共0篇 平均IF=NaN (-) 更多分析

    加载中

    logo
    Quantitative evaluation of upper limb ataxia in spinocerebellar ataxias. Annals of clinical and translational neurology OBJECTIVE:To quantitatively evaluate upper limb ataxia using a novel pen-like sensor device in patients with spinocerebellar ataxia (SCA) and to assess its validity, reliability, and sensitivity to disease progression. METHODS:We designed a cross-sectional and longitudinal study of patients with SCA and healthy controls. Upper limb ataxia was evaluated using a device that measures the three-dimensional position every 10 msec. Participants were instructed to move a pen-like part of the device iteratively between two buttons. We evaluated the time, length, velocity, and variation coefficient of the stroke, and calculated the distortion index using the mean squared error. The following scales were also evaluated: Scale for the Assessment and Rating of Ataxia (SARA), the International Cooperative Ataxia Rating Scale (ICARS), and the nine-hole pegboard test. Subjects were followed 12 months after the baseline evaluation. RESULTS:A total of 42 patients with SCA and 33 healthy controls were enrolled and evaluated. For all ataxia indices measured using the device there were significant differences between healthy controls and patients with SCA. Among the ataxia indices, the distortion index showed the strongest correlation with the SARA and ICARS upper limb score (Pearson's r = 0.647 and 0.722, respectively). Test-retest reliability was high for most of the ataxia indices. In the longitudinal analysis, the distortion index showed high standardized response mean and adjusted effect size, regardless of disease severity. INTERPRETATION:Our study demonstrated that the distortion index is a reliable functional marker that is sensitive to longitudinal change in patients with SCA. 10.1002/acn3.51528
    The molecular basis of spinocerebellar ataxia type 48 caused by a de novo mutation in the ubiquitin ligase CHIP. The Journal of biological chemistry The spinocerebellar ataxias (SCAs) are a class of incurable diseases characterized by degeneration of the cerebellum that results in movement disorder. Recently, a new heritable form of SCA, spinocerebellar ataxia type 48 (SCA48), was attributed to dominant mutations in STIP1 homology and U box-containing 1 (STUB1); however, little is known about how these mutations cause SCA48. STUB1 encodes for the protein C terminus of Hsc70 interacting protein (CHIP), an E3 ubiquitin ligase. CHIP is known to regulate proteostasis by recruiting chaperones via a N-terminal tetratricopeptide repeat domain and recruiting E2 ubiquitin-conjugating enzymes via a C-terminal U-box domain. These interactions allow CHIP to mediate the ubiquitination of chaperone-bound, misfolded proteins to promote their degradation via the proteasome. Here we have identified a novel, de novo mutation in STUB1 in a patient with SCA48 encoding for an A52G point mutation in the tetratricopeptide repeat domain of CHIP. Utilizing an array of biophysical, biochemical, and cellular assays, we demonstrate that the CHIP point mutant retains E3-ligase activity but has decreased affinity for chaperones. We further show that this mutant decreases cellular fitness in response to certain cellular stressors and induces neurodegeneration in a transgenic Caenorhabditis elegans model of SCA48. Together, our data identify the A52G mutant as a cause of SCA48 and provide molecular insight into how mutations in STUB1 cause SCA48. 10.1016/j.jbc.2022.101899
    Network Reconfiguration Among Cerebellar Visual, Motor Regions Affects Movement Function Spinocerebellar Ataxia Type . Frontiers in aging neuroscience Background:Spinocerebellar ataxia type 3 (SCA3) is a rare movement disorder characterized with ataxia. Previous studies on movement disorders show that the whole-brain functional network tends to be more regular, and these reconfigurations correlate with genetic and clinical variables. Methods:To test whether the brain network in patients with SCA3 follows a similar reconfiguration course to other movement disorders, we recruited 41 patients with SCA3 (mean age = 40.51 ± 12.13 years; 23 male) and 41 age and sex-matched healthy individuals (age = 40.10 ± 11.56 years; 24 male). In both groups, the whole-brain network topology of resting-state functional magnetic resonance imaging (rs-fMRI) was conducted using graph theory, and the relationships among network topologies, cytosine-adenine-guanine (CAG) repeats, clinical symptoms, and functional connectivity were explored in SCA3 patients using partial correlation analysis, controlling for age and sex. Results:The brain networks tended to be more regular with a higher clustering coefficient, local efficiency, and modularity in patients with SCA3. Hubs in SCA3 patients were reorganized as the number of hubs increased in motor-related areas and decreased in cognitive areas. At the global level, small-worldness and normalized clustering coefficients were significantly positively correlated with clinical motor symptoms. At the nodal level, the clustering coefficient and local efficiency increased significantly in the visual (bilateral cuneus) and sensorimotor (right cerebellar lobules IV, V, VI) networks and decreased in the cognitive areas (right middle frontal gyrus). The clustering coefficient and local efficiency in the bilateral cuneus gyrus were negatively correlated with clinical motor symptoms. The functional connectivity between right caudate nucleus and bilateral calcarine gyrus were negatively correlated with disease duration, while connectivity between right posterior cingulum gyrus and left cerebellar lobule III, left inferior occipital gyrus and right cerebellar lobule IX was positively correlated. Conclusion:Our results demonstrate that a more regular brain network occurred in SCA3 patients, with motor and visual-related regions, such as, cerebellar lobules and cuneus gyrus, both forayed neighbor nodes as "resource predators" to compensate for normal function, with motor and visual function having the higher priority comparing with other high-order functions. This study provides new information about the neurological mechanisms underlying SCA3 network topology impairments in the resting state, which give a potential guideline for future clinical treatments. Clinical Trial Registration:[www.ClinicalTrials.gov], identifier [ChiCTR1800019901]. 10.3389/fnagi.2022.773119
    Heterozygous PNPT1 Variants Cause Spinocerebellar Ataxia Type 25. Annals of neurology OBJECTIVE:Dominant spinocerebellar ataxias (SCA) are characterized by genetic heterogeneity. Some mapped and named loci remain without a causal gene identified. Here we applied next generation sequencing (NGS) to uncover the genetic etiology of the SCA25 locus. METHODS:Whole-exome and whole-genome sequencing were performed in families linked to SCA25, including the French family in which the SCA25 locus was originally mapped. Whole exome sequence data were interrogated in a cohort of 796 ataxia patients of unknown etiology. RESULTS:The SCA25 phenotype spans a slowly evolving sensory and cerebellar ataxia, in most cases attributed to ganglionopathy. A pathogenic variant causing exon skipping was identified in the gene encoding Polyribonucleotide Nucleotidyltransferase PNPase 1 (PNPT1) located in the SCA25 linkage interval. A second splice variant in PNPT1 was detected in a large Australian family with a dominant ataxia also mapping to SCA25. An additional nonsense variant was detected in an unrelated individual with ataxia. Both nonsense and splice heterozygous variants result in premature stop codons, all located in the S1-domain of PNPase. In addition, an elevated type I interferon response was observed in blood from all affected heterozygous carriers tested. PNPase notably prevents the abnormal accumulation of double-stranded mtRNAs in the mitochondria and leakage into the cytoplasm, associated with triggering a type I interferon response. INTERPRETATION:This study identifies PNPT1 as a new SCA gene, responsible for SCA25, and highlights biological links between alterations of mtRNA trafficking, interferonopathies and ataxia. ANN NEUROL 2022. 10.1002/ana.26366
    Spinocerebellar Ataxia Type 10 with Atypical Clinical Manifestation in Han Chinese. Cerebellum (London, England) Spinocerebellar ataxia type 10 (SCA10) is an autosomal dominant cerebellar ataxia accompanied by extracerebellar signs and other neurological disorders. It is caused by an expansion of the ATTCT pentanucleotide repeat in intron 9 of ATXN10. Cases of SCA10, formerly confined to America, have been reported in Europe and Asia. In the present study, we aim to report an atypical SCA10 family in China and provide a reference for the diagnosis of SCA10 in Asia by comparing their clinical and genetic features with former SCA10 pedigrees. Genomic DNA was extracted from patients and subjected to RP-PCR (repeat-primed PCR), Southern blotting, and haplotype analysis to determine the genetic pathogenesis. Patients with SCA10 in this pedigree demonstrated atypical SCA10 manifestations, including the absence of seizures and ocular abnormalities. Magnetic resonance imaging (MRI) showed cerebellar atrophy in five patients with available data. RP-PCR and Southern blotting revealed abnormal expansion. Analysis of single nucleotide polymorphisms (SNPs) surrounding the SCA10 locus in the proband and other affected family members revealed the "C-expansion-G-G-C" haplotype, consistent with former studies. These findings imply that the SCA10 mutation may have occurred before the Amerindian migration from East Asia to North America. It also suggested that SCA10 should be taken into account during differential diagnosis in patients of Asian ancestry, even if they do not present with typical features such as epilepsy. 10.1007/s12311-022-01405-4
    A resting-state fMRI pattern of spinocerebellar ataxia type 3 and comparison with F-FDG PET. NeuroImage. Clinical Spinocerebellar ataxia type 3 (SCA3) is a rare genetic neurodegenerative disease. The neurobiological basis of SCA3 is still poorly understood, and up until now resting-state fMRI (rs-fMRI) has not been used to study this disease. In the current study we investigated (multi-echo) rs-fMRI data from patients with genetically confirmed SCA3 (n = 17) and matched healthy subjects (n = 16). Using independent component analysis (ICA) and subsequent regression with bootstrap resampling, we identified a pattern of differences between patients and healthy subjects, which we coined the fMRI SCA3 related pattern (fSCA3-RP) comprising cerebellum, anterior striatum and various cortical regions. Individual fSCA3-RP scores were highly correlated with a previously published F-FDG PET pattern found in the same sample (rho = 0.78, P = 0.0003). Also, a high correlation was found with the Scale for Assessment and Rating of Ataxia scores (r = 0.63, P = 0.007). No correlations were found with neuropsychological test scores, nor with levels of grey matter atrophy. Compared with the F-FDG PET pattern, the fSCA3-RP included a more extensive contribution of the mediofrontal cortex, putatively representing changes in default network activity. This rs-fMRI identification of additional regions is proposed to reflect a consequence of the nature of the BOLD technique, enabling measurement of dynamic network activity, compared to the more static F-FDG PET methodology. Altogether, our findings shed new light on the neural substrate of SCA3, and encourage further validation of the fSCA3-RP to assess its potential contribution as imaging biomarker for future research and clinical use. 10.1016/j.nicl.2022.103023
    Calpains as novel players in the molecular pathogenesis of spinocerebellar ataxia type 17. Cellular and molecular life sciences : CMLS Spinocerebellar ataxia type 17 (SCA17) is a neurodegenerative disease caused by a polyglutamine-encoding trinucleotide repeat expansion in the gene of transcription factor TATA box-binding protein (TBP). While its underlying pathomechanism is elusive, polyglutamine-expanded TBP fragments of unknown origin mediate the mutant protein's toxicity. Calcium-dependent calpain proteases are protagonists in neurodegenerative disorders. Here, we demonstrate that calpains cleave TBP, and emerging C-terminal fragments mislocalize to the cytoplasm. SCA17 cell and rat models exhibited calpain overactivation, leading to excessive fragmentation and depletion of neuronal proteins in vivo. Transcriptome analysis of SCA17 cells revealed synaptogenesis and calcium signaling perturbations, indicating the potential cause of elevated calpain activity. Pharmacological or genetic calpain inhibition reduced TBP cleavage and aggregation, consequently improving cell viability. Our work underlines the general significance of calpains and their activating pathways in neurodegenerative disorders and presents these proteases as novel players in the molecular pathogenesis of SCA17. 10.1007/s00018-022-04274-6