1. Identification of molecular markers associated with the progression and prognosis of endometrial cancer: a bioinformatic study.
1. 分子标记的识别与子宫内膜癌的进展和预后:一项科学研究。
期刊:Cancer cell international
日期:2020-02-19
DOI :10.1186/s12935-020-1140-3
BACKGROUND:Endometrial cancer (EC) is one kind of women cancers. Bioinformatic technology could screen out relative genes which made targeted therapy becoming conventionalized. METHODS:GSE17025 were downloaded from GEO. The genomic data and clinical data were obtained from TCGA. R software and bioconductor packages were used to identify the DEGs. Clusterprofiler was used for functional analysis. STRING was used to assess PPI information and plug-in MCODE to screen hub modules in Cytoscape. The selected genes were coped with functional analysis. CMap could find EC-related drugs that might have potential effect. Univariate and multivariate Cox proportional hazards regression analyses were performed to predict the risk of each patient. Kaplan-Meier curve analysis could compare the survival time. ROC curve analysis was performed to predict value of the genes. Mutation and survival analysis in TCGA database and UALCAN validation were completed. Immunohistochemistry staining from Human Protein Atlas database. GSEA, ROC curve analysis, Oncomine and qRT-PCR were also performed. RESULTS:Functional analysis showed that the upregulated DEGs were strikingly enriched in chemokine activity, and the down-regulated DEGs in glycosaminoglycan binding. PPI network suggested that NCAPG was the most relevant protein. CMap identified 10 small molecules as possible drugs to treat EC. Cox analysis showed that BCHE, MAL and ASPM were correlated with EC prognosis. TCGA dataset analysis showed significantly mutated BHCE positively related to EC prognosis. MAL and ASPM were further validated in UALCAN. All the results demonstrated that the two genes might promote EC progression. The profile of ASPM was confirmed by the results from immunohistochemistry. ROC curve demonstrated that the mRNA levels of two genes exhibited difference between normal and tumor tissues, indicating their diagnostic efficiency. qRT-PCR results supported the above results. Oncomine results showed that DNA copy number variation of MAL was significantly higher in different EC subtypes than in healthy tissues. GSEA suggested that the two genes played crucial roles in cell cycle. CONCLUSION:BCHE, MAL and ASPM are tumor-related genes and can be used as potential biomarkers in EC treatment.
添加收藏
创建看单
引用
2区Q1影响因子: 6.3
英汉
2. Statistics and network-based approaches to identify molecular mechanisms that drive the progression of breast cancer.
2. 统计和基于网络的方法,以确定驱动乳腺癌进展的分子机制。
期刊:Computers in biology and medicine
日期:2022-04-14
DOI :10.1016/j.compbiomed.2022.105508
Breast cancer (BC) is one of the most malignant tumors and the leading cause of cancer-related death in women worldwide. So, an in-depth investigation on the molecular mechanisms of BC progression is required for diagnosis, prognosis and therapies. In this study, we identified 127 common differentially expressed genes (cDEGs) between BC and control samples by analyzing five gene expression profiles with NCBI accession numbers GSE139038, GSE62931, GSE45827, GSE42568 and GSE54002, based-on two statistical methods LIMMA and SAM. Then we constructed protein-protein interaction (PPI) network of cDEGs through the STRING database and selected top-ranked 7 cDEGs (BUB1, ASPM, TTK, CCNA2, CENPF, RFC4, and CCNB1) as a set of key genes (KGs) by cytoHubba plugin in Cytoscape. Several BC-causing crucial biological processes, molecular functions, cellular components, and pathways were significantly enriched by the estimated cDEGs including at-least one KGs. The multivariate survival analysis showed that the proposed KGs have a strong prognosis power of BC. Moreover, we detected some transcriptional and post-transcriptional regulators of KGs by their regulatory network analysis. Finally, we suggested KGs-guided three repurposable candidate-drugs (Trametinib, selumetinib, and RDEA119) for BC treatment by using the GSCALite online web tool and validated them through molecular docking analysis, and found their strong binding affinities. Therefore, the findings of this study might be useful resources for BC diagnosis, prognosis and therapies.