To help fill this gap, perforated patch recordings were made from young adult mouse SNc DA neurons. Sustained stimulation of GABAB receptors hyperpolarized SNc DA neurons, as previously described. However, transient stimulation of GABAB receptors by optical uncaging of GABA did not; rather, it reduced the opening of small-conductance, calcium-activated K+ (SK) channels and increased the irregularity of spiking. This modulation was attributable to inhibition of adenylyl cyclase and protein kinase A. Thus, because suppression of SK channel activity increases the probability of burst spiking, transient co-activation of GABAA and GABAB receptors could promote a pause-burst pattern of spiking. 10.1371/journal.pone.0169044
Contribution of Somatic and Dendritic SK Channels in the Firing Rate of Deep Cerebellar Nuclei: Implication in Cerebellar Ataxia. Abbasi Samira,Abbasi Ataollah,Sarbaz Yashar,Shahabi Parviz Basic and clinical neuroscience INTRODUCTION:Loss of inhibitory output from Purkinje cells leads to hyperexcitability of the Deep Cerebellar Nuclei (DCN), which results in cerebellar ataxia. Also, inhibition of small-conductance calcium-activated potassium (SK) channel increases firing rate of DCN, which could cause cerebellar ataxia. Therefore, SK channel activators can be effective in reducing the symptoms of this disease, and used for the treatment of cerebellar ataxia. In this regard, we hypothesized that blockade of SK channels in different compartments of DCN would increase firing rate with different value. The location of these channels has different effects on increasing firing rate. METHODS:In this study, multi-compartment computational model of DCN was used. This computational stimulation allowed us to study the changes in the firing activity of DCN neuron without concerns about interfering parameters in the experiment. RESULTS:The simulation results demonstrated that blockade of somatic and dendritic SK channel increased the firing rate of DCN. In addition, after hyperpolarization (AHP) amplitude increased with blocking SK channel, and its regularity and resting potential changed. However, action potentials amplitude and duration had no significant changes. The simulation results illustrated a more significant contribution of SK channels on the dendritic tree to the DCN firing rate. SK channels in the proximal dendrites have more impact on firing rate compared to distal dendrites. DISCUSSION:Therefore, inhibition of SK channel in DCN can cause cerebellar ataxia, and SK channel openers can have a therapeutic effect on cerebellar ataxia. In addition, the location of SK channels could be important in therapeutic goals. Dendritic SK channels can be a more effective target compared to somatic SK channels.
Selective activation of heteromeric SK channels contributes to action potential repolarization in mouse atrial myocytes. Hancock Jane M,Weatherall Kate L,Choisy Stéphanie C,James Andrew F,Hancox Jules C,Marrion Neil V Heart rhythm BACKGROUND:Activation of small conductance calcium-activated potassium (SK) channels is proposed to contribute to repolarization of the action potential in atrial myocytes. This role is controversial, as these cardiac SK channels appear to exhibit an uncharacteristic pharmacology. OBJECTIVES:The objectives of this study were to resolve whether activation of SK channels contributes to atrial action potential repolarization and to determine the likely subunit composition of the channel. METHODS:The effect of 2 SK channel inhibitors was assessed on outward current evoked in voltage clamp and on action potential duration in perforated patch and whole-cell current clamp recording from acutely isolated mouse atrial myocytes. The presence of SK channel subunits was assessed using immunocytochemistry. RESULTS:A significant component of outward current was reduced by the SK channel blockers apamin and UCL1684. Block by apamin displayed a sensitivity indicating that this current was carried by homomeric SK2 channels. Action potential duration was significantly prolonged by UCL1684, but not by apamin. This effect was accompanied by an increase in beat-to-beat variability and action potential triangulation. This pharmacology was matched by that of expressed heteromeric SK2-SK3 channels in HEK293 cells. Immunocytochemistry showed that atrial myocytes express both SK2 and SK3 channels with an overlapping expression pattern. CONCLUSION:Only proposed heteromeric SK2-SK3 channels are physiologically activated to contribute to action potential repolarization, which is indicated by the difference in pharmacology of evoked outward current and prolongation of atrial action potential duration. The effect of blocking this channel on the action potential suggests that SK channel inhibition during cardiac function has the potential to be proarrhythmic. 10.1016/j.hrthm.2015.01.027
Attenuated regulatory function of the small-conductance Ca-activated K channel in detrusor smooth muscle cells excitability in an obese rat model. Hou Jun,He Ren,Li Ning,Liu Yili,Wang Ping International urology and nephrology PURPOSE:Overactive bladder (OAB) is related to detrusor overactivity (DO), which is caused by the increased detrusor smooth muscle (DSM) cells excitability. Small-conductance Ca-activated K (SK) channels is a fundamental regulator of excitability and contractility in DSM cells. Obesity-related OAB is associated with the decreased expression and regulatory function of SK channels in DSM layer. However, the regulation role of SK channels in obesity-related OAB DSM cell excitability is still unknown. Here, we tested the hypothesis that obesity-related OAB is associated with reduced expression and activity of SK channels in DSM cells. METHODS:Female Sprague-Dawley rats were fed a normal diet (ND) or a high-fat diet (HFD) and weighed after 12 weeks. We performed urodynamic study, single-cell quantitative reverse transcription-polymerase chain reaction (qRT-PCR), and patch-clamp electrophysiology. RESULTS:Increased average body weights and urodynamically demonstrated OAB were observed in HFD rats. Single-cell qRT-PCR experiments discovered the decreased mRNA expression level of SK channel in DSM cell from HFD rats. Patch-clamp studies revealed that NS309, a SK channel activator, had an attenuated effect on membrane potential hyperpolarization in HFD DSM cells. In addition, the reduced whole cell SK channel currents were recorded in HFD DSM cells. CONCLUSIONS:Attenuated SK channels expression and function, which results in the increased DSM cells excitability and contributes to DO, is discovered in obesity-related OAB DSM cells, suggesting that SK channels might be potential therapeutic targets to control OAB. 10.1007/s11255-020-02487-x
Low-level vagus nerve stimulation upregulates small conductance calcium-activated potassium channels in the stellate ganglion. Shen Mark J,Hao-Che Chang ,Park Hyung-Wook,George Akingba A,Chang Po-Cheng,Zheng Zhang ,Lin Shien-Fong,Shen Changyu,Chen Lan S,Chen Zhenhui,Fishbein Michael C,Chiamvimonvat Nipavan,Chen Peng-Sheng Heart rhythm BACKGROUND:Small conductance calcium-activated potassium (SK) channels are responsible for afterhyperpolarization that suppresses nerve discharges. OBJECTIVES:To test the hypothesis that low-level vagus nerve stimulation (LL-VNS) leads to the upregulation of SK2 proteins in the left stellate ganglion. METHODS:Six dogs (group 1) underwent 1-week LL-VNS of the left cervical vagus nerve. Five normal dogs (group 2) were used as controls. SK2 protein levels were examined by using Western blotting. The ratio between SK2 and glyceraldehydes-3-phosphate-dehydrogenase levels was used as an arbitrary unit (AU). RESULTS:We found higher SK2 expression in group 1 (0.124 ± 0.049 AU) than in group 2 (0.085 ± 0.031 AU; P<.05). Immunostaining showed that the density of nerve structures stained with SK2 antibody was also higher in group 1 (11,546 ± 7,271 μm(2)/mm(2)) than in group 2 (5321 ± 3164 μm(2)/mm(2); P<.05). There were significantly more ganglion cells without immunoreactivity to tyrosine hydroxylase (TH) in group 1 (11.4%±2.3%) than in group 2 (4.9% ± 0.7%; P<.05). The TH-negative ganglion cells mostly stained positive for choline acetyltransferase (95.9% ± 2.8% in group 1 and 86.1% ± 4.4% in group 2; P = .10). Immunofluorescence confocal microscopy revealed a significant decrease in the SK2 staining in the cytosol but an increase in the SK2 staining on the membrane of the ganglion cells in group 1 compared to group 2. CONCLUSIONS:Left LL-VNS results in the upregulation of SK2 proteins, increased SK2 protein expression in the cell membrane, and increased TH-negative (mostly choline acetyltransferase-positive) ganglion cells in the left stellate ganglion. These changes may underlie the antiarrhythmic efficacy of LL-VNS in ambulatory dogs. 10.1016/j.hrthm.2013.01.029
Assessing evidence for adaptive evolution in two hearing-related genes important for high-frequency hearing in echolocating mammals. G3 (Bethesda, Md.) High-frequency hearing is particularly important for echolocating bats and toothed whales. Previously, studies of the hearing-related genes Prestin, KCNQ4, and TMC1 documented that adaptive evolution of high-frequency hearing has taken place in echolocating bats and toothed whales. In this study, we present two additional candidate hearing-related genes, Shh and SK2, that may also have contributed to the evolution of echolocation in mammals. Shh is a member of the vertebrate Hedgehog gene family and is required in the specification of the mammalian cochlea. SK2 is expressed in both inner and outer hair cells, and it plays an important role in the auditory system. The coding region sequences of Shh and SK2 were obtained from a wide range of mammals with and without echolocating ability. The topologies of phylogenetic trees constructed using Shh and SK2 were different; however, multiple molecular evolutionary analyses showed that those two genes experienced different selective pressures in echolocating bats and toothed whales compared to nonecholocating mammals. In addition, several nominally significant positively selected sites were detected in the nonfunctional domain of the SK2 gene, indicating that different selective pressures were acting on different parts of the SK2 gene. This study has expanded our knowledge of the adaptive evolution of high-frequency hearing in echolocating mammals. 10.1093/g3journal/jkab069
[Effects of intracellular calcium alteration on SK currents in atrial cardiomyocytes from patients with atrial fibrillation]. Wang Hua,Li Tao,Zhang Li,Yang Yan,Zeng Xiao-Rong Zhongguo ying yong sheng li xue za zhi = Zhongguo yingyong shenglixue zazhi = Chinese journal of applied physiology OBJECTIVE:SK channels are existed in hearts of mouse, rat, and human. Biochemical evidence indicates that SK2 channels are expressed more in atrial than in ventricular tissue. SK channels are highly sensitive to the calcium concentration of the pipette solution. In the present study, performed whole-cell patch clamp was used to detect the calcium sensitivity of small conductance Ca(2+)-activated K+ channels (SK) currents between sinus ryhthm (SR) and auricular fibrillation (AF). METHODS:The patients who accepted cardiopulmonary bypass were divided into two groups: 21 patients with SR and 8 patients with AF. The enzymatic dissociation method was improved according to the previous research by our lab. The performed whole cell patch-clamp technique was used to record SK2 currents in both SR and AF groups at room temperature. RESULTS:The SK2 current density was (-2.92 +/- 0.35) pA/pF in SR group (n = 6) vs (-6.83 +/- 0.19) pA/pF in AF group at -130 mV (n = 3, P < 0.05). In SR group, the SK2 current densities in calcium concentration of the pipette solution are (-1.43 +/- 0.33) pA/pF (n = 7), (-2.92 +/- 0.35) pA/pF (n = 6), (-10.11 +/- 2.15) pA/pF (n = 8, P < 0.05); In AF group, the SK2 current densities are (-2.17 +/- 0.40) pA/pF (n = 4), (-6.83 +/- 0.19) pA/pF (n = 3), (-14.47 +/- 2.89 pA/pF) (n = 4, P < 0.05). CONCLUSION:The SK2 currents recorded in this experiment are voltage-independent, inwardly rectifying and apamin-sensitive. When the calcium concentration of the pipette solution is 5 x 10(-7) mol/L, SK2 current density in AF group are significantly larger than those in SR group. It suggests that SK currents involve the cardiomyocytes electric remodeling in AF. In AF group, the SK2 currents are more sensitive to free calcium ion. It shows that the increased sensitivity of SK2 currents to the calcium contribute to the occurrence and maintenance of AF.
Small-conductance Ca2+-activated potassium type 2 channels regulate the formation of contextual fear memory. Murthy Saravana R K,Sherrin Tessi,Jansen Chad,Nijholt Ingrid,Robles Michael,Dolga Amalia M,Andreotti Nicolas,Sabatier Jean-Marc,Knaus Hans-Guenther,Penner Reinhold,Todorovic Cedomir,Blank Thomas PloS one Small-conductance, Ca2+ activated K+ channels (SK channels) are expressed at high levels in brain regions responsible for learning and memory. In the current study we characterized the contribution of SK2 channels to synaptic plasticity and to different phases of hippocampal memory formation. Selective SK2 antisense-treatment facilitated basal synaptic transmission and theta-burst induced LTP in hippocampal brain slices. Using the selective SK2 antagonist Lei-Dab7 or SK2 antisense probes, we found that hippocampal SK2 channels are critical during two different time windows: 1) blockade of SK2 channels before the training impaired fear memory, whereas, 2) blockade of SK2 channels immediately after the training enhanced contextual fear memory. We provided the evidence that the post-training cleavage of the SK2 channels was responsible for the observed bidirectional effect of SK2 channel blockade on memory consolidation. Thus, Lei-Dab7-injection before training impaired the C-terminal cleavage of SK2 channels, while Lei-Dab7 given immediately after training facilitated the C-terminal cleavage. Application of the synthetic peptide comprising a leucine-zipper domain of the C-terminal fragment to Jurkat cells impaired SK2 channel-mediated currents, indicating that the endogenously cleaved fragment might exert its effects on memory formation by blocking SK2 channel-mediated currents. Our present findings suggest that SK2 channel proteins contribute to synaptic plasticity and memory not only as ion channels but also by additionally generating a SK2 C-terminal fragment, involved in both processes. The modulation of fear memory by down-regulating SK2 C-terminal cleavage might have applicability in the treatment of anxiety disorders in which fear conditioning is enhanced. 10.1371/journal.pone.0127264
Selective positive modulation of the SK3 and SK2 subtypes of small conductance Ca2+-activated K+ channels. Hougaard C,Eriksen B L,Jørgensen S,Johansen T H,Dyhring T,Madsen L S,Strøbaek D,Christophersen P British journal of pharmacology BACKGROUND AND PURPOSE:Positive modulators of small conductance Ca(2+)-activated K(+) channels (SK1, SK2, and SK3) exert hyperpolarizing effects that influence the activity of excitable and non-excitable cells. The prototype compound 1-EBIO or the more potent compound NS309, do not distinguish between the SK subtypes and they also activate the related intermediate conductance Ca(2+)-activated K(+) channel (IK). This paper demonstrates, for the first time, subtype-selective positive modulation of SK channels. EXPERIMENTAL APPROACH:Using patch clamp and fluorescence techniques we studied the effect of the compound cyclohexyl-[2-(3,5-dimethyl-pyrazol-1-yl)-6-methyl-pyrimidin-4-yl]-amine (CyPPA) on recombinant hSK1-3 and hIK channels expressed in HEK293 cells. CyPPA was also tested on SK3 and IK channels endogenously expressed in TE671 and HeLa cells. KEY RESULTS:CyPPA was found to be a positive modulator of hSK3 (EC(50) = 5.6 +/- 1.6 microM, efficacy 90 +/- 1.8 %) and hSK2 (EC(50) = 14 +/- 4 microM, efficacy 71 +/- 1.8 %) when measured in inside-out patch clamp experiments. CyPPA was inactive on both hSK1 and hIK channels. At hSK3 channels, CyPPA induced a concentration-dependent increase in the apparent Ca(2+)-sensitivity of channel activation, changing the EC(50)(Ca(2+)) from 429 nM to 59 nM. CONCLUSIONS AND IMPLICATIONS:As a pharmacological tool, CyPPA may be used in parallel with the IK/SK openers 1-EBIO and NS309 to distinguish SK3/SK2- from SK1/IK-mediated pharmacological responses. This is important for the SK2 and SK1 subtypes, since they have overlapping expression patterns in the neocortical and hippocampal regions, and for SK3 and IK channels, since they co-express in certain peripheral tissues. 10.1038/sj.bjp.0707281
Distribution of Ca2+-activated K channels, SK2 and SK3, in the normal and Hirschsprung's disease bowel. Piotrowska Anna Piaseczna,Solari Valeria,Puri Prem Journal of pediatric surgery PURPOSE:The aim of this study was to investigate the expression and distribution of SK2 and SK3 channels in the normal and Hirschsprung's disease (HD) bowel. METHODS:Full-thickness colonic specimens were collected at pull-through operation from 10 patients with HD and from 6 patients during bladder augmentation. Reverse transcriptase-polymerase chain reaction (RT-PCR) analysis for SK2 and SK3 channels and double immunostaining using anti SK2/c-kit, SK3/c-kit, SK2/alpha-SMA, and SK2/PGP 9,5 antibodies was performed. Immunolocalization was detected using laser scanning microscopy. RESULTS:RT-PCR analysis showed strong expression of SK2 and SK3 mRNA in the normal human bowel and significantly reduced SK3 expression in the aganglionic bowel (P <.05). In the normal colon, double labeling immunohistochemistry showed strong SK3 immunoreactivity (IR) colocalizing in the c-kit-positive ICCs. In the aganglionic bowel, SK3 IR was reduced markedly in the sparsely found ICCs. There was strong SK2 IR mainly in smooth muscles in the normal and aganglionic bowel. CONCLUSIONS:The results of this study provide the first evidence for the presence of SK2 and SK3 channels and for the immunocolocalization of SK3 channels in the ICCs in the normal human colon. Decreased expression SK3 channels in the aganglionic bowel may contribute to motility dysfunction in HD. 10.1016/s0022-3468(03)00138-6
Small-Conductance Ca-Activated K Channels 2 in the Hypothalamic Paraventricular Nucleus Precipitates Visceral Hypersensitivity Induced by Neonatal Colorectal Distension in Rats. Ji Ning-Ning,Du Lei,Wang Ying,Wu Ke,Chen Zi-Yang,Hua Rong,Zhang Yong-Mei Frontiers in pharmacology Visceral hypersensitivity is one of the pivotal pathophysiological features of visceral pain in irritable bowel syndrome (IBS). Small-conductance Ca-activated K channel (SK) is critical for a variety of functions in the central nervous system (CNS), nonetheless, whether it is involved in the pathogenesis of visceral hypersensitivity remain elusive. In this study, we examined mechanism of SK2 in hypothalamic paraventricular nucleus (PVN) in the pathogenesis of visceral hypersensitivity induced by neonatal colorectal distension (CRD). Rats undergoing neonatal CRD presented with visceral hypersensitivity as well as downregulated membrane SK2 channel and p-PKA. Intra-PVN administration of either the membrane protein transport inhibitor dynasore or the SK2 activator 1-EBIO upregulated the expression of membrane SK2 in PVN and mitigated visceral hypersensitivity. In addition, 1-EBIO administration reversed the increase in neuronal firing rates in PVN in rats undergoing neonatal CRD. On the contrary, intra-PVN administration of either the SK2 inhibitor apamin or PKA activator 8-Br-cAMP exacerbated the visceral hypersensitivity. Taken together, these findings demonstrated that visceral hypersensitivity is related to the downregulation of membrane SK2 in PVN, which may be attributed to the activation of PKA; pharmacologic activation of SK2 alleviated visceral hypersensitivity, which brings prospect of SK2 activators as a new intervention for visceral pain. 10.3389/fphar.2020.605618
Behavioral effects of a deletion in Kcnn2, the gene encoding the SK2 subunit of small-conductance Ca2+-activated K+ channels. Szatanik Marek,Vibert Nicolas,Vassias Isabelle,Guénet Jean-Louis,Eugène Daniel,de Waele Catherine,Jaubert Jean Neurogenetics Small-conductance Ca(2+)-activated potassium (SK) channels are heteromeric complexes of SK alpha-subunits and calmodulin that modulate membrane excitability, are responsible for part of the after-hyperpolarization (AHP) following action potentials, and thus control the firing patterns and excitability of most central neurons. An engineered knockout allele for the SK2 subunit has previously been reported. The hippocampal neurons of these mice lacked the medium latency component of the AHP, but the animals were not described as presenting any overt behavioral phenotype. In this report, we describe a deletion in the 5' region of the Kcnn2 gene encoding the SK2 subunit in the mouse neurological frissonnant (fri) mutant. The frissonnant mutant phenotype is characterized by constant rapid tremor and locomotor instability. It has been suggested, based merely on its phenotype, as a potential model for human Parkinson disease. We used a positional cloning strategy to identify the mutation underlying the frissonnant phenotype. We narrowed the genetic disease interval and identified a 3,441-bp deletion in the Kcnn2 gene, one of the three candidate genes present in the interval. Expression studies showed complete absence of normal Kcnn2 transcripts while some tissue-specific abnormal truncated variants were detected. Intracellular electrophysiological recordings of central vestibular neurons revealed permanent alterations of the AHP and firing behavior that might cause the tremor and associated locomotor deficits. Thus, the fri mutation suggests a new, potentially important physiological role, which had not been described, for the SK2 subunit of small-conductance Ca(2+)-activated potassium channels. 10.1007/s10048-008-0136-2
Genetic deletion of SK2 channels in mouse inner hair cells prevents the developmental linearization in the Ca2+ dependence of exocytosis. Johnson Stuart L,Adelman John P,Marcotti Walter The Journal of physiology Inner hair cells (IHCs), the primary sensory receptors of the mammalian cochlea, fire spontaneous Ca(2+) action potentials (APs) only before the onset of hearing. Although a role for APs in the developing auditory system has not been determined it could, by analogy with other sensory systems, guide the functional maturation of the cochlea before experience-driven activity begins. Spontaneous APs in immature IHCs are shaped by a variety of ion channels including that of the small conductance Ca(2+)-activated K(+) current (SK2), which is only transiently expressed in immature cells. Using SK2 knockout mice we found that SK2 channels are not required for generating APs but are essential for sustaining continuous repetitive spontaneous AP activity in pre-hearing IHCs. Therefore we used this mutant mouse as a model to study possible developmental implications of disrupted AP activity. Immature mutant IHCs showed impaired exocytotic responses, which are likely to be due to the expression of fewer Ca(2+) channels. Exocytosis was also impaired in adult mutant IHCs, although in this case it resulted from a reduced Ca(2+) efficiency and increased Ca(2+) dependence of the synaptic machinery. Since SK2 channels can only have a functional influence on IHCs during immature development and are not directly involved in neurotransmitter release, the altered Ca(2+) dependence of exocytosis in adult IHCs is likely to be a consequence of their disrupted AP activity at immature stages. 10.1113/jphysiol.2007.136630
Increasing SK2 channel activity impairs associative learning. McKay Bridget M,Oh M Matthew,Galvez Roberto,Burgdorf Jeffrey,Kroes Roger A,Weiss Craig,Adelman John P,Moskal Joseph R,Disterhoft John F Journal of neurophysiology Enhanced intrinsic neuronal excitability of hippocampal pyramidal neurons via reductions in the postburst afterhyperpolarization (AHP) has been hypothesized to be a biomarker of successful learning. This is supported by considerable evidence that pharmacologic enhancement of neuronal excitability facilitates learning. However, it has yet to be demonstrated that pharmacologic reduction of neuronal excitability restricted to the hippocampus can retard acquisition of a hippocampus-dependent task. Thus, the present study was designed to address this latter point using a small conductance potassium (SK) channel activator NS309 focally applied to the dorsal hippocampus. SK channels are important contributors to intrinsic excitability, as measured by the medium postburst AHP. NS309 increased the medium AHP and reduced excitatory postsynaptic potential width of CA1 neurons in vitro. In vivo, NS309 reduced the spontaneous firing rate of CA1 pyramidal neurons and impaired trace eyeblink conditioning in rats. Conversely, trace eyeblink conditioning reduced levels of SK2 channel mRNA and protein in the hippocampus. Therefore, the present findings indicate that modulation of SK channels is an important cellular mechanism for associative learning and further support postburst AHP reductions in hippocampal pyramidal neurons as a biomarker of successful learning. 10.1152/jn.00025.2012
Early electrical remodeling in rabbit pulmonary vein results from trafficking of intracellular SK2 channels to membrane sites. Ozgen Nazira,Dun Wen,Sosunov Eugene A,Anyukhovsky Evgeny P,Hirose Masanori,Duffy Heather S,Boyden Penelope A,Rosen Michael R Cardiovascular research OBJECTIVE:Atrial fibrillation is often initiated by bursts of ectopic activity arising in the pulmonary veins. We have previously shown that a 3-h intermittent burst pacing protocol (BPP), mimicking ectopic pulmonary vein foci, shortens action potential duration (APD) locally at the pulmonary vein-atrial interface (PV) while having no effect elsewhere in rabbit atrium. This shortening is Ca(2+) dependent and is prevented by apamin, which blocks small conductance Ca(2+)-activated K(+) channels (SK(Ca)). The present study investigates the ionic and molecular mechanisms whereby two apamin-sensitive SK(Ca) channels, SK2 and SK3, might contribute to the regional APD changes. METHODS:Microelectrode and patch clamp techniques were used to record APDs and apamin-sensitive currents in isolated rabbit left atria and cells dispersed from PV and Bachmann's bundle (BB) regions. SK2 and SK3 mRNA and protein levels were quantified, and immunofluorescence was used to observe channel protein distribution. RESULTS:There was a direct relationship between APD shortening and apamin-sensitive current in burst-paced but not sham-paced PV. Moreover, apamin-sensitive current density increased in PV but not BB after BPP. SK2 mRNA, protein, and current were increased in PV after BPP, while SK2 immunostaining shifted from a perinuclear pattern in sham atria to predominance at sites near or at the PV membrane. CONCLUSIONS:BPP-induced acceleration of repolarization in PV results from SK2 channel trafficking to the membrane, leading to increased apamin-sensitive outward current. This is the first indication of involvement of Ca(2+)-activated K(+) currents in atrial remodeling and provides a possible basis for evolution of an arrhythmogenic substrate. 10.1016/j.cardiores.2007.05.008
Decreased expression of small-conductance Ca2+-activated K+ channels SK1 and SK2 in human chronic atrial fibrillation. Yu Tao,Deng Chunyu,Wu Ruobin,Guo Huiming,Zheng Shaoyi,Yu Xiyong,Shan Zhixin,Kuang Sujuan,Lin Qiuxiong Life sciences AIMS:Small-conductance Ca2+-activated K+ (SK) channels are recognized as new ion channel candidates in atrial fibrillation (AF), with pivotal implications as novel drug targets due to their atrial-selective distribution in humans. The purpose of this study was to investigate whether SK channels and the Ca2+-activated K+ current (IK,Ca) are involved in electrical remodeling of human chronic AF (cAF) and whether they display the differential distribution between the right (RA) and left atria (LA). MAIN METHODS:The right (RAA) and left atrial appendage (LAA) myocytes were obtained from 29 sinus rhythm (SR) and 22 cAF patients. The IK,Ca and action potential (AP) were recorded using the patch-clamp technique. Three SK channel subtypes (SK1-3) expressions were assayed by western blot and real-time quantitative PCR analysis. KEY FINDINGS:The IK,Ca was decreased and its role in AP repolarization was attenuated in cAF, concomitant with a significant decrease in protein and mRNA levels of SK1 and SK2. In either SR or cAF, there was no difference in the IK,Ca density and protein and mRNA expression levels of SK1-3 between RAA and LAA myocytes. SIGNIFICANCE:Our results demonstrated that SK1 and SK2 are involved in electrical remodeling of cAF. SK1-3 and IK,Ca do not display the inter-atrial differential distribution in SR or cAF. These findings provide a new insight into mechanisms of electrical remodeling of human cAF. 10.1016/j.lfs.2011.11.008
SK2 channel modulation contributes to compartment-specific dendritic plasticity in cerebellar Purkinje cells. Ohtsuki Gen,Piochon Claire,Adelman John P,Hansel Christian Neuron Small-conductance Ca(2+)-activated K(+) channels (SK channels) modulate excitability and curtail excitatory postsynaptic potentials (EPSPs) in neuronal dendrites. Here, we demonstrate long-lasting plasticity of intrinsic excitability (IE) in dendrites that results from changes in the gain of this regulatory mechanism. Using dendritic patch-clamp recordings from rat cerebellar Purkinje cells, we find that somatic depolarization or parallel fiber (PF) burst stimulation induce long-term amplification of synaptic responses to climbing fiber (CF) or PF stimulation and enhance the amplitude of passively propagated sodium spikes. Dendritic plasticity is mimicked and occluded by the SK channel blocker apamin and is absent in Purkinje cells from SK2 null mice. Triple-patch recordings from two dendritic sites and the soma and confocal calcium imaging studies show that local stimulation limits dendritic plasticity to the activated compartment of the dendrite. This plasticity mechanism allows Purkinje cells to adjust the SK2-mediated control of dendritic excitability in an activity-dependent manner. 10.1016/j.neuron.2012.05.025
Contextual memory deficits observed in mice overexpressing small conductance Ca2+-activated K+ type 2 (KCa2.2, SK2) channels are caused by an encoding deficit. Stackman Robert W,Bond Chris T,Adelman John P Learning & memory (Cold Spring Harbor, N.Y.) Hippocampal-dependent synaptic plasticity and memory are modulated by apamin-sensitive small conductance Ca2+-activated K+ (SK) channels. Transgenic mice overexpressing SK2 channels (SK2+/T mice) exhibit marked deficits in hippocampal memory and synaptic plasticity, as previously reported. Here, we examined whether SK2 overexpression affects the encoding or retention of contextual memory. Compared with wild-type littermates, SK2+/T mice exhibited significantly less context-dependent freezing 10 min and 24 h after conditioning. Interestingly, this contextual memory impairment was eliminated if SK2+/T mice were permitted longer pre-exposure to the conditioning chamber. These data support converging evidence that SK2 channels restrict the encoding of hippocampal memory. 10.1101/lm.906808
SK2 potassium channel overexpression in basolateral amygdala reduces anxiety, stress-induced corticosterone secretion and dendritic arborization. Mitra R,Ferguson D,Sapolsky R M Molecular psychiatry The basolateral amygdala is critical for generation of anxiety. In addition, exposure to both stress and glucocorticoids induces anxiety. Demonstrated ability of the amygdala to change in response to stress and glucocorticoids could thus be important therapeutic target for anxiety management. Several studies have reported a relationship between anxiety and dendritic arborization of the amygdaloid neurons. In this study we employed a gene therapeutic approach to reduce anxiety and dendritic arborization of the amygdala neurons. Specifically, we overexpressed SK2 potassium channel in the basolateral amygdala using a herpes simplex viral system. Our choice of therapeutic cargo was guided by the indications that activation of the amygdala might underlie anxiety and that SK2 could reduce neuronal activation by exerting inhibitory influence on action potentials. We report that SK2 overexpression reduced anxiety and stress-induced corticosterone secretion at a systemic level. SK2 overexpression also reduced dendritic arborization of the amygdala neurons. Hence, SK2 is a potential gene therapy candidate molecule that can be used against stress-related neuropsychiatric disorders such as anxiety. 10.1038/mp.2009.9
Ablation of a Ca2+-activated K+ channel (SK2 channel) results in action potential prolongation in atrial myocytes and atrial fibrillation. Li Ning,Timofeyev Valeriy,Tuteja Dipika,Xu Danyan,Lu Ling,Zhang Qian,Zhang Zhao,Singapuri Anil,Albert Trevine R,Rajagopal Amutha V,Bond Chris T,Periasamy Muthu,Adelman John,Chiamvimonvat Nipavan The Journal of physiology Small conductance Ca(2+)-activated K(+) channels (SK channels) have been reported in excitable cells, where they aid in integrating changes in intracellular Ca(2+) (Ca(2+)(i)) with membrane potential. We have recently reported the functional existence of SK2 channels in human and mouse cardiac myocytes. Moreover, we have found that the channel is predominantly expressed in atria compared to the ventricular myocytes. We hypothesize that knockout of SK2 channels may be sufficient to disrupt the intricate balance of the inward and outward currents during repolarization in atrial myocytes. We further predict that knockout of SK2 channels may predispose the atria to tachy-arrhythmias due to the fact that the late phase of the cardiac action potential is highly susceptible to aberrant excitation. We take advantage of a mouse model with genetic knockout of the SK2 channel gene. In vivo and in vitro electrophysiological studies were performed to probe the functional roles of SK2 channels in the heart. Whole-cell patch-clamp techniques show a significant prolongation of the action potential duration prominently in late cardiac repolarization in atrial myocytes from the heterozygous and homozygous null mutant animals. Moreover, in vivo electrophysiological recordings show inducible atrial fibrillation in the null mutant mice but not wild-type animals. No ventricular arrhythmias are detected in the null mutant mice or wild-type animals. In summary, our data support the important functional roles of SK2 channels in cardiac repolarization in atrial myocytes. Genetic knockout of the SK2 channels results in the delay in cardiac repolarization and atrial arrhythmias. 10.1113/jphysiol.2008.167718
Upregulated SK2 Expression and Impaired CaMKII Phosphorylation Are Shared Synaptic Defects Between 16p11.2del and 129S: Mutant Mice. ASN neuro 10.1177/1759091418817641
SK2 and SK3 expression differentially affect firing frequency and precision in dopamine neurons. Deignan J,Luján R,Bond C,Riegel A,Watanabe M,Williams J T,Maylie J,Adelman J P Neuroscience The firing properties of dopamine (DA) neurons in the substantia nigra (SN) pars compacta are strongly influenced by the activity of apamin-sensitive small conductance Ca(2+)-activated K(+) (SK) channels. Of the three SK channel genes expressed in central neurons, only SK3 expression has been identified in DA neurons. The present findings show that SK2 was also expressed in DA neurons. Immuno-electron microscopy (iEM) showed that SK2 was primarily expressed in the distal dendrites, while SK3 was heavily expressed in the soma and, to a lesser extent, throughout the dendritic arbor. Electrophysiological recordings of the effects of the SK channel blocker apamin on DA neurons from wild type and SK(-/-) mice show that SK2-containing channels contributed to the precision of action potential (AP) timing, while SK3-containing channels influenced AP frequency. The expression of SK2 in DA neurons may endow distinct signaling and subcellular localization to SK2-containing channels. 10.1016/j.neuroscience.2012.04.053
Sustaining sleep spindles through enhanced SK2-channel activity consolidates sleep and elevates arousal threshold. Wimmer Ralf D,Astori Simone,Bond Chris T,Rovó Zita,Chatton Jean-Yves,Adelman John P,Franken Paul,Lüthi Anita The Journal of neuroscience : the official journal of the Society for Neuroscience Sleep spindles are synchronized 11-15 Hz electroencephalographic (EEG) oscillations predominant during nonrapid-eye-movement sleep (NREMS). Rhythmic bursting in the reticular thalamic nucleus (nRt), arising from interplay between Ca(v)3.3-type Ca(2+) channels and Ca(2+)-dependent small-conductance-type 2 (SK2) K(+) channels, underlies spindle generation. Correlative evidence indicates that spindles contribute to memory consolidation and protection against environmental noise in human NREMS. Here, we describe a molecular mechanism through which spindle power is selectively extended and we probed the actions of intensified spindling in the naturally sleeping mouse. Using electrophysiological recordings in acute brain slices from SK2 channel-overexpressing (SK2-OE) mice, we found that nRt bursting was potentiated and thalamic circuit oscillations were prolonged. Moreover, nRt cells showed greater resilience to transit from burst to tonic discharge in response to gradual depolarization, mimicking transitions out of NREMS. Compared with wild-type littermates, chronic EEG recordings of SK2-OE mice contained less fragmented NREMS, while the NREMS EEG power spectrum was conserved. Furthermore, EEG spindle activity was prolonged at NREMS exit. Finally, when exposed to white noise, SK2-OE mice needed stronger stimuli to arouse. Increased nRt bursting thus strengthens spindles and improves sleep quality through mechanisms independent of EEG slow waves (<4 Hz), suggesting SK2 signaling as a new potential therapeutic target for sleep disorders and for neuropsychiatric diseases accompanied by weakened sleep spindles. 10.1523/JNEUROSCI.2313-12.2012
[Increased small conductance calcium-activated potassium channel (SK2 channel) current in atrial myocytes of patients with persistent atrial fibrillation]. Li Miao-ling,Li Tao,Lei Ming,Tan Xiao-qiu,Yang Yan,Liu Tai-peng,Pei Jie,Zeng Xiao-rong Zhonghua xin xue guan bing za zhi OBJECTIVE:To compare the amplitude of the SK2 current (small conductance calcium-activated potassium channel) in human atrial myocytes with or without persistent atrial fibrillation (AF). METHODS:Right atrial appendage was obtained from 15 patients with sinus rate (SR) and 7 patients with AF underwent surgical valve replacement. Single myocyte was isolated by enzymatic dissociation method and the SK2 channel current density was recorded using whole-cell patch clamp techniques to detect the changes. Immunofluorescence was used to observe SK2 channel protein distribution on right atrial appendage. RESULTS:Using the whole cell patch-clamp recording techniques, an inward rectifier K(+) mix currents could be obtained from both SR (n = 15) and AF (n = 7) samples, I(K1) mix currents density in single myocyte of AF group was significantly increased than in SR group [(-16.42 ± 5.32) pA/pF vs (-6.59 ± 2.24) pA/pF, P < 0.01], which could be partially inhibited by apamin (100 nmol/L). The apamin-sensitive current was obtained by subtraction of the currents before and after treatment with apamin. SK2 current density was significantly increased in AF group than that of SR group [(-9.81 ± 2.54) pA/pF vs (-3.67 ± 0.37) pA/pF, P < 0.01]. SK2 channel protein was evidenced with immunofluorescence method in right atrial appendage from AF group and SR group. CONCLUSION:SK2 channel protein and current were present in atrial myocytes. The SK2 current density was significantly increased in AF group than in SR group suggesting that the increase of SK2 current might contribute to the electrical remodeling in AF patients.
Neonatal exposure to sevoflurane caused learning and memory impairment via dysregulating SK2 channel endocytosis. Science progress Numerous studies have demonstrated that anesthetics' exposure to neonates imposes toxicity on the developing brain but the underlying mechanisms need to be further elucidated. Our present study aimed to explore the role of small conductance Ca-activated potassium channel type2 in memory and learning dysfunction caused by exposing neonates to sevoflurane. Postnatal day 7 Sprague-Dawley rats and hemagglutinin-tagged small conductance Ca-activated potassium channel type2 channel transfected COS-7 cells were exposed to sevoflurane and the trafficking of small conductance Ca-activated potassium channel type2 channels was analyzed; furthermore, memory and learning ability was analyzed by the Morris water maze test on postnatal day30-35 (juvenile period). Our results showed that sevoflurane exposure inhibited small conductance Ca-activated potassium channel type2 channel endocytosis in both hippocampi of postnatal day 7 rats and hemagglutinin-tagged small conductance Ca-activated potassium channel type2 channel transfected COS-7 cells and the memory and learning ability was impaired in the juvenile period after sevoflurane exposure to neonatal rats. Herein, our results demonstrated that exposing neonates to sevoflurane caused memory and learning impairment via dysregulating small conductance Ca-activated potassium channel type2 channels endocytosis. 10.1177/00368504211043763
Muscarinic Modulation of SK2-Type K Channels Promotes Intrinsic Plasticity in L2/3 Pyramidal Neurons of the Mouse Primary Somatosensory Cortex. eNeuro Muscarinic acetylcholine receptors (mAChRs) inhibit small-conductance calcium-activated K channels (SK channels) and enhance synaptic weight via this mechanism. SK channels are also involved in activity-dependent plasticity of membrane excitability ("intrinsic plasticity"). Here, we investigate whether mAChR activation can drive SK channel-dependent intrinsic plasticity in L2/3 cortical pyramidal neurons. Using whole-cell patch-clamp recordings from these neurons in slices prepared from mouse primary somatosensory cortex (S1), we find that brief bath application of the mAChR agonist oxotremorine-m (oxo-m) causes long-term enhancement of excitability in wild-type mice that is not observed in mice deficient of SK channels of the SK2 isoform. Similarly, repeated injection of depolarizing current pulses into the soma triggers intrinsic plasticity that is absent from SK2 null mice. Intrinsic plasticity lowers spike frequency adaptation and attenuation of spike firing upon prolonged activation, consistent with SK channel modulation. Depolarization-induced plasticity is prevented by bath application of the protein kinase A (PKA) inhibitor H89, and the casein kinase 2 (CK2) inhibitor TBB, respectively. These findings point toward a recruitment of two known signaling pathways in SK2 regulation: SK channel trafficking (PKA) and reduction of the calcium sensitivity (CK2). Using mice with an inactivation of CaMKII (T305D mice), we show that intrinsic plasticity does not require CaMKII. Finally, we demonstrate that repeated injection of depolarizing pulses in the presence of oxo-m causes intrinsic plasticity that surpasses the plasticity amplitude reached by either manipulation alone. Our findings show that muscarinic activation enhances membrane excitability in L2/3 pyramidal neurons via a downregulation of SK2 channels. 10.1523/ENEURO.0453-19.2020
SK2 channel deletion reduces susceptibility to bupivacaine-induced cardiotoxicity in mouse. Chen H,Jin Z,Fu Z,Xia F Human & experimental toxicology Bupivacaine is frequently used for regional anesthesia and postoperative analgesia. However, an inadvertent intravenous injection can cause severe cardiotoxicity, manifesting as arrhythmia, hypotension, and even cardiac asystole. The mechanism of bupivacaine-mediated cardiotoxicity remains unclear. SK2 knockout mice (SK) and wild-type mice (WT) were divided into four groups, with 12 mice per group. We determined the difference in bupivacaine cardiotoxicity between SK2 knockout and WT mice by measuring the time to the first arrhythmia (T) and the time to asystole (T). Secondary indicators of cardiotoxicity were the time from the beginning of bupivacaine infusion to 20% prolongation of the QT interval (T) and the time to 20% widening of the QRS complex (T). T and T were significantly longer in the SK-bupi group than in the WT-bupi group (both < 0.05). T and T were longer in the SK-bupi group than in the WT-bupi group (all < 0.05). The time to 25%, 50%, and 75% reduction in HR in the SK-bupi group was significantly longer than in the WT-bupi group (all < 0.05). Knocking out the SK2 channel can reduce bupivacaine-induced cardiotoxicity in the mouse. 10.1177/09603271211010912
Changes in SK channel expression in the basal ganglia after partial nigrostriatal dopamine lesions in rats: Functional consequences. Mourre Christiane,Manrique Christine,Camon Jeremy,Aidi-Knani Sabrine,Deltheil Thierry,Turle-Lorenzo Nathalie,Guiraudie-Capraz Gaelle,Amalric Marianne Neuropharmacology Parkinson's disease (PD) is a progressive neurodegenerative disease originating from the loss of dopamine (DA) neurons in the substantia nigra pars compacta (SNC). The small-conductance calcium-activated potassium (SK) channels play an essential role in the regulation of midbrain DA neuron activity patterns, as well as excitability of other types of neurons of the basal ganglia. We therefore questioned whether the SK channel expression in the basal ganglia is modified in parkinsonian rats and how this could impact behavioral performance in a reaction time task. We used a rat model of early PD in which the progressive nigrostriatal DA degeneration was produced by bilateral infusions of 6-hydroxydopamine (6-OHDA) into the striatum. In situ hybridization of SK2 and SK3 mRNA and binding of iodinated apamin (SK2/SK3 blocker) were performed at 1, 8 or 21 days postsurgery in sham and 6-OHDA lesion groups. A significant decrease of SK3 channel expression was found in the SNC of lesioned animals at the three time points, with no change of SK2 channel expression. Interestingly, an upregulation of SK2 mRNA and apamin binding was found in the subthalamic nucleus (STN) at 21 days postlesion. These results were confirmed using quantitative real time polymerase chain reaction (qRT-PCR) approach. Functionally, the local infusion of apamin into the STN of parkinsonian rats enhanced the akinetic deficits produced by nigrostriatal DA lesions in a reaction time task while apamin infusion into the SNC had an opposite effect. These effects disappear when the positive modulator of SK channels (CyPPA) is co-administered with apamin. These findings suggest that an upregulation of SK2 channels in the STN may underlie the physiological adjustment to increased subthalamic excitability following partial DA denervation. 10.1016/j.neuropharm.2016.11.003
Cochlea-Specific Deletion of Ca1.3 Calcium Channels Arrests Inner Hair Cell Differentiation and Unravels Pitfalls of Conditional Mouse Models. Eckrich Stephanie,Hecker Dietmar,Sorg Katharina,Blum Kerstin,Fischer Kerstin,Münkner Stefan,Wenzel Gentiana,Schick Bernhard,Engel Jutta Frontiers in cellular neuroscience Inner hair cell (IHC) Ca1.3 Ca channels are multifunctional channels mediating Ca influx for exocytosis at ribbon synapses, the generation of Ca action potentials in pre-hearing IHCs and gene expression. IHCs of deaf systemic Ca1.3-deficient (Ca1.3) mice stay immature because they fail to up-regulate voltage- and Ca-activated K (BK) channels but persistently express small conductance Ca-activated K (SK2) channels. In pre-hearing wildtype mice, cholinergic neurons from the superior olivary complex (SOC) exert efferent inhibition onto spontaneously active immature IHCs by activating their SK2 channels. Because Ca1.3 plays an important role for survival, health and function of SOC neurons, SK2 channel persistence and lack of BK channels in systemic Ca1.3 IHCs may result from malfunctioning neurons of the SOC. Here we analyze cochlea-specific Ca1.3 knockout mice with green fluorescent protein (GFP) switch reporter function, . Profound hearing loss, lack of BK channels and persistence of SK2 channels in mice recapitulated the phenotype of systemic Ca1.3 mice, indicating that in wildtype mice, regulation of SK2 and BK channel expression is independent of Ca1.3 expression in SOC neurons. In addition, we noticed dose-dependent GFP toxicity leading to death of basal coil IHCs of mice, likely because of high GFP concentration and small repair capacity. This and the slower time course of -driven Cre recombinase in switching two rather than one allele lead us to study mice. Notably, control IHCs showed a significant reduction in Ca1.3 channel cluster sizes and currents, suggesting that the intronic construct interfered with gene translation or splicing. These pitfalls are likely to be a frequent problem of many genetically modified mice with complex or multiple gene-targeting constructs or fluorescent proteins. Great caution and appropriate controls are therefore required. 10.3389/fncel.2019.00225
Small-Conductance Ca-Activated K Channel 2 in the Dorsal Horn of Spinal Cord Participates in Visceral Hypersensitivity in Rats. Song Yu,Zhu Jun-Sheng,Hua Rong,Du Lei,Huang Si-Ting,Stackman Robert W,Zhang Gongliang,Zhang Yong-Mei Frontiers in pharmacology Visceral hypersensitivity is a highly complex and subjective phenomenon associated with multiple levels of the nervous system and a wide range of neurotransmission. The dorsal horn (DH) in spinal cord relays the peripheral sensory information into the brain. Small conductance Ca-activated K (SK) channels regulate neuronal excitability and firing by allowing K to efflux in response to increase in the intracellular Ca level. In this study, we examined the influence of SK2 channels in the spinal DH on the pathogenesis of visceral hypersensitivity induced by colorectal distension (CRD) in rats. Electrophysiological results showed that rats with visceral hypersensitivity presented a decrease in the SK channel-mediated afterhyperpolarization current (), and an increase in neuronal firing rates and -Fos positive staining in the spinal DH. Western blot data revealed a decrease in the SK2 channel protein in the membrane fraction. Moreover, intrathecal administration of the SK2 channel activator 1-EBIO or CyPPA alleviated visceral hypersensitivity, reversed the decrease in and the increase in neuronal firing rates in spinal DH in rats that experienced CRD. 1-EBIO or CyPPA effect could be prevented by SK2 channel blocker apamin. CRD induced an increase in -Fos protein expression in the spinal DH, which was prevented by 1-EBIO. Together, these data suggest that visceral hypersensitivity and pain is associated with a decrease in the number and function of membrane SK2 channels in the spinal DH. Pharmacological manipulation of SK2 channels may open a new avenue for the treatment of visceral hypersensitivity and pain. -Neonatal colorectal distension induced visceral hypersensitivity in rats.-Visceral hypersensitivity rats presented a decrease in afterhyperpolarization current () and membrane SK2 channel protein in the spinal dorsal horn.-Visceral hypersensitivity rats presented an increase in neuronal firing rate in the spinal dorsal horn.-Intrathecal administration of SK2 channel activator 1-EBIO or CyPPA prevented visceral hypersensitivity and decrease in . 10.3389/fphar.2018.00840
Synaptobrevin-2 facilitates the trafficking and function of atrial SK2 channel. Li Tao,Fan Xuehui,Yu Yiyan,Chen Linlin,Huang Wenjun,Yang Yan,Cao Jimin,Zeng Xiaorong,Tan Xiaoqiu Science China. Life sciences 10.1007/s11427-017-9139-7
A V-to-F substitution in SK2 channels causes Ca hypersensitivity and improves locomotion in a C. elegans ALS model. Nam Young-Woo,Baskoylu Saba N,Gazgalis Dimitris,Orfali Razan,Cui Meng,Hart Anne C,Zhang Miao Scientific reports Small-conductance Ca-activated K (SK) channels mediate medium afterhyperpolarization in the neurons and play a key role in the regulation of neuronal excitability. SK channels are potential drug targets for ataxia and Amyotrophic Lateral Sclerosis (ALS). SK channels are activated exclusively by the Ca-bound calmodulin. Previously, we identified an intrinsically disordered fragment that is essential for the mechanical coupling between Ca/calmodulin binding and channel opening. Here, we report that substitution of a valine to phenylalanine (V407F) in the intrinsically disordered fragment caused a ~6 fold increase in the Ca sensitivity of SK2-a channels. This substitution resulted in a novel interaction between the ectopic phenylalanine and M411, which stabilized PIP-interacting residue K405, and subsequently enhanced Ca sensitivity. Also, equivalent valine to phenylalanine substitutions in SK1 or SK3 channels conferred Ca hypersensitivity. An equivalent phenylalanine substitution in the Caenorhabditis elegans (C. elegans) SK2 ortholog kcnl-2 partially rescued locomotion defects in an existing C. elegans ALS model, in which human SOD1G85R is expressed at high levels in neurons, confirming that this phenylalanine substitution impacts channel function in vivo. This work for the first time provides a critical reagent for future studies: an SK channel that is hypersensitive to Ca with increased activity in vivo. 10.1038/s41598-018-28783-2
Activation of SK2 channels preserves ER Ca²⁺ homeostasis and protects against ER stress-induced cell death. Richter M,Vidovic N,Honrath B,Mahavadi P,Dodel R,Dolga A M,Culmsee C Cell death and differentiation Alteration of endoplasmic reticulum (ER) Ca(2+) homeostasis leads to excessive cytosolic Ca(2+) accumulation and delayed neuronal cell death in acute and chronic neurodegenerative disorders. While our recent studies established a protective role for SK channels against excessive intracellular Ca(2+) accumulation, their functional role in the ER has not been elucidated yet. We show here that SK2 channels are present in ER membranes of neuronal HT-22 cells, and that positive pharmacological modulation of SK2 channels with CyPPA protects against cell death induced by the ER stressors brefeldin A and tunicamycin. Calcium imaging of HT-22 neurons revealed that elevated cytosolic Ca(2+) levels and decreased ER Ca(2+) load during sustained ER stress could be largely prevented by SK2 channel activation. Interestingly, SK2 channel activation reduced the amount of the unfolded protein response transcription factor ATF4, but further enhanced the induction of CHOP. Using siRNA approaches we confirmed a detrimental role for ATF4 in ER stress, whereas CHOP regulation was dispensable for both, brefeldin A toxicity and CyPPA-mediated protection. Cell death induced by blocking Ca(2+) influx into the ER with the SERCA inhibitor thapsigargin was not prevented by CyPPA. Blocking the K(+) efflux via K(+)/H(+) exchangers with quinine inhibited CyPPA-mediated neuroprotection, suggesting an essential role of proton uptake and K(+) release in the SK channel-mediated neuroprotection. Our data demonstrate that ER SK2 channel activation preserves ER Ca(2+) uptake and retention which determines cell survival in conditions where sustained ER stress contributes to progressive neuronal death. 10.1038/cdd.2015.146
SK2 channels regulate mitochondrial respiration and mitochondrial Ca uptake. Honrath Birgit,Matschke Lina,Meyer Tammo,Magerhans Lena,Perocchi Fabiana,Ganjam Goutham K,Zischka Hans,Krasel Cornelius,Gerding Albert,Bakker Barbara M,Bünemann Moritz,Strack Stefan,Decher Niels,Culmsee Carsten,Dolga Amalia M Cell death and differentiation Mitochondrial calcium ([Ca]) overload and changes in mitochondrial metabolism are key players in neuronal death. Small conductance calcium-activated potassium (SK) channels provide protection in different paradigms of neuronal cell death. Recently, SK channels were identified at the inner mitochondrial membrane, however, their particular role in the observed neuroprotection remains unclear. Here, we show a potential neuroprotective mechanism that involves attenuation of [Ca] uptake upon SK channel activation as detected by time lapse mitochondrial Ca measurements with the Ca-binding mitochondria-targeted aequorin and FRET-based [Ca] probes. High-resolution respirometry revealed a reduction in mitochondrial respiration and complex I activity upon pharmacological activation and overexpression of mitochondrial SK2 channels resulting in reduced mitochondrial ROS formation. Overexpression of mitochondria-targeted SK2 channels enhanced mitochondrial resilience against neuronal death, and this effect was inhibited by overexpression of a mitochondria-targeted dominant-negative SK2 channel. These findings suggest that SK channels provide neuroprotection by reducing [Ca] uptake and mitochondrial respiration in conditions, where sustained mitochondrial damage determines progressive neuronal death. 10.1038/cdd.2017.2
[The changes of the expression of 2-type small conductance-Ca- activating-K (SK2) channel protein in hypertensive rat myocardium]. Zhang Wen-Fei,Yang Chang-Zhen,Hu Peng-Cheng,Chen Hao,Xi Yue,Fan Hong-Kun,Zhang Qian,Yang Chun Zhongguo ying yong sheng li xue za zhi = Zhongguo yingyong shenglixue zazhi = Chinese journal of applied physiology OBJECTIVE:To investigate the expression of 2-type small conductance-Ca-activating-K (SK2) channel protein in hypertensive rat myocardial cells. METHODS:Twelve healthy adult male SD rats were randomly divided into control group (n=5) and experimental group (n=7). The rats of experimental group were injected intraperitoneally with N'-nitro-L-arginine (L-NNA 15 mg/(kg·d))while the rats of control group were injected intraperitoneally with isometrical normal saline(15 ml/(kg·d )). The body weight, blood pressure and electrocardiogram of the rats were measured every week. After 4 weeks, the rats were sacrificed to obtain hearts, and the expression of SK2 channel protein in myocardium was detected by Western blot. RESULTS:After 4 weeks of administration, compared with the control group, the blood pressure in the experimental group was significantly elevated (P<0.05), QRS duration and R-R interval were prolonged, and the expressions of SK2 channel in the atrial and ventricular tissue of the experimental group were significantly higher than those in the control group (1.12±0.18,1.64±0.26, P < 0.05). CONCLUSION:The expressions of atrial and ventricular SK2 pathway are increased in hypertensive model rats. It may be one of the mechanism leading to arrhythmias in hypertensive model rats and can provide new ideas and strategies for the treatment and prognosis of hypertensive diseases. 10.12047/j.cjap.5712.2019.081
Tremor dominant Kyoto (Trdk) rats carry a missense mutation in the gene encoding the SK2 subunit of small-conductance Ca-activated K channel. Kuramoto Takashi,Yokoe Mayuko,Kunisawa Naofumi,Ohashi Kana,Miyake Takahito,Higuchi Yuki,Yoshimi Kazuto,Mashimo Tomoji,Tanaka Miyuu,Kuwamura Mitusru,Kaneko Shuji,Shimizu Saki,Serikawa Tadao,Ohno Yukihiro Brain research Tremor dominant Kyoto (Trdk) is an autosomal dominant mutation that appeared in F344/NSlc rats mutagenized with N-ethyl-N-nitrosourea (ENU). In this study, we characterized and genetically analyzed F344-Trdk/+ heterozygous rats. The rats exhibited a tremor that was especially evident around weaning but persisted throughout life. The tremors of F344-Trdk/+ rats were attenuated by drugs effective against essential tremor (ET) but not drugs used to treat Parkinson's disease-related tremor, indicating that the pharmacological phenotype of F344-Trdk/+ rats was similar to human ET. Using positional candidate approach, we identified the Trdk mutation as a missense substitution (c. 866T>A, p. I289N) in Kcnn2, which encodes the SK2 subunit of the small-conductance Ca-activated K channel. In vitro electrophysiological studies revealed that the I289N mutation diminished SK2 channel activity. These findings demonstrate that F344-Trdk/+ rats represent a novel model of ET, and strongly suggest that Kcnn2 is the causative gene for the tremor phenotype in F344-Trdk/+ rats. 10.1016/j.brainres.2017.09.012
Small-conductance Ca2+ -activated K+ channels and cardiac arrhythmias. Heart rhythm Small-conductance Ca2+ -activated K+ (SK, KCa2) channels are unique in that they are gated solely by changes in intracellular Ca2+ and, hence, function to integrate intracellular Ca2+ and membrane potentials on a beat-to-beat basis. Recent studies have provided evidence for the existence and functional significance of SK channels in the heart. Indeed, our knowledge of cardiac SK channels has been greatly expanded over the past decade. Interests in cardiac SK channels are further driven by recent studies suggesting the critical roles of SK channels in human atrial fibrillation, the SK channel as a possible novel therapeutic target in atrial arrhythmias, and upregulation of SK channels in heart failure in animal models and in human heart failure. However, there remain critical gaps in our knowledge. Specifically, blockade of SK channels in cardiac arrhythmias has been shown to be both antiarrhythmic and proarrhythmic. This contemporary review provides an overview of the literature on the role of cardiac SK channels in cardiac arrhythmias and serves as a discussion platform for the current clinical perspectives. At the translational level, development of SK channel blockers as a new therapeutic strategy in the treatment of atrial fibrillation and the possible proarrhythmic effects merit further considerations and investigations. 10.1016/j.hrthm.2015.04.046
Small-conductance calcium-activated potassium current modulates the ventricular escape rhythm in normal rabbit hearts. Wan Juyi,Chen Mu,Wang Zhuo,Everett Thomas H,Rubart-von der Lohe Michael,Shen Changyu,Qu Zhilin,Weiss James N,Boyden Penelope A,Chen Peng-Sheng Heart rhythm BACKGROUND:The apamin-sensitive small-conductance calcium-activated K (SK) current I modulates automaticity of the sinus node. I blockade by apamin causes sinus bradycardia. OBJECTIVE:The purpose of this study was to test the hypothesis that I modulates ventricular automaticity. METHODS:We tested the effects of apamin (100 nM) on ventricular escape rhythms in Langendorff-perfused rabbit ventricles with atrioventricular block (protocol 1) and on recorded transmembrane action potential of pseudotendons of superfused right ventricular endocardial preparations (protocol 2). RESULTS:All preparations exhibited spontaneous ventricular escape rhythms. In protocol 1, apamin decreased the atrial rate from 186.2 ± 18.0 bpm to 163.8 ± 18.7 bpm (N = 6; P = .006) but accelerated the ventricular escape rate from 51.5 ± 10.7 bpm to 98.2 ± 25.4 bpm (P = .031). Three preparations exhibited bursts of nonsustained ventricular tachycardia and pauses, resulting in repeated burst termination pattern. In protocol 2, apamin increased the ventricular escape rate from 70.2 ± 13.1 bpm to 110.1 ± 2.2 bpm (P = .035). Spontaneous phase 4 depolarization was recorded from the pseudotendons in 6 of 10 preparations at baseline and in 3 in the presence of apamin. There were no changes of phase 4 slope (18.37 ± 3.55 mV/s vs 18.93 ± 3.26 mV/s, N = 3; P = .231, ), but the threshold of phase 0 activation (mV) reduced from -67.97 ± 1.53 to -75.26 ± 0.28 (P = .034). Addition of JTV-519, a ryanodine receptor 2 stabilizer, in 5 preparations reduced escape rate back to baseline. CONCLUSION:Contrary to its bradycardic effect in the sinus node, I blockade by apamin accelerates ventricular automaticity and causes repeated nonsustained ventricular tachycardia in normal ventricles. ryanodine receptor 2 blockade reversed the apamin effects on ventricular automaticity. 10.1016/j.hrthm.2018.10.033
Inhibition of Small Conductance Calcium-Activated Potassium (SK) Channels Prevents Arrhythmias in Rat Atria During β-Adrenergic and Muscarinic Receptor Activation. Skibsbye Lasse,Bengaard Anne K,Uldum-Nielsen A M,Boddum Kim,Christ Torsten,Jespersen Thomas Frontiers in physiology Sympathetic and vagal activation is linked to atrial arrhythmogenesis. Here we investigated the small conductance Ca-activated K (SK)-channel pore-blocker -(pyridin-2-yl)-4-(pyridine-2-yl)thiazol-2-amine (ICA) on action potential (AP) and atrial fibrillation (AF) parameters in isolated rat atria during β-adrenergic [isoprenaline (ISO)] and muscarinic M2 [carbachol (CCh)] activation. Furthermore, antiarrhythmic efficacy of ICA was benchmarked toward the class-IC antiarrhythmic drug flecainide (Fleca). ISO increased the spontaneous beating frequency but did not affect other AP parameters. As expected, CCh hyperpolarized resting membrane potential (-6.2 ± 0.9 mV), shortened APD (24.2 ± 1.6 vs. 17.7 ± 1.1 ms), and effective refractory period (ERP; 20.0 ± 1.3 vs. 15.8 ± 1.3 ms). The duration of burst pacing triggered AF was unchanged in the presence of CCh compared to control atria (12.8 ± 5.3 vs. 11.2 ± 3.6 s), while β-adrenergic activation resulted in shorter AF durations (3.3 ± 1.7 s) and lower AF-frequency compared to CCh. Treatment with ICA (10 μM) in ISO -stimulated atria prolonged APD and ERP, while the AF burden was reduced (7.1 ± 5.5 vs. 0.1 ± 0.1 s). In CCh-stimulated atria, ICA treatment also resulted in APD and ERP prolongation and shorter AF durations. Fleca treatment in CCh-stimulated atria prolonged APD and ERP and abbreviated the AF duration to a similar extent as with ICA. Muscarinic activated atria constitutes a more arrhythmogenic substrate than β-adrenoceptor activated atria. Pharmacological inhibition of SK channels by ICA is effective under both conditions and equally efficacious to Fleca. 10.3389/fphys.2018.00510
Similar nicotinic excitability responses across the developing hippocampal formation are regulated by small-conductance calcium-activated potassium channels. Chung Beryl Y T,Bailey Craig D C Journal of neurophysiology The hippocampal formation forms a cognitive circuit that is critical for learning and memory. Cholinergic input to nicotinic acetylcholine receptors plays an important role in the normal development of principal neurons within the hippocampal formation. However, the ability of nicotinic receptors to stimulate principal neurons across all regions of the developing hippocampal formation has not been determined. We show in this study that heteromeric nicotinic receptors mediate direct inward current and depolarization responses in principal neurons across the hippocampal formation of the young postnatal mouse. These responses were found in principal neurons of the CA1, CA3, dentate gyrus, subiculum, and entorhinal cortex layer VI, and they varied in magnitude across regions with the greatest responses occurring in the subiculum and entorhinal cortex. Despite this regional variation in the magnitude of passive responses, heteromeric nicotinic receptor stimulation increased the excitability of active principal neurons by a similar amount in all regions. Pharmacological experiments found this similar excitability response to be regulated by small-conductance calcium-activated potassium (SK) channels, which exhibited regional differences in their influence on neuron activity that offset the observed regional differences in passive nicotinic responses. These findings demonstrate that SK channels play a role to coordinate the magnitude of heteromeric nicotinic excitability responses across the hippocampal formation at a time when nicotinic signaling drives the development of this cognitive brain region. This coordinated input may contribute to the normal development, synchrony, and maturation of the hippocampal formation learning and memory network. NEW & NOTEWORTHY This study demonstrates that small-conductance calcium-activated potassium channels regulate similar-magnitude excitability responses to heteromeric nicotinic acetylcholine receptor stimulation in active principal neurons across multiple regions of the developing mouse hippocampal formation. Given the importance of nicotinic neurotransmission for the development of principal neurons within the hippocampal formation, this coordinated excitability response is positioned to influence the normal development, synchrony, and maturation of the hippocampal formation learning and memory network. 10.1152/jn.00426.2017
Small-conductance calcium-activated potassium (SK) channels contribute to action potential repolarization in human atria. Skibsbye Lasse,Poulet Claire,Diness Jonas Goldin,Bentzen Bo Hjorth,Yuan Lei,Kappert Utz,Matschke Klaus,Wettwer Erich,Ravens Ursula,Grunnet Morten,Christ Torsten,Jespersen Thomas Cardiovascular research AIMS:Small-conductance calcium-activated potassium (SK) channels are expressed in the heart of various species, including humans. The aim of the present study was to address whether SK channels play a functional role in human atria. METHODS AND RESULTS:Quantitative real-time PCR analyses showed higher transcript levels of SK2 and SK3 than that of the SK1 subtype in human atrial tissue. SK2 and SK3 were reduced in chronic atrial fibrillation (AF) compared with sinus rhythm (SR) patients. Immunohistochemistry using confocal microscopy revealed widespread expression of SK2 in atrial myocytes. Two SK channel inhibitors (NS8593 and ICAGEN) were tested in heterologous expression systems revealing ICAGEN as being highly selective for SK channels, while NS8593 showed less selectivity for these channels. In isolated atrial myocytes from SR patients, both inhibitors decreased inwardly rectifying K(+) currents by ∼15% and prolonged action potential duration (APD), but no effect was observed in myocytes from AF patients. In trabeculae muscle strips from right atrial appendages of SR patients, both compounds increased APD and effective refractory period, and depolarized the resting membrane potential, while only NS8593 induced these effects in tissue from AF patients. SK channel inhibition did not alter any electrophysiological parameter in human interventricular septum tissue. CONCLUSIONS:SK channels are present in human atria where they participate in repolarization. SK2 and SK3 were down-regulated and had reduced functional importance in chronic AF. As SK current was not found to contribute substantially to the ventricular AP, pharmacological inhibition of SK channels may be a putative atrial-selective target for future antiarrhythmic drug therapy. 10.1093/cvr/cvu121
Effect of antiarrhythmic drugs on small conductance calcium - activated potassium channels. Simó-Vicens Rafel,Sauter Daniel R P,Grunnet Morten,Diness Jonas G,Bentzen Bo H European journal of pharmacology Atrial fibrillation (AF) is the most common type of arrhythmia. Current pharmacological treatment for AF is moderately effective and/or increases the risk of serious ventricular adverse effects. To avoid ventricular adverse effects, a new target has been considered, the small conductance calcium-activated K channels (K2.X, SK channels). In the heart, K2.X channels are functionally more important in atria compared to ventricles, and pharmacological inhibition of the channel confers atrial selective prolongation of the cardiac action potential and converts AF to sinus rhythm in animal models of AF. Whether antiarrhythmic drugs (AADs) recommended for treating AF target K2.X channels is unknown. To this end, we tested a large number of AADs on the human K2.2 and K2.3 channels to assess their effect on this new target using automated whole-cell patch clamp. Of the AADs recommended for treatment of AF only dofetilide and propafenone inhibited hK2.X channels, with no subtype selectivity. The calculated IC were 90±10µmol/l vs 60±10µmol/l for dofetilide and 42±4µmol/l vs 80±20µmol/l for propafenone (hK2.3 vs hK2.2). Whether this inhibition has clinical importance for their antiarrhythmic effect is unlikely, as the calculated IC values are very high compared to the effective free therapeutic plasma concentration of the drugs when used for AF treatment, 40,000-fold for dofetilide and 140-fold higher for propafenone. 10.1016/j.ejphar.2017.03.039
Small-conductance Ca-activated K channels promote J-wave syndrome and phase 2 reentry. Landaw Julian,Zhang Zhaoyang,Song Zhen,Liu Michael B,Olcese Riccardo,Chen Peng-Sheng,Weiss James N,Qu Zhilin Heart rhythm BACKGROUND:Small-conductance Ca-activated potassium (SK) channels play complex roles in cardiac arrhythmogenesis. SK channels colocalize with L-type Ca channels, yet how this colocalization affects cardiac arrhythmogenesis is unknown. OBJECTIVE:The purpose of this study was to investigate the role of colocalization of SK channels with L-type Ca channels in promoting J-wave syndrome and ventricular arrhythmias. METHODS:We carried out computer simulations of single-cell and tissue models. SK channels in the model were assigned to preferentially sense Ca in the bulk cytosol, subsarcolemmal space, or junctional cleft. RESULTS:When SK channels sense Ca in the bulk cytosol, the SK current (I) rises and decays slowly during an action potential, the action potential duration (APD) decreases as the maximum conductance increases, no complex APD dynamics and phase 2 reentry can be induced by I. When SK channels sense Ca in the subsarcolemmal space or junctional cleft, I can rise and decay rapidly during an action potential in a spike-like pattern because of spiky Ca transients in these compartments, which can cause spike-and-dome action potential morphology, APD alternans, J-wave elevation, and phase 2 reentry. Our results can account for the experimental finding that activation of I induced J-wave syndrome and phase 2 reentry in rabbit hearts. CONCLUSION:Colocalization of SK channels with L-type Ca channels so that they preferentially sense Ca in the subsarcolemmal or junctional space may result in a spiky I, which can functionally play a similar role of the transient outward K current in promoting J-wave syndrome and ventricular arrhythmias. 10.1016/j.hrthm.2020.04.023
A Key Role for Prefrontocortical Small Conductance Calcium-Activated Potassium Channels in Stress Adaptation and Rapid Antidepressant Response. Bambico Francis Rodriguez,Li Zhuoliang,Creed Meaghan,De Gregorio Danilo,Diwan Mustansir,Li Jessica,McNeill Sean,Gobbi Gabriella,Raymond Roger,Nobrega José N Cerebral cortex (New York, N.Y. : 1991) The muscarinic acetylcholine receptor antagonist scopolamine elicits rapid antidepressant activity, but its underlying mechanism is not fully understood. In a chronic stress model, a single low-dose administration of scopolamine reversed depressive-like reactivity. This antidepressant-like effect was mediated via a muscarinic M1 receptor-SKC pathway because it was mimicked by intra-medial prefrontal cortex (intra-mPFC) infusions of scopolamine, of the M1 antagonist pirenzepine or of the SKC antagonist apamin, but not by the selective serotonin reuptake inhibitor (SSRI) antidepressant fluoxetine. Extracellular and whole-cell recordings revealed that scopolamine and ketamine attenuate the SKC-mediated action potential hyperpolarization current and rapidly enhance mPFC neuronal excitability within the therapeutically relevant time window. The SKC agonist 1-EBIO abrogated scopolamine-induced antidepressant activity at a dose that completely suppressed burst firing activity. Scopolamine also induced a slow-onset activation of raphe serotonergic neurons, which in turn was dependent on mPFC-induced neuroplasticity or excitatory input, since mPFC transection abolished this effect. These early behavioral and mPFC activational effects of scopolamine did not appear to depend on prefrontocortical brain-derived neurotrophic factor and serotonin-1A activity, classically linked to SSRIs, and suggest a novel mechanism associated with antidepressant response onset through SKC-mediated regulation of activity-dependent plasticity. 10.1093/cercor/bhz187
Metabolic regulation and dysregulation of endothelial small conductance calcium activated potassium channels. European journal of cell biology The vascular endothelium is an important regulator of vascular reactivity and preserves the balance between vasoconstrictor and vasodilator tone during normal physiologic conditions. Example endothelial-derived vasoconstrictors include endothelin-1 and thromboxane A2; example vasodilators include nitric oxide and prostacyclin. A growing body of evidence points to the existence of a non-nitric oxide, non-prostacyclin endothelium-derived vasodilatory factor of currently unclear identity, often referred to as endothelium-derived hyperpolarizing factor (EDHF). Recent research testifies to the significance of EDHF in endothelium-dependent vascular smooth muscle relaxation. Special emphasis has been placed on the role of small conductance calcium-activated potassium channels (SK) in facilitating the endothelial and vascular responses to EDHF across the microcirculation, including coronary, mesenteric, and pulmonary vascular beds. Meanwhile, decreased activity of endothelial SK channel activity has been implicated in the pathology of a variety of disease states that alter the balance between vasodilator and vasoconstrictor tone. Hence the primary goal of this review is to characterize the physiology of endothelial SK channels in the microvasculature under normal and pathological conditions. Themes of regulation and dysregulation of SK channel activity through the action of protein kinases, reactive oxygen species, and byproducts of intermediary metabolism provide unifying principles to tie together vascular pathology in altered metabolic states ranging from hypertension to diabetes, to ischemia-reperfusion. A comprehensive understanding of SK channel pathophysiology may provide a foundation for development of new therapeutics targeting SK channels, particularly SK channel potentiators, that may have widespread application for many chronic disease states. 10.1016/j.ejcb.2022.151208
Dendritic small conductance calcium-activated potassium channels activated by action potentials suppress EPSPs and gate spike-timing dependent synaptic plasticity. Jones Scott L,To Minh-Son,Stuart Greg J eLife Small conductance calcium-activated potassium channels (SK channels) are present in spines and can be activated by backpropagating action potentials (APs). This suggests they may play a critical role in spike-timing dependent synaptic plasticity (STDP). Consistent with this idea, EPSPs in both cortical and hippocampal pyramidal neurons were suppressed by preceding APs in an SK-dependent manner. In cortical pyramidal neurons EPSP suppression by preceding APs depended on their precise timing as well as the distance of activated synapses from the soma, was dendritic in origin, and involved SK-dependent suppression of NMDA receptor activation. As a result SK channel activation by backpropagating APs gated STDP induction during low-frequency AP-EPSP pairing, with both LTP and LTD absent under control conditions but present after SK channel block. These findings indicate that activation of SK channels in spines by backpropagating APs plays a key role in regulating both EPSP amplitude and STDP induction. 10.7554/eLife.30333
Coronary endothelial dysfunction prevented by small-conductance calcium-activated potassium channel activator in mice and patients with diabetes. Zhang Zhiqi,Shi Guangbin,Liu Yuhong,Xing Hang,Kabakov Anatoli Y,Zhao Amy S,Agbortoko Vahid,Kim Justin,Singh Arun K,Koren Gideon,Harrington Elizabeth O,Sellke Frank W,Feng Jun The Journal of thoracic and cardiovascular surgery OBJECTIVE:To investigate coronary endothelial protection of a small-conductance calcium-activated potassium (SK) channel activator against a period of cardioplegic-hypoxia and reoxygenation (CP-H/R) injury in mice and patients with diabetes (DM) and those without diabetes (nondiabetic [ND]). METHODS:Mouse small coronary arteries/heart endothelial cells (MHECs) and human coronary arterial endothelial cells (HCAECs) were dissected from the harvested hearts of mice (n = 16/group) and from discarded right atrial tissue samples of patients with DM and without DM (n = 8/group). The SK current density of MHECs was measured. The in vitro small arteries/arterioles, MHECs, and HCAECs were subjected to 60 minutes of CP hypoxia, followed by 60 minutes of oxygenation. Vessels were treated with or without the selective SK activator NS309 for 5 minutes before and during CP hypoxia. RESULTS:DM and/or CP-H/R significantly inhibited the total SK currents of MHECs and HCAECs and significantly diminished the mouse coronary relaxation response to NS309. Administration of NS309 immediately before and during CP hypoxia significantly improved the recovery of coronary endothelial function, as demonstrated by increased relaxation responses to adenosine 5'-diphosphate and substance P compared with those seen in controls (P < .05). This protective effect was more pronounced in vessels from ND mice and patients compared with DM mice and patients (P < .05). Cell surface membrane SK3 expression was significantly reduced after hypoxia, whereas cytosolic SK3 expression was greater than that of the sham control group (P < .05). CONCLUSIONS:Application of NS309 immediately before and during CP hypoxia protects mouse and human coronary microvasculature against CP-H/R injury, but this effect is diminished in the diabetic coronary microvasculature. SK inhibition/inactivation and/or internalization/redistribution may contribute to CP-H/R-induced coronary endothelial and vascular relaxation dysfunction. 10.1016/j.jtcvs.2020.01.078
Inactivation of Endothelial Small/Intermediate Conductance of Calcium-Activated Potassium Channels Contributes to Coronary Arteriolar Dysfunction in Diabetic Patients. Liu Yuhong,Xie An,Singh Arun K,Ehsan Afshin,Choudhary Gaurav,Dudley Samuel,Sellke Frank W,Feng Jun Journal of the American Heart Association BACKGROUND:Diabetes is associated with coronary arteriolar endothelial dysfunction. We investigated the role of the small/intermediate (SK(Ca)/IK(Ca)) conductance of calcium-activated potassium channels in diabetes-related endothelial dysfunction. METHODS AND RESULTS:Coronary arterioles (80 to 150 μm in diameter) were dissected from discarded right atrial tissues of diabetic (glycosylated hemoglobin = 9.6±0.25) and nondiabetic patients (glycosylated hemoglobin 5.4±0.12) during coronary artery bypass graft surgery (n=8/group). In-vitro relaxation response of precontracted arterioles was examined in the presence of the selective SK(Ca)/IK(Ca) activator NS309 and other vasodilatory agents. The channel density and membrane potential of diabetic and nondiabetic endothelial cells was measured by using the whole cell patch-clamp technique. The protein expression and distribution of the SK(Ca)/IK(Ca) in the human myocardium and coronary arterioles was examined by Western blotting and immunohistochemistry. Our results indicate that diabetes significantly reduced the coronary arteriolar response to the SK(Ca)/IK(Ca) activator NS309 compared to the respective responses of nondiabetic vessels (P<0.05 versus nondiabetes). The relaxation response of diabetic arterioles to NS309 was prevented by denudation of endothelium (P=0.001 versus endothelium-intact). Diabetes significantly decreased endothelial SK(Ca)/IK(Ca) currents and hyperpolarization induced by the SK(Ca)/IK(Ca) activator NS309 as compared with that of nondiabetics. There were no significant differences in the expression and distribution of SK(Ca)/IK(Ca) proteins in the coronary microvessels. CONCLUSIONS:Diabetes is associated with inactivation of endothelial SK(Ca)/IK(Ca) channels, which may contribute to endothelial dysfunction in diabetic patients. 10.1161/JAHA.115.002062
Small-conductance calcium-activated potassium (SK) channels in the amygdala mediate pain-inhibiting effects of clinically available riluzole in a rat model of arthritis pain. Molecular pain BACKGROUND:Arthritis pain is an important healthcare issue with significant emotional and affective consequences. Here we focus on potentially beneficial effects of activating small-conductance calcium-activated potassium (SK) channels in the amygdala, a brain center of emotions that plays an important role in central pain modulation and processing. SK channels have been reported to regulate neuronal activity in the central amygdala (CeA, output nucleus). We tested the effects of riluzole, a clinically available drug for the treatment of amyotrophic lateral sclerosis, for the following reasons. Actions of riluzole include activation of SK channels. Evidence in the literature suggests that riluzole may have antinociceptive effects through an action in the brain but not the spinal cord. Mechanism and site of action of riluzole remain to be determined. Here we tested the hypothesis that riluzole inhibits pain behaviors by acting on SK channels in the CeA in an arthritis pain model. RESULTS:Systemic (intraperitoneal) application of riluzole (8 mg/kg) inhibited audible (nocifensive response) and ultrasonic (averse affective response) vocalizations of adult rats with arthritis (5 h postinduction of a kaolin-carrageenan monoarthritis in the knee) but did not affect spinal withdrawal thresholds, which is consistent with a supraspinal action. Stereotaxic administration of riluzole into the CeA by microdialysis (1 mM, concentration in the microdialysis fiber, 15 min) also inhibited vocalizations, confirming the CeA as a site of action of riluzole. Stereotaxic administration of a selective SK channel blocker (apamin, 1 µM, concentration in the microdialysis fiber, 15 min) into the CeA had no effect by itself but inhibited the effect of systemic riluzole on vocalizations. Off-site administration of apamin into the basolateral amygdala (BLA) as a placement control or stereotaxic application of a selective blocker of large-conductance calcium-activated potassium (BK) channels (charybdotoxin, 1 µM, concentration in the microdialysis fiber, 15 min) into the CeA did not affect the inhibitory effects of systemically applied riluzole. CONCLUSIONS:The results suggest that riluzole can inhibit supraspinally organized pain behaviors in an arthritis model by activating SK, but not BK, channels in the amygdala (CeA but not BLA). 10.1186/s12990-015-0055-9
Arrhythmia development during inhibition of small-conductance calcium-activated potassium channels in acute myocardial infarction in a porcine model. Europace : European pacing, arrhythmias, and cardiac electrophysiology : journal of the working groups on cardiac pacing, arrhythmias, and cardiac cellular electrophysiology of the European Society of Cardiology AIMS:Acute myocardial infarction (AMI) is associated with intracellular Ca2+ build-up. In healthy ventricles, small conductance Ca2+-activated K+ (SK) channels are present but do not participate in repolarization. However, SK current is increased in chronic myocardial infarction and heart failure, and recently, SK channel inhibition was demonstrated to reduce arrhythmias in AMI rats. Hence, we hypothesized that SK channel inhibitors (NS8593 and AP14145) could reduce arrhythmia development during AMI in a porcine model. METHODS AND RESULTS:Twenty-seven pigs were randomized 1:1:1 to control, NS8593, or AP14145. Haemodynamic and electrophysiological parameters [electrocardiogram (ECG) and monophasic action potentials (MAP)] were continuously recorded. A balloon was placed in the mid-left anterior descending artery, blinded to treatment. Infusion lasted from 10 min before occlusion until 30 min after. Occlusion was maintained for 1 h, followed by 2 h of reperfusion. Upon occlusion, cardiac output dropped similarly in all groups, while blood pressure remained stable. Heart rate decreased in the NS8593 and AP14145 groups. QRS duration increased upon occlusion in all groups but more prominently in AP14145-treated pigs. Inhibition of SK channels did not affect QT interval. Infarct MAP duration shortened comparably in all groups. Ventricular fibrillation developed in 4/9 control-, 4/9 AP14145-, and 2/9 NS8593-treated pigs. Ventricular tachycardia was rarely observed in either group, whereas ventricular extrasystoles occurred comparably in all groups. CONCLUSION:Inhibition of SK channels was neither beneficial nor detrimental to ventricular arrhythmia development in the setting of AMI in this porcine model. 10.1093/europace/euz223
Activation of small conductance calcium-activated potassium channels suppresses seizure susceptibility in the genetically epilepsy-prone rats. Khandai Padmini,Forcelli Patrick A,N'Gouemo Prosper Neuropharmacology Small conductance calcium-activated potassium (SK) channels dampen neuronal excitability by contributing to slow afterhyperpolarization (AHP) that follows a series of action potentials, and therefore may represent an intrinsic inhibitory mechanism to prevent seizures. We have previously reported that susceptibility to acoustically evoked seizures was associated with downregulation of SK1 and SK3 subtypes of SK channels in the inferior colliculus of the moderated seizure severity strain of the genetically epilepsy-prone rats (GEPR-3s). Here, we evaluated the effects of 1-ethyl-2-benzimidazolinone (1-EBIO), a potent activator of SK channels, on acoustically evoked seizures in both male and female adult GEPR-3s at various time points post-treatment. Systemic administration of 1-EBIO at various tested doses suppressed seizure susceptibility in both male and female GEPR-3s; however, the complete seizure suppression was only observed following administration of relatively higher doses of 1-EBIO in females. These findings indicate that activation of SK channels results in anticonvulsive action against generalized tonic-clonic seizures in both male and female GEPR-3s, with males exhibiting higher sensitivity than females. 10.1016/j.neuropharm.2019.107865
Small conductance calcium activated potassium (SK) channel dependent and independent effects of riluzole on neuropathic pain-related amygdala activity and behaviors in rats. Thompson Jeremy M,Yakhnitsa Vadim,Ji Guangchen,Neugebauer Volker Neuropharmacology BACKGROUND AND PURPOSE:Chronic neuropathic pain is an important healthcare issue with significant emotional components. The amygdala is a brain region involved in pain and emotional-affective states and disorders. The central amygdala output nucleus (CeA) contains small-conductance calcium-activated potassium (SK) channels that can control neuronal activity. A clinically available therapeutic, riluzole can activate SK channels and may have antinociceptive effects through a supraspinal action. We tested the hypothesis that riluzole inhibits neuropathic pain behaviors by inhibiting pain-related changes in CeA neurons, in part at least through SK channel activation. EXPERIMENTAL APPROACH:Brain slice physiology and behavioral assays were done in adult Sprague Dawley rats. Audible and ultrasonic vocalizations and von Frey thresholds were measured in sham and neuropathic rats 4 weeks after left L5 spinal nerve ligation (SNL model). Whole cell patch-clamp recordings of regular firing CeA neurons in brain slices were used to measure synaptic transmission and neuronal excitability. KEY RESULTS:In brain slices, riluzole increased the SK channel-mediated afterhyperpolarization and synaptic inhibition, but inhibited neuronal excitability through an SK channel independent action. SNL rats had increased vocalizations and decreased withdrawal thresholds compared to sham rats, and intra-CeA administration of riluzole inhibited vocalizations and depression-like behaviors but did not affect withdrawal thresholds. Systemic riluzole administration also inhibited these changes, demonstrating the clinical utility of this strategy. SK channel blockade in the CeA attenuated the inhibitory effects of systemic riluzole on vocalizations, confirming SK channel involvement in these effects. CONCLUSIONS AND IMPLICATIONS:The results suggest that riluzole has beneficial effects on neuropathic pain behaviors through SK channel dependent and independent mechanisms in the amygdala. 10.1016/j.neuropharm.2018.06.015