共0篇 平均IF=NaN (-) 更多分析

    加载中

    logo
    An improved protocol for isolation and culture of mesenchymal stem cells from mouse bone marrow. Huang Shuo,Xu Liangliang,Sun Yuxin,Wu Tianyi,Wang Kuixing,Li Gang Journal of orthopaedic translation Mesenchymal stem cells (MSCs) from bone marrow are main cell source for tissue repair and engineering, and vehicles of cell-based gene therapy. Unlike other species, mouse bone marrow derived MSCs (BM-MSCs) are difficult to harvest and grow due to the low MSCs yield. We report here a standardised, reliable, and easy-to-perform protocol for isolation and culture of mouse BM-MSCs. There are five main features of this protocol. (1) After flushing bone marrow out of the marrow cavity, we cultured the cells with fat mass without filtering and washing them. Our method is simply keeping the MSCs in their initial niche with minimal disturbance. (2) Our culture medium is not supplemented with any additional growth factor. (3) Our method does not need to separate cells using flow cytometry or immunomagnetic sorting techniques. (4) Our method has been carefully tested in several mouse strains and the results are reproducible. (5) We have optimised this protocol, and list detailed potential problems and trouble-shooting tricks. Using our protocol, the isolated mouse BM-MSCs were strongly positive for CD44 and CD90, negative CD45 and CD31, and exhibited tri-lineage differentiation potentials. Compared with the commonly used protocol, our protocol had higher success rate of establishing the mouse BM-MSCs in culture. Our protocol may be a simple, reliable, and alternative method for culturing MSCs from mouse bone marrow tissues. 10.1016/j.jot.2014.07.005
    Retrieval of germinal zone neural stem cells from the cerebrospinal fluid of premature infants with intraventricular hemorrhage. Fernández-Muñoz Beatriz,Rosell-Valle Cristina,Ferrari Daniela,Alba-Amador Julia,Montiel Miguel Ángel,Campos-Cuerva Rafael,Lopez-Navas Luis,Muñoz-Escalona María,Martín-López María,Profico Daniela Celeste,Blanco Manuel Francisco,Giorgetti Alessandra,González-Muñoz Elena,Márquez-Rivas Javier,Sanchez-Pernaute Rosario Stem cells translational medicine Intraventricular hemorrhage is a common cause of morbidity and mortality in premature infants. The rupture of the germinal zone into the ventricles entails loss of neural stem cells and disturbs the normal cytoarchitecture of the region, compromising late neurogliogenesis. Here we demonstrate that neural stem cells can be easily and robustly isolated from the hemorrhagic cerebrospinal fluid obtained during therapeutic neuroendoscopic lavage in preterm infants with severe intraventricular hemorrhage. Our analyses demonstrate that these neural stem cells, although similar to human fetal cell lines, display distinctive hallmarks related to their regional and developmental origin in the germinal zone of the ventral forebrain, the ganglionic eminences that give rise to interneurons and oligodendrocytes. These cells can be expanded, cryopreserved, and differentiated in vitro and in vivo in the brain of nude mice and show no sign of tumoral transformation 6 months after transplantation. This novel class of neural stem cells poses no ethical concerns, as the fluid is usually discarded, and could be useful for the development of an autologous therapy for preterm infants, aiming to restore late neurogliogenesis and attenuate neurocognitive deficits. Furthermore, these cells represent a valuable tool for the study of the final stages of human brain development and germinal zone biology. 10.1002/sctm.19-0323
    Mesenchymal Stem Cells for Severe Intraventricular Hemorrhage in Preterm Infants: Phase I Dose-Escalation Clinical Trial. Ahn So Yoon,Chang Yun Sil,Sung Se In,Park Won Soon Stem cells translational medicine We previously demonstrated that transplanting mesenchymal stem cells (MSCs) improved recovery from brain injury induced by severe intraventricular hemorrhage (IVH) in newborn rats. To assess the safety and feasibility of MSCs in preterm infants with severe IVH, we performed a phase I dose-escalation clinical trial. The first three patients received a low dose of MSCs (5 × 10 cells/kg), and the next six received a high dose (1 × 10 cells/kg). We assessed adverse outcomes, including mortality and the progress of posthemorrhagic hydrocephalus. Intraventricular transplantation of MSCs was performed in nine premature infants with mean gestational age of 26.1 ± 0.7 weeks and birth weight of 808 ± 85 g at 11.6 ± 0.9 postnatal days. Treatment with MSCs was well tolerated, and no patients showed serious adverse effects or dose-limiting toxicities attributable to MSC transplantation. There was no mortality in IVH patients receiving MSCs. Infants who underwent shunt surgery showed a higher level of interleukin (IL)-6 in cerebrospinal fluid (CSF) obtained before MSC transplantation in comparison with infants who did not receive a shunt. Levels of IL-6 and tumor necrosis factor-α in initially obtained CSF correlated significantly with baseline ventricular index. Intraventricular transplantation of allogeneic human UCB-derived MSCs into preterm infants with severe IVH is safe and feasible, and warrants a larger, and controlled, phase II study. Stem Cells Translational Medicine 2018;7:847-856. 10.1002/sctm.17-0219
    Brain-derived neurotropic factor mediates neuroprotection of mesenchymal stem cell-derived extracellular vesicles against severe intraventricular hemorrhage in newborn rats. Ahn So Yoon,Sung Dong Kyung,Kim Young Eun,Sung Sein,Chang Yun Sil,Park Won Soon Stem cells translational medicine Brain-derived neurotropic factor (BDNF), which is secreted by mesenchymal stem cells (MSCs), protects against severe intraventricular hemorrhage (IVH)-induced brain injuries. Although the paracrine protective effects of MSCs are mediated primarily by extracellular vesicles (EVs), the therapeutic efficacy of MSC-derived EVs and the role of the BDNF in the EVs have not been studied. This study aimed to determine whether MSC-derived EVs attenuate severe IVH-induced brain injuries, and if so, whether this protection is mediated by BDNF transfer. We compared the therapeutic efficacy of MSCs, MSC-derived EVs with or without BDNF knockdown, and fibroblast-derived EVs in vitro in rat cortical neuronal cells challenged with thrombin and in vivo in newborn rats by injecting 200 μL of blood at postnatal day (P) 4 and transplanting 1 × 10 MSCs or 20 μg of EVs at P6. The MSCs and MSC-derived EVs, but not the EVs derived from BDNF-knockdown MSCs or fibroblasts, significantly attenuated in vitro thrombin-induced neuronal cell death and in vivo severe IVH-induced brain injuries such as increased neuronal cell death, astrogliosis, and inflammatory responses; reduced myelin basic protein and neurogenesis; led to progression of posthemorrhagic hydrocephalus; and impaired behavioral test performance. Our data indicate that MSC-derived EVs are as effective as parental MSCs in attenuating severe IVH-induced brain injuries, and this neuroprotection is primarily mediated by BDNF transfer via EVs. 10.1002/sctm.20-0301