共0篇 平均IF=NaN (-) 更多分析

    加载中

    logo
    Fetal akinesia: review of the genetics of the neuromuscular causes. Ravenscroft Gianina,Sollis Elliot,Charles Adrian K,North Kathryn N,Baynam Gareth,Laing Nigel G Journal of medical genetics Fetal akinesia refers to a broad spectrum of disorders in which the unifying feature is a reduction or lack of fetal movement. Fetal akinesias may be caused by defects at any point along the motor system pathway including the central and peripheral nervous system, the neuromuscular junction and the muscle, as well as by restrictive dermopathy or external restriction of the fetus in utero. The fetal akinesias are clinically and genetically heterogeneous, with causative mutations identified to date in a large number of genes encoding disparate parts of the motor system. However, for most patients, the molecular cause remains unidentified. One reason for this is because the tools are only now becoming available to efficiently and affordably identify mutations in a large panel of disease genes. Next-generation sequencing offers the promise, if sufficient cohorts of patients can be assembled, to identify the majority of the remaining genes on a research basis and facilitate efficient clinical molecular diagnosis. The benefits of identifying the causative mutation(s) for each individual patient or family include accurate genetic counselling and the options of prenatal diagnosis or preimplantation genetic diagnosis. In this review, we summarise known single-gene disorders affecting the spinal cord, peripheral nerves, neuromuscular junction or skeletal muscles that result in fetal akinesia. This audit of these known molecular and pathophysiological mechanisms involved in fetal akinesia provides a basis for improved molecular diagnosis and completing disease gene discovery. 10.1136/jmedgenet-2011-100211
    Blastomere biopsy influences epigenetic reprogramming during early embryo development, which impacts neural development and function in resulting mice. Wu Yibo,Lv Zhuo,Yang Yang,Dong Guoying,Yu Yang,Cui Yiqiang,Tong Man,Wang Liu,Zhou Zuomin,Zhu Hui,Zhou Qi,Sha Jiahao Cellular and molecular life sciences : CMLS Blastomere biopsy is used in preimplantation genetic diagnosis; however, the long-term implications on the offspring are poorly characterized. We previously reported a high risk of memory defects in adult biopsied mice. Here, we assessed nervous function of aged biopsied mice and further investigated the mechanism of neural impairment after biopsy. We found that aged biopsied mice had poorer spatial learning ability, increased neuron degeneration, and altered expression of proteins involved in neural degeneration or dysfunction in the brain compared to aged control mice. Furthermore, the MeDIP assay indicated a genome-wide low methylation in the brains of adult biopsied mice when compared to the controls, and most of the genes containing differentially methylated loci in promoter regions were associated with neural disorders. When we further compared the genomic DNA methylation profiles of 7.5-days postconception (dpc) embryos between the biopsy and control group, we found the whole genome low methylation in the biopsied group, suggesting that blastomere biopsy was an obstacle to de novo methylation during early embryo development. Further analysis on mRNA profiles of 4.5-dpc embryos indicated that reduced expression of de novo methylation genes in biopsied embryos may impact de novo methylation. In conclusion, we demonstrate an abnormal neural development and function in mice generated after blastomere biopsy. The impaired epigenetic reprogramming during early embryo development may be the latent mechanism contributing to the impairment of the nervous system in the biopsied mice, which results in a hypomethylation status in their brains. 10.1007/s00018-013-1466-2
    Aberrant epigenetic modification in murine brain tissues of offspring from preimplantation genetic diagnosis blastomere biopsies. Zhao Hong-Cui,Zhao Yue,Li Min,Yan Jie,Li Li,Li Rong,Liu Ping,Yu Yang,Qiao Jie Biology of reproduction Preimplantation genetic diagnosis (PGD) has been prevalent in the field of assisted reproductive technology, yet the long-term risks of PGD to offspring remain unknown. In the present study, the early development of PGD embryos, postimplantation characteristics, and birth rate following PGD were determined. Moreover, the behavior of the offspring conceived from the biopsied embryos was evaluated with the Morris water maze and pole climbing tests. Finally, the epigenetic modification of the global genome and methylation patterns for the H19, Igf2, and Snrpn imprinted genes were identified. The results indicated a significant delay in the blastocoel formation of PGD embryos and a decrease in the implantation ability of these embryos, which was related to the decreased number of cells in the PGD blastocysts. The PGD mice spent more time on both the nontrained quadrant of the water maze and climbing down the pole. Furthermore, the 5-hydroxymethylcytosine content in the brain tissues of PGD mice was significantly increased, but no difference was found in 5-methylcytosine content. The differentially methylated regions of H19/Igf2 exhibited decreased methylation patterns, but that of Snrpn was normal, compared to the control group. Quantitative RT-PCR indicated that Igf2 mRNA expression was significantly decreased but that H19 and Snrpn mRNAs were expressed normally. In conclusion, blastomere biopsies in PGD procedures carry potential risks to embryo development and the behavior of resulting offspring; these risks may arise from aberrant epigenetic modification and methylation patterns in brain tissues. Further studies are needed to better understand the risks associated with PGD. 10.1095/biolreprod.113.109926
    Preimplantation genetic diagnosis for inherited neurological disorders. Tur-Kaspa Ilan,Jeelani Roohi,Doraiswamy P Murali Nature reviews. Neurology Preimplantation genetic diagnosis (PGD) is an option for couples at risk of having offspring with an inherited debilitating or fatal neurological disorder who wish to conceive a healthy child. PGD has been carried out for conditions with various modes of inheritance, including spinal muscular atrophy, Huntington disease, fragile X syndrome, and chromosomal or mitochondrial disorders, and for susceptibility genes for cancers with nervous system involvement. Most couples at risk of transmitting a genetic mutation would opt for PGD over prenatal testing and possible termination of a pregnancy. The aim of this Perspectives article is to assist neurologists in counselling and treating patients who wish to explore the option of PGD to enable conception of an unaffected child. PGD can be accomplished for most disorders in which the genetic basis is known, and we argue that it is time for clinicians and neurological societies to consider the evidence and to formulate guidelines for the responsible integration of PGD into modern preventative neurology. 10.1038/nrneurol.2014.84
    Corino de Andrade disease: mechanisms and impact on reproduction. Lopes Rita A,Coelho Teresa,Barros Alberto,Sousa Mário JBRA assisted reproduction Familial amyloid polyneuropathy was first described by Corino de Andrade in 1952 in Northern Portugal. It is a fatal autosomal dominant neurodegenerative disorder characterized by a progression of neurologic symptoms, beginning early in the reproductive life. The Transthyretin gene mutation originates a mutated protein that precipitates in the connective tissue as amyloid deposits. This disease is presently named Transthyretin-related hereditary amyloidosis. We performed an extensive review on this disease based on searches in Medical databases and in paper references. In this review, we briefly summarize the epidemiology and the mechanisms involved on amyloid deposition; we detailed how to evaluate the mechanisms implicated on the development of the major signs and symptoms associated with reproductive dysfunction; and we discuss the mechanisms involved in secondary sexual dysfunction after psychological treatments. Treatment of the disease is directed towards relieving specific symptoms in association with liver transplant, and molecular and genetic therapeutics. Although the current clinical trials indicate symptoms relief, no data on the reproductive function was reported. Thus, preimplantation genetic diagnosis is presently the only available technique that eradicates the disease as it avoids the birth of new patients. 10.5935/1518-0557.20170025
    Two novel pathogenic variants of L1CAM gene in two fetuses with isolated X‑linked hydrocephaly: A case report. Xie Bobo,Luo Jingsi,Lei Yaqin,Yang Qi,Li Mengting,Yi Shang,Luo Shiyu,Wang Jin,Qin Zailong,Yang Zuojian,Wei Hongwei,Fan Xin Molecular medicine reports Hydrocephalus due to aqueductal stenosis (HSAS; Online Mendelian Inheritance in Man #307000) is a rare X‑linked, recessively‑inherited disease characterized by severe hydrocephaly and occasionally adducted thumbs, in addition to intellectual disability and spasticity in surviving individuals. The present study described two fetuses with severely enlarged ventricles of the brain. The clinical diagnosis of HSAS was made on the basis of family history and sonographic findings. Molecular testing of the L1 cell adhesion molecule (L1CAM) gene revealed two novel hemizygous L1CAM variants, c.998C>T(p.Pro333Leu) and c.2362G>T(p.Val788Phe). The variants affect the highly conserved amino acids which are located in the key domains of the protein (the fourth Ig domain and second FnIII domain, respectively). The two variants were predicted to be 'disease causing' by a number of prediction tools, and have been classified as likely pathogenic following the American College of Medical Genetics and Genomics/Association for Molecular Pathology guidelines. The present study highlights the importance of combining family history, prenatal ultrasonography and molecular testing in the diagnosis of HSAS. The novel variants expand the mutational spectrum of L1CAM gene in the Chinese population, and could be used in genetic counseling, carrier testing of female relatives, and prenatal, as well as preimplantation genetic diagnosis. 10.3892/mmr.2018.9583
    A homozygous truncating NALCN variant in two Afro-Caribbean siblings with hypotonia and dolichocephaly. Ope Omotayo,Bhoj Elizabeth J,Nelson Beverly,Li Dong,Hakonarson Hakon,Sobering Andrew K American journal of medical genetics. Part A NALCN encodes a sodium ion leak channel expressed in the nervous system that conducts a persistent influx of sodium ions to facilitate action potential formation. Homozygous or compound heterozygous loss of function variants in NALCN cause infantile hypotonia with psychomotor retardation and characteristic facies-1 (IHPRF1; OMIM 615419). Through exome and Sanger sequencing, we found two siblings of Afro-Caribbean ancestry who are homozygous for a known NALCN pathogenic variant, p.Arg735Ter, leading to failure to thrive, severe hypotonia, and dolichocephaly. The older sibling died suddenly without a known etiology after evaluation but before molecular diagnosis. An international collaboration originating from a resource limited Caribbean island facilitated molecular diagnosis. Due to its small population, geographical isolation, and low socioeconomic status, the island lacks many specialty medical services, including clinical genetics. Descriptions of genetic disorders affecting individuals of Afro-Caribbean ancestry are rarely reported in the medical literature. Diagnosis of IHPRF1 is important, as individuals with biallelic pathogenic NALCN variants are severely affected and potentially are at risk for cardiorespiratory arrest. Additionally, knowing the pathogenic variants allows the possibility of prenatal or preimplantation genetic diagnosis. 10.1002/ajmg.a.61744
    Review: Preimplantation genetic diagnosis (PGD) as a reproductive option in patients with neurodegenerative disorders. Sciorio Romualdo,Aiello Raffaele,Irollo Alfonso Maria Reproductive biology Preimplantation genetic diagnosis (PGD) was introduced in the late 1980s and represents an option for couples at risk of transmitting an inherited, debilitating or neurological disorder to their children. From a cleavage or blastocyst stage embryo, cell(s) are collected and then genetically analyzed for disease; enabling an unaffected embryo to be transferred into the uterus cavity. Nowadays, PGD has been carried out for several hundreds of heritable conditions including myotonic dystrophy, and for susceptibility genes involved in cancers of the nervous system. Currently, advanced molecular technologies with better resolution, such as array comparative genomic hybridisation, quantitative polymerase chain reaction, and next generation sequencing, are on the verge of becoming the gold standard in embryo preimplantation screening. Given this, it may be time for neurological societies to consider the published evidence to develop new guidelines for the integration of PGD into modern preventative neurology. Therefore, the main aim of this review is to illustrate the option of PGD to enable conception of an unaffected baby, and to assist clinicians and neurologists in the counseling of the patient at risk of transmitting an inherited disease, to explore the genetic journey throughout in vitro fertilization IVF with PGD. 10.1016/j.repbio.2020.100468
    Successful Pregnancy Following Preimplantation Genetic Diagnosis of Adrenoleukodystrophy by Detection of Mutation on the Gene. The application of clinical genetics BACKGROUND:Adrenoleukodystrophy (ALD) is a rare sex-linked recessive disorder that disrupts adrenal gland function and the white matter of the nervous system. According to recent epidemiological statistics, up to this moment, the disease is the most recorded peroxisomal disorder. is a gene related to ALD, with more than 850 unique mutations have been reported. Early diagnosis of the disease would help to consult families with ALD to plan for interventions to prevent passing along the pathogenic mutations to their children. MATERIAL AND METHODS:A heterozygous gene mutation related to ALD found in a Vietnamese woman was used to design primers for the polymerase chain reaction (PCR) to amplify the segment spanning the mutation. Then, combining sequencing methods for the PCR products, especially Sanger sequencing and next-generation sequencing (NGS), a protocol was developed to detect mutations on the gene to apply for the DNA samples of in-vitro fertilization (IVF) embryos biopsied at the blastocyst stage to screen for pathogenic alleles. RESULTS:The established protocol for PGD of ALD detected mutant alleles in 5/8 embryos (62.5%), while the remaining 3 embryos (37.5%) did not carry any mutation. One of the 3 embryos was transferred, and a healthy female baby was born after a full-term pregnancy. CONCLUSION:The developed protocol was helpful for the preimplantation genetic diagnosis process to help families with the monogenic disease of ALD but wish to have healthy children. 10.2147/TACG.S318884
    Variable expression of a novel PLP1 mutation in members of a family with Pelizaeus-Merzbacher disease. Fattal-Valevski Aviva,DiMaio Miriam S,Hisama Fuki M,Hobson Grace M,Davis-Williams Angelique,Garbern James Y,Mahoney Maurice J,Kolodny Edwin H,Pastores Gregory M Journal of child neurology Pelizaeus-Merzbacher disease is a rare X-linked disorder caused by mutations of the proteolipid protein 1 gene that encodes a structural component of myelin. It is characterized by progressive psychomotor delay, nystagmus, spastic quadriplegia, and cerebellar ataxia. Variable clinical expression was seen in 5 members of a family bearing a novel missense mutation in proteolipid protein 1, c.619T>C. Symptomatic patients included a 6-year-old girl, her younger brother, and their maternal uncle, a 29-year-old college graduate initially diagnosed with cerebral palsy; their brain magnetic resonance imaging studies showed diffuse dysmyelination. The mother had a history of delayed walking, achieved independently by age 3; she and the maternal grandmother were asymptomatic on presentation. Review of clinical information and family history led to consideration of Pelizaeus-Merzbacher disease. Subsequent identification of the causal mutation enabled preimplantation genetic diagnosis and the birth of an unaffected child. 10.1177/0883073808327833