共0篇 平均IF=NaN (-) 更多分析

    加载中

    logo
    The prognostic significance of HIST1H3B/C and H3F3A K27M mutations in diffuse midline gliomas is influenced by patient age. Journal of neuro-oncology INTRODUCTION:Diffuse midline gliomas (DMGs) are infiltrative midline gliomas harboring H3K27M mutations and are generally associated with poor outcomes. H3K27M mutations include mutations in HIST1H3B/C (H3.1), HIST2H3B/D (H3.2), or H3F3A (H3.3) genes. It is still unclear whether these mutations each portend a universally poor prognosis, or if there are any factors which modulate outcome. The main objective of this study was to study overall survival (OS) of H3.1 versus H3.3 K27M-mutant DMGs in pediatric and adult patients. METHODS:PubMed and Web of Science were searched, and we included studies if they have individual patient data of DMGs with available H3K27M genotype. Kaplan-Meier analysis and Cox regression models were used to analyze the survival of H3.1 and H3.3 mutations in each subgroup. RESULTS:We included 26 studies with 102 and 529 H3.1 and H3.3-mutant DMGs, respectively. The H3.1 mutation was more commonly seen in younger age. In pediatric population, H3.3 mutation conferred a shorter survival (median OS of 10.1 vs 14.2 months; p < 0.001) in comparison to H3.1-positive patients, which was further confirmed in the multivariate Cox analysis. Conversely, H3.3 was associated with a prolonged survival in adult patients as compared with H3.1 mutation (median OS of 14.4 vs 1.7 months; p = 0.019). CONCLUSION:We demonstrated that the prognosis of H3.1 and H3.3 K27M mutation in DMG patients is modulated by patient age. Routine H3K27M mutation genotyping in newly diagnosed DMGs may further stratify patients with these difficult tumors. 10.1007/s11060-022-04027-2
    Procollagen C-protease enhancer protein is a prognostic factor for glioma and promotes glioma development by regulating multiple tumor-related pathways and immune microenvironment. International journal of immunopathology and pharmacology OBJECTIVES:Glioma is a common type of brain tumor with high incidence and mortality rates. Procollagen C-protease enhancer protein (PCOLCE) has been shown to regulate tumor growth and metastasis in several cancers. However, the role of PCOLCE in glioma is unknown. This study aims to assess the association between PCOLCE and prognosis of glioma, and investigated the potential mechanisms. METHODS:The prognostic value of PCOLCE was determined using data from nine publicly available glioma cohorts. We also investigated the relationship between PCOLCE and glioma immune microenvironment and predicted response to immunotherapy based on the expression levels of PCOLCE. The potential roles of PCOLCE in glioma were also explored and validated in cell experiment. RESULTS:Survival analysis suggested that high-PCOLCE expression was associated with poor prognosis in glioma. Upregulation of PCOLCE enhanced an immune suppressive microenvironment in glioma by regulating immunocyte infiltration and Cancer-Immunity Cycle. Cox and ROC analysis revealed that PCOLCE was a prognostic factor for glioma and could be used to predict survival of the patients. Patients with low-PCOLCE expression were more likely to respond to Immunotherapy with ICI (immune checkpoint inhibitor) and survive longer. Enrichment analysis showed that PCOLCE was associated with multiple tumor-related pathways. Finally, we demonstrated that the knockdown of PCOLCE inhibited glioma development by regulating cell cycle and promoting apoptosis in in vitro experiments. CONCLUSION:PCOLCE promotes glioma progression by regulating multiple tumor-related pathways and immune microenvironment and can be used as a prognostic factor for glioma. 10.1177/03946320221104548
    Chaperone-mediated autophagy degrades Keap1 and promotes Nrf2-mediated antioxidative response. Aging cell Accumulation of oxidative stress is highly intertwined with aging process and contributes to aging-related diseases, such as neurodegenerative diseases. Deciphering the molecular machinery that regulates oxidative stress is fundamental to further uncovering the pathogenesis of these diseases. Chaperone-mediated autophagy (CMA), a highly selective lysosome-dependent degradation process, has been proven to be an important maintainer of cellular homeostasis through multiple mechanisms, one of which is the attenuation of oxidative stress. However, the specific mechanisms underlying this antioxidative action of CMA are not fully understood. In this study, we found that CMA directly degrades Kelch-like ECH-associated protein 1 (Keap1), an adaptor of E3 ligase complex that promotes the degradation of nuclear factor erythroid 2-related factor 2 (Nrf2), which is a master transcriptional regulator in antioxidative response. Activated CMA induced by prolonged oxidative stress led to an increase in Nrf2 level by effectively degrading Keap1, contributing to Nrf2 nuclear translocation and the expression of multiple downstream antioxidative genes. Meanwhile, together with previous study showing that Nrf2 can also transcriptionally regulate LAMP2A, the rate-limiting factor of CMA process, we reveal a feed-forward loop between CMA and Nrf2. Our study identifies CMA as a previously unrecognized regulator of Keap1-Nrf2 pathway and reinforces the antioxidative role of CMA. 10.1111/acel.13616
    L1 cell adhesion molecule high expression is associated with poor prognosis in surgically resected brain metastases from lung adenocarcinoma. Clinics (Sao Paulo, Brazil) OBJECTIVES:Accurate prognosis assessment across the heterogeneous population of brain metastases is very important, which may facilitate clinical decision-making and appropriate stratification of future clinical trials. Previous studies have shown the L1 Cell Adhesion Molecule (L1CAM) is potentially involved in human malignancies of multiple different samples and unfavorable survival. However, no data of L1CAM are available for the brain metastases from lung adenocarcinoma, especially for the one with neurosurgical resection. METHOD:The authors investigated the L1CAM expression in cranial metastatic lesions for patients with brain metastases from lung adenocarcinoma after neurosurgical resection using tissue microarrays that were obtained from the Department of Neurosurgery at the Cancer Hospital of the Chinese Academy of Medical Sciences. Furthermore, the relationship between L1CAM expression and clinic-pathological parameters, including overall survival time, was analyzed to assess the prognostic value of L1CAM. RESULTS:L1CAM high expression was found in 62.30% of brain metastases from lung adenocarcinoma and significantly correlated with brain metastasis number (p = 0.028) and Lung-molGPA score (p = 0.042). Moreover, L1CAM expression was an independent predictor of survival for brain metastases after neurosurgical resection in a multivariate analysis. Patients with L1CAM high expression had unfavorable overall survival time (p = 0.016). In addition, the multivariate analysis also showed age and extracranial transfer were also the independent prognostic factors for this type of patient with brain metastases. CONCLUSIONS:A subset of brain metastases from lung adenocarcinoma aberrantly expresses L1CAM. L1CAM is a novel independent prognostic factor for brain metastasis from lung adenocarcinoma after neurosurgical resection. 10.1016/j.clinsp.2022.100040