共0篇 平均IF=NaN (-) 更多分析

    加载中

    logo
    Cartilage lamina splendens inspired nanostructured coating for biomaterial lubrication. Wan Hongping,Ren Ke,Kaper Hans J,Sharma Prashant K Journal of colloid and interface science Biomaterials that are used in biological systems, such as polycarbonate urethane (PCU) knee joint implants and contact lenses, generally lack lubrication. This limits their integration with the body and impedes their function. Here, we propose a nanostructured film based on hydrophilic polysaccharide hyaluronic acid conjugated with dopamine (HADN) and zwitterionic reduced glutathione (Glu), which forms a composite coating (HADN-Glu) to enhance the lubrication between cartilage and PCU. HADN was synthesized by carbodiimide chemistry between hyaluronic acid and dopamine and deposited on PCU surface under mild oxidative conditions. Then, zwitterionic peptide-reduced glutathione was bioconjugated to HADN, forming a lubrication film. Analysis based on X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM) and wettability indicated that HADN and Glu had grafted successfully onto the PCU surface. Measurements of the coefficient of friction (COF), friction energy dissipation and cartilage roughness indicated that cartilage was effectively protected by the high lubrication of HADN-Glu. Both at low and high applied loads, this effect was likely due to the enhanced boundary lubrication enabled by HADN-Glu on the PCU surface. Moreover, HADN-Glu is highly biocompatible with chondrocyte cells, suggesting that this film will benefit the design of implants where lubrication is needed. 10.1016/j.jcis.2021.03.052