logo logo
Expression of microRNAs and IRAK1 pathway genes are altered in gastric cancer patients with Helicobacter pylori infection. Ranjbar Reza,Hesari AmirReza,Ghasemi Faezeh,Sahebkar Amirhossein Journal of cellular biochemistry Gastric cancer (GC) is among the most common cancer types in the world and one of the most lethal gastrointestinal cancers. MicroRNAs (miRNAs) can be of great importance in the early detection of GC. This study aimed to investigate some miRNAs and the genes involved in IRAK1 pathways in the serum of GC patients with Helicobacter pylori (H. pylori) infections compared to the control group. Total RNA was extracted from the serum of GC patients with H. pylori infection and healthy volunteers. The expression levels of miRNAs and the genes were assessed using Real time RT-PCR with specific primers. Our data showed that miR-146, miR-375, and Let-7 were down-regulated and miR-19 and miR-21 were up-regulated in GC patients with H. pylori infection. Other genes involved in the pathways such as RAS, MYC, NFKB, JUN, TRAF6, and IRAK4 were overexpressed; while the expression of PTEN gene was decreased compared to the control group. Expression of miRNAs and IRAK1 pathway genes are altered in patients with GC and H. pylori infection. This suggests a potential role for the above-mentioned miRNAs and genes in the diagnosis of GC. 10.1002/jcb.27067
Deciphering the Role of Innate Immune NF-ĸB Pathway in Pancreatic Cancer. Khurana Namrata,Dodhiawala Paarth B,Bulle Ashenafi,Lim Kian-Huat Cancers Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal cancers with no effective treatment option. A predominant hallmark of PDAC is the intense fibro-inflammatory stroma which not only physically collapses vasculature but also functionally suppresses anti-tumor immunity. Constitutive and induced activation of the NF-κB transcription factors is a major mechanism that drives inflammation in PDAC. While targeting this pathway is widely supported as a promising therapeutic strategy, clinical success is elusive due to a lack of safe and effective anti-NF-κB pathway therapeutics. Furthermore, the cell type-specific contribution of this pathway, specifically in neoplastic cells, stromal fibroblasts, and immune cells, has not been critically appraised. In this article, we highlighted seminal and recent literature on molecular mechanisms that drive NF-κB activity in each of these major cell types in PDAC, focusing specifically on the innate immune Toll-like/IL-1 receptor pathway. We reviewed recent evidence on the signaling interplay between the NF-κB and oncogenic KRAS signaling pathways in PDAC cells and their collective contribution to cancer inflammation. Lastly, we reviewed clinical trials on agents that target the NF-κB pathway and novel therapeutic strategies that have been proposed in preclinical studies. 10.3390/cancers12092675
Interleukin-1 receptor-associated kinase 4 as a potential biomarker: Overexpression predicts poor prognosis in patients with glioma. Wang Jialin,Liu Binfeng,Yao Jiawei,Liu Zhendong,Wang Hongbo,Zhang Bo,Lian Xiaoyu,Ren Zhishuai,Liu Liyun,Gao Yanzheng Oncology letters The undetectable onset of glioma and the difficulty of surgery lead to a poor prognosis. Appropriate biomarkers for diagnosis and treatment need to be identified. Interleukin-1 receptor-associated kinase 4 (IRAK4) is involved in the initiation and progression of cancer. However, up until now, no report has revealed the relationship between IRAK4 and glioma. The present study aimed to examine the expression of IRAK4 in glioma, and to determine if there was a relationship between IRAK4 expression and clinical outcomes or survival prognosis. Thousands of glioma tissue samples and corresponding clinical information were obtained from various databases. Then a series of bioinformatics methods were used to reveal the role of IRAK4 in glioma. Finally, reverse transcription-quantitative PCR technology was used to verify the bioinformatics results. The study found that the expression of IRAK4 was significantly increased in glioma compared with the control brain tissue samples, and IRAK4, as an independent prognostic factor, shortened the overall survival time of patients with glioma. Gene Set Enrichment Analysis showed that IRAK4 promoted the activation of cell signalling pathways, such as NOD-like and Toll-like receptor signalling pathways. Co-expression analysis showed that the expression of IRAK4 was correlated with CMTM6, MOB1A and other genes. The present study demonstrated the role of IRAK4 as an oncogene in the pathological process of glioma for the first time, and highlights the potential of IRAK4 as a biomarker for prognostic evaluation and treatment of glioma. 10.3892/ol.2021.12516
Tumor cell intrinsic RON signaling suppresses innate immune responses in breast cancer through inhibition of IRAK4 signaling. Cancer letters Increasing evidence suggests that cancer cells require both alterations in intrinsic cellular processes and the tumor microenvironment for tumor establishment, growth, and progression to metastatic disease. Despite this, knowledge of tumor-cell intrinsic molecular mechanisms controlling both tumor cell processes as well as the tumor microenvironment is limited. In this study, we provide evidence demonstrating the novel role of RON signaling in regulating breast cancer initiation, progression, and metastasis through modulation of tumor cell intrinsic processes and the tumor microenvironment. Using clinically relevant models of breast cancer, we show that RON signaling in the mammary epithelial tumor cells promotes tumor cell survival and proliferation as well as an immunopermissive microenvironment associated with decreased M1 macrophage, natural killer (NK) cell, and CD8 T cell recruitment. Moreover, we demonstrate that RON signaling supports these phenotypes through novel mechanisms involving suppression of IRAK4 signaling and inhibition of type I Interferons. Our studies indicate that activation of RON signaling within breast cancer cells promotes tumor cell intrinsic growth and immune evasion which support breast cancer progression and highlight the role of targeting RON signaling as a potential therapeutic strategy against breast cancer. 10.1016/j.canlet.2021.01.019