共0篇 平均IF=NaN (-) 更多分析

    加载中

    logo
    Presence of Mother Reduces Early-Life Social Stress: Linking the Alteration in Hypothalamic-Pituitary-Adrenal Axis and Serotonergic System. Rajan Koilmani Emmanuvel,Soundarya Suba,Karen Christopher,Shanmugapriya Vasudevan,Radhakrishnan Karuppasamy Developmental neuroscience In this study, we examined whether the presence of mother suppresses early-life stressful social experience (SSE)-induced anxiety-like behavior and impairment of short-term memory later in life. On postnatal day (PND)-5, mothers with pups were grouped as follows: (i) control; (ii) maternal separation (MS); (iii) pups with mother experience the presence of a stranger (M+P-ST); and (iv) maternal separated pups experience the presence of a stranger (MSP-ST). Individuals were subjected to light-dark box and spontaneous alternation from PND-29 to 32. We observed that the MSP-ST group exhibits anxiety-like behavior and impairment in short-term memory. Further, SSE significantly elevated the adrenocorticotropic hormone, corticosterone and expression of glucocorticoid receptor (GR) in MSP-ST pups. Similarly, serotonin (5-hydroxytryptamine; 5-HT), dopamine, noradrenaline and expression of serotonin transporter levels were significantly elevated in MSP-ST pups. These observations suggest that during early postnatal days, the pups may recognize strangers by the sense of smell, and the presence of mother reduces the SSE-induced stress. 10.1159/000504508
    Neonatal maternal separation causes decreased numbers of sertoli cell, spermatogenic cells, and sperm in mice. Miyaso Hidenobu,Nagahori Kenta,Takano Kaiya,Omotehara Takuya,Kawata Shinichi,Li Zhong-Lian,Kuramasu Miyuki,Wu Xi,Ogawa Yuki,Itoh Masahiro Toxicology mechanisms and methods Neonatal maternal separation is an experimental model used to evaluate the effects of toxic stress in neonates, or early life stress. Although various physiological and psychological stresses during childhood have been reported, the effects of neonatal maternal separation on the male reproductive system remain unclear. Therefore, the present study evaluated the effects of neonatal maternal separation on the male reproductive system. In neonatal male ICR mice, maternal separation was performed for 0.5, 1, 2, and 4 hours/day, from postnatal day 1 to 10. At 10 weeks of age, the neonatal maternal separation mice exhibited decreases in both testicular weight and epididymal sperm number, along with various testicular morphological changes involving germ cells, Sertoli cells, and interstitial cells. Notably, neonatal maternal separation mice showed decreased numbers of Sertoli cells. Animals subjected to 0.5-, 1-, and 2-h/day neonatal maternal separation exhibited decreases in serum levels of testosterone but not in those of gonadotropin (luteinizing hormone and follicle-stimulating hormone). Together, these data showed that neonatal maternal separation in male mice causes decreased Sertoli cell numbers following puberty, resulting in subsequent decreased spermatogenic activity. 10.1080/15376516.2020.1841865
    Neonatal maternal separation affects metabotropic glutamate receptor 5 expression and anxiety-related behavior of adult rats. Tsotsokou Giota,Nikolakopoulou Maria,Kouvelas Elias D,Mitsacos Ada The European journal of neuroscience Exposure to early life stress leads to long-term neurochemical and behavioral alterations. Stress-induced psychiatric disorders, such as depression, have recently been linked to dysregulation of glutamate signaling, mainly via its postsynaptic receptors. The role of metabotropic glutamate receptor 5 (mGluR5) in stress-induced psychopathology has been the target of several studies in humans. In rodents, blockade of mGluR5 produces antidepressant-like actions, whereas mice lacking mGluR5 exhibit altered anxiety-like behaviors and learning. In this study, we used well-known rodent models of early life stress based on mother-infant separation during the first 3 weeks of life in order to examine the effects of neonatal maternal separation on mGluR5 expression and on anxiety-related behavior in adulthood. We observed that brief (15 min) neonatal maternal separation, but not prolonged (3 h), induced increases in mGluR5 mRNA and protein expression levels in medial prefrontal cortex and mGluR5 protein levels in dorsal, but not ventral, hippocampus of adult rat brain. Behavioral testing using the open-field and the elevated-plus maze tasks showed that brief maternal separations resulted in increased exploratory and decreased anxiety-related behavior, whereas prolonged maternal separations resulted in increased anxiety-related behavior in adulthood. The data indicate that the long-lasting effects of neonatal mother-offspring separation on anxiety-like behavior and mGluR5 expression depend on the duration of maternal separation and suggest that the increased mGluR5 receptors in medial prefrontal cortex and hippocampus of adult rats exposed to brief neonatal maternal separations may underlie their heightened ability to cope with stress. 10.1111/ejn.15358