logo logo
Autophagy in Cardiovascular Aging. Abdellatif Mahmoud,Sedej Simon,Carmona-Gutierrez Didac,Madeo Frank,Kroemer Guido Circulation research Cardiovascular diseases are the most prominent maladies in aging societies. Indeed, aging promotes the structural and functional declines of both the heart and the blood circulation system. In this review, we revise the contribution of known longevity pathways to cardiovascular health and delineate the possibilities to interfere with them. In particular, we evaluate autophagy, the intracellular catabolic recycling system associated with life- and health-span extension. We present genetic models, pharmacological interventions, and dietary strategies that block, reduce, or enhance autophagy upon age-related cardiovascular deterioration. Caloric restriction or caloric restriction mimetics like metformin, spermidine, and rapamycin (all of which trigger autophagy) are among the most promising cardioprotective interventions during aging. We conclude that autophagy is a fundamental process to ensure cardiac and vascular health during aging and outline its putative therapeutic importance. 10.1161/CIRCRESAHA.118.312208
Inflammation-Accelerated Senescence and the Cardiovascular System: Mechanisms and Perspectives. Del Pinto Rita,Ferri Claudio International journal of molecular sciences Low-grade chronic inflammation is a common denominator in atherogenesis and related diseases. Solid evidence supports the occurrence of an impairment in the innate and adaptive immune system with senescence, favoring the development of acute and chronic age-related diseases. Cardiovascular (CV) diseases (CVD), in particular, are a leading cause of death even at older ages. Inflammation-associated mechanisms that contribute to CVD development include dysregulated redox and metabolic pathways, genetic modifications, and infections/dysbiosis. In this review, we will recapitulate the determinants and consequences of the immune system dysfunction at older age, with particular focus on the CV system. We will examine the currently available and potential future strategies to counteract accelerated CV aging, i.e., nutraceuticals, probiotics, caloric restriction, physical activity, smoking and alcohol cessation, control of low-grade inflammation sources, senolytic and senescence-modulating drugs, and DNA-targeting drugs. 10.3390/ijms19123701