共0篇 平均IF=NaN (-) 更多分析

    加载中

    logo
    Control of immunity via nutritional interventions. Collins Nicholas,Belkaid Yasmine Immunity Nutrition affects all physiological processes including those linked to the development and function of our immune system. Here, we discuss recent evidence and emerging concepts supporting the idea that our newfound relationship with nutrition in industrialized countries has fundamentally altered the way in which our immune system is wired. This will be examined through the lens of studies showing that mild or transient reductions in dietary intake can enhance protective immunity while also limiting aberrant inflammatory responses. We will further discuss how trade-offs and priorities begin to emerge in the context of severe nutritional stress. In those settings, specific immunological functions are heightened to re-enforce processes and tissue sites most critical to survival. Altogether, these examples will emphasize the profound influence nutrition has over the immune system and highlight how a mechanistic exploration of this cross talk could ultimately lead to the design of novel therapeutic approaches that prevent and treat disease. 10.1016/j.immuni.2022.01.004
    Clonal lineage tracing reveals shared origin of conventional and plasmacytoid dendritic cells. Immunity Developmental origins of dendritic cells (DCs) including conventional DCs (cDCs, comprising cDC1 and cDC2 subsets) and plasmacytoid DCs (pDCs) remain unclear. We studied DC development in unmanipulated adult mice using inducible lineage tracing combined with clonal DNA "barcoding" and single-cell transcriptome and phenotype analysis (CITE-seq). Inducible tracing of Cx3cr1 hematopoietic progenitors in the bone marrow showed that they simultaneously produce all DC subsets including pDCs, cDC1s, and cDC2s. Clonal tracing of hematopoietic stem cells (HSCs) and of Cx3cr1 progenitors revealed clone sharing between cDC1s and pDCs, but not between the two cDC subsets or between pDCs and B cells. Accordingly, CITE-seq analyses of differentiating HSCs and Cx3cr1 progenitors identified progressive stages of pDC development including Cx3cr1 Ly-6D pro-pDCs that were distinct from lymphoid progenitors. These results reveal the shared origin of pDCs and cDCs and suggest a revised scheme of DC development whereby pDCs share clonal relationship with cDC1s. 10.1016/j.immuni.2022.01.016
    Bacterial infection disrupts established germinal center reactions through monocyte recruitment and impaired metabolic adaptation. Immunity Consecutive exposures to different pathogens are highly prevalent and often alter the host immune response. However, it remains unknown how a secondary bacterial infection affects an ongoing adaptive immune response elicited against primary invading pathogens. We demonstrated that recruitment of Sca-1 monocytes into lymphoid organs during Salmonella Typhimurium (STm) infection disrupted pre-existing germinal center (GC) reactions. GC responses induced by influenza, plasmodium, or commensals deteriorated following STm infection. GC disruption was independent of the direct bacterial interactions with B cells and instead was induced through recruitment of CCR2-dependent Sca-1 monocytes into the lymphoid organs. GC collapse was associated with impaired cellular respiration and was dependent on TNFα and IFNγ, the latter of which was essential for Sca-1 monocyte differentiation. Monocyte recruitment and GC disruption also occurred during LPS-supplemented vaccination and Listeria monocytogenes infection. Thus, systemic activation of the innate immune response upon severe bacterial infection is induced at the expense of antibody-mediated immunity. 10.1016/j.immuni.2022.01.013
    The domiNO effect turns macrophage activation deadly. Immunity Macrophage activation is essential for effective immunity to infection but can also contribute to disease through incompletely understood mechanisms. In this issue of Immunity, Simpson et al. reveal that death of activated macrophages integrates extrinsic and intrinsic pathways of apoptosis that contribute to damaging host responses. 10.1016/j.immuni.2022.02.010
    A high-resolution view of intra-tumoral B cell immunity. Immunity In this issue of Immunity, Meylan et al. (2022) uses spatial transcriptomics to examine B cell immunity within intratumoral tertiary lymphoid structures (TLSs). They find that B cells expand and mature into plasma cells (PCs) within the TLS, migrate along fibroblastic tracks to tumor beds, and produce IgG antibodies that target cancer cells. 10.1016/j.immuni.2022.02.009
    Plasmacytoid dendritic cells: Welcome back to the DC fold. Immunity The presumed common origin of plasmacytoid and conventional dendritic cells has been the contentious subject of recent debate. In this issue of Immunity, Feng et al. employed an inducible cell barcoding system to track clonal relationships and uncovered a surprising close developmental relationship between cDC1s and pDCs. 10.1016/j.immuni.2022.02.011
    Single-cell immunology: Past, present, and future. Ginhoux Florent,Yalin Adam,Dutertre Charles Antoine,Amit Ido Immunity The immune system is a complex, dynamic, and plastic ecosystem composed of multiple cell types that constantly sense and interact with their local microenvironment to protect from infection and maintain homeostasis. For over a century, great efforts and ingenuity have been applied to the characterization of immune cells and their microenvironments, but traditional marker-based and bulk technologies left key questions unanswered. In the past decade, the advent of single-cell genomic approaches has revolutionized our knowledge of the cellular and molecular makeup of the immune system. In this perspective, we outline the past, present, and future applications of single-cell genomics in immunology and discuss how the integration of multiomics at the single-cell level will pave the way for future advances in immunology research and clinical translation. 10.1016/j.immuni.2022.02.006
    Type 1 conventional dendritic cells maintain and guide the differentiation of precursors of exhausted T cells in distinct cellular niches. Immunity Reinvigoration of exhausted CD8 T (Tex) cells by checkpoint immunotherapy depends on the activation of precursors of exhausted T (Tpex) cells, but the local anatomical context of their maintenance, differentiation, and interplay with other cells is not well understood. Here, we identified transcriptionally distinct Tpex subpopulations, mapped their differentiation trajectories via transitory cellular states toward Tex cells, and localized these cell states to specific splenic niches. Conventional dendritic cells (cDCs) were critical for successful αPD-L1 therapy and were required to mediate viral control. cDC1s were dispensable for Tpex cell expansion but provided an essential niche to promote Tpex cell maintenance, preventing their overactivation and T-cell-mediated immunopathology. Mechanistically, cDC1s insulated Tpex cells via MHC-I-dependent interactions to prevent their activation within other inflammatory environments that further aggravated their exhaustion. Our findings reveal that cDC1s maintain and safeguard Tpex cells within distinct anatomical niches to balance viral control, exhaustion, and immunopathology. 10.1016/j.immuni.2022.03.006
    Differential regulation of transcription factor T-bet induction during NK cell development and T helper-1 cell differentiation. Immunity Adaptive CD4 T helper cells and their innate counterparts, innate lymphoid cells, utilize an identical set of transcription factors (TFs) for their differentiation and functions. However, similarities and differences in the induction of these TFs in related lymphocytes are still elusive. Here, we show that T helper-1 (Th1) cells and natural killer (NK) cells displayed distinct epigenomes at the Tbx21 locus, which encodes T-bet, a critical TF for regulating type 1 immune responses. The initial induction of T-bet in NK precursors was dependent on the NK-specific DNase I hypersensitive site Tbx21-CNS-3, and the expression of the interleukin-18 (IL-18) receptor; IL-18 induced T-bet expression through the transcription factor RUNX3, which bound to Tbx21-CNS-3. By contrast, signal transducer and activator of transcription (STAT)-binding motifs within Tbx21-CNS-12 were critical for IL-12-induced T-bet expression during Th1 cell differentiation both in vitro and in vivo. Thus, type 1 innate and adaptive lymphocytes utilize distinct enhancer elements for their development and differentiation. 10.1016/j.immuni.2022.03.005
    Nonresolving inflammation redux. Immunity Nonresolving inflammation contributes to many diseases, including COVID-19 in its fatal and long forms. Our understanding of inflammation is rapidly evolving. Like the immune system of which it is a part, inflammation can now be seen as an interactive component of a homeostatic network with the endocrine and nervous systems. This review samples emerging insights regarding inflammatory memory, inflammatory aging, inflammatory cell death, inflammatory DNA, inflammation-regulating cells and metabolites, approaches to resolving or modulating inflammation, and inflammatory inequity. 10.1016/j.immuni.2022.03.016
    DC1s shield Tpex cells to bolster PD-1 blockade. Immunity Responsiveness to PD-1 blockade depends on a cell subset known as Tpex cells, but how these cells are sustained is less understood. In this issue of Immunity, Dähling et al. show how dendritic cells form a niche for Tpex preservation. 10.1016/j.immuni.2022.03.017
    Tissue remodeling by an opportunistic pathogen triggers allergic inflammation. Immunity Different effector arms of the immune system are optimized to protect from different classes of pathogens. In some cases, pathogens manipulate the host immune system to promote the wrong type of effector response-a phenomenon known as immune deviation. Typically, immune deviation helps pathogens to avoid destructive immune responses. Here, we report on a type of immune deviation whereby an opportunistic pathogen, Pseudomonas aeruginosa (P. aeruginosa), induces the type 2 immune response resulting in mucin production that is used as an energy source by the pathogen. Specifically, P. aeruginosa-secreted toxin, LasB, processed and activated epithelial amphiregulin to induce type 2 inflammation and mucin production. This "niche remodeling" by P. aeruginosa promoted colonization and, as a by-product, allergic sensitization. Our study thus reveals a type of bacterial immune deviation by increasing nutrient supply. It also uncovers a mechanism of allergic sensitization by a bacterial virulence factor. 10.1016/j.immuni.2022.04.001