共0篇 平均IF=NaN (-) 更多分析


    State of play in amyotrophic lateral sclerosis genetics. Renton Alan E,Chiò Adriano,Traynor Bryan J Nature neuroscience Considerable progress has been made in unraveling the genetic etiology of amyotrophic lateral sclerosis (ALS), the most common form of adult-onset motor neuron disease and the third most common neurodegenerative disease overall. Here we review genes implicated in the pathogenesis of motor neuron degeneration and how this new information is changing the way we think about this fatal disorder. Specifically, we summarize current literature of the major genes underlying ALS, SOD1, TARDBP, FUS, OPTN, VCP, UBQLN2, C9ORF72 and PFN1, and evaluate the information being gleaned from genome-wide association studies. We also outline emerging themes in ALS research, such as next-generation sequencing approaches to identify de novo mutations, the genetic convergence of familial and sporadic ALS, the proposed oligogenic basis for the disease, and how each new genetic discovery is broadening the phenotype associated with the clinical entity we know as ALS. 10.1038/nn.3584
    Mutations in the profilin 1 gene cause familial amyotrophic lateral sclerosis. Wu Chi-Hong,Fallini Claudia,Ticozzi Nicola,Keagle Pamela J,Sapp Peter C,Piotrowska Katarzyna,Lowe Patrick,Koppers Max,McKenna-Yasek Diane,Baron Desiree M,Kost Jason E,Gonzalez-Perez Paloma,Fox Andrew D,Adams Jenni,Taroni Franco,Tiloca Cinzia,Leclerc Ashley Lyn,Chafe Shawn C,Mangroo Dev,Moore Melissa J,Zitzewitz Jill A,Xu Zuo-Shang,van den Berg Leonard H,Glass Jonathan D,Siciliano Gabriele,Cirulli Elizabeth T,Goldstein David B,Salachas Francois,Meininger Vincent,Rossoll Wilfried,Ratti Antonia,Gellera Cinzia,Bosco Daryl A,Bassell Gary J,Silani Vincenzo,Drory Vivian E,Brown Robert H,Landers John E Nature Amyotrophic lateral sclerosis (ALS) is a late-onset neurodegenerative disorder resulting from motor neuron death. Approximately 10% of cases are familial (FALS), typically with a dominant inheritance mode. Despite numerous advances in recent years, nearly 50% of FALS cases have unknown genetic aetiology. Here we show that mutations within the profilin 1 (PFN1) gene can cause FALS. PFN1 is crucial for the conversion of monomeric (G)-actin to filamentous (F)-actin. Exome sequencing of two large ALS families showed different mutations within the PFN1 gene. Further sequence analysis identified 4 mutations in 7 out of 274 FALS cases. Cells expressing PFN1 mutants contain ubiquitinated, insoluble aggregates that in many cases contain the ALS-associated protein TDP-43. PFN1 mutants also display decreased bound actin levels and can inhibit axon outgrowth. Furthermore, primary motor neurons expressing mutant PFN1 display smaller growth cones with a reduced F/G-actin ratio. These observations further document that cytoskeletal pathway alterations contribute to ALS pathogenesis. 10.1038/nature11280
    Stimulus-dependent phosphorylation of profilin-1 in angiogenesis. Fan Yi,Arif Abul,Gong Yanqing,Jia Jie,Eswarappa Sandeepa M,Willard Belinda,Horowitz Arie,Graham Linda M,Penn Marc S,Fox Paul L Nature cell biology Angiogenesis, the formation of new blood vessels, is fundamental to development and post-injury tissue repair. Vascular endothelial growth factor (VEGF)-A guides and enhances endothelial cell migration to initiate angiogenesis. Profilin-1 (Pfn-1) is an actin-binding protein that enhances actin filament formation and cell migration, but stimulus-dependent regulation of Pfn-1 has not been observed. Here, we show that VEGF-A-inducible phosphorylation of Pfn-1 at Tyr 129 is critical for endothelial cell migration and angiogenesis. Chemotactic activation of VEGF receptor kinase-2 (VEGFR2) and Src induces Pfn-1 phosphorylation in the cell leading edge, promoting Pfn-1 binding to actin and actin polymerization. Conditional endothelial knock-in of phosphorylation-deficient Pfn1(Y129F) in mice reveals that Pfn-1 phosphorylation is critical for angiogenesis in response to wounding and ischaemic injury, but not for developmental angiogenesis. Thus, VEGFR2/Src-mediated phosphorylation of Pfn-1 bypasses canonical, multistep intracellular signalling events to initiate endothelial cell migration and angiogenesis, and might serve as a selective therapeutic target for anti-angiogenic therapy. 10.1038/ncb2580
    Mutations in Profilin 1 Cause Early-Onset Paget's Disease of Bone With Giant Cell Tumors. Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research Paget's disease of bone (PDB) is a late-onset chronic progressive bone disease characterized by abnormal activation of osteoclasts that results in bone pain, deformities, and fractures. PDB is very rare in Asia. A subset of PDB patients have early onset and can develop malignant giant cell tumors (GCTs) of the bone (PDB/GCTs), which arise within Paget bone lesions; the result is a significantly higher mortality rate. SQSTM1, TNFRSF11A, OPG, VCP, and HNRNPA2B1 have been identified as pathogenic genes of PDB, and ZNF687 is the only confirmed gene to date known to cause PDB/GCT. However, the molecular mechanism underlying PDB/GCT has not been fully elucidated. Here, we investigate an extended Chinese pedigree with eight individuals affected by early-onset and polyostotic PDB, two of whom developed GCTs. We identified a heterozygous 4-bp deletion in the Profilin 1 (PFN1) gene (c.318_321delTGAC) by genetic linkage analysis and exome sequencing for the family. Sanger sequencing revealed another heterozygous 1-bp deletion in PFN1 (c.324_324delG) in a sporadic early-onset PDB/GCT patient, further proving its causative role. Interestingly, a heterozygous missense mutation of PFN1 (c.335 T > C) was identified in another PDB/GCT family, revealing that not only deletion but also missense mutations in PFN1 can cause PDB/GCT. Furthermore, we established a Pfn1-mutated mouse model (C57BL/6J mice) and successfully obtained Pagetic phenotypes in heterozygous mice, verifying loss of function of PFN1 as the cause of PDB/GCT development. In conclusion, our findings reveal mutations in PFN1 as the pathological mechanism in PDB/GCT, and we successfully established Pfn1-mutated mice as a suitable animal model for studying PDB-associated pathological mechanisms. The identification of PFN1 mutations has great diagnostic value for identifying PDB individuals predisposed toward developing GCTs. © 2021 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR). 10.1002/jbmr.4275
    Profilin 1 delivery tunes cytoskeletal dynamics toward CNS axon regeneration. Pinto-Costa Rita,Sousa Sara C,Leite Sérgio C,Nogueira-Rodrigues Joana,Ferreira da Silva Tiago,Machado Diana,Marques Joana,Costa Ana Catarina,Liz Márcia A,Bartolini Francesca,Brites Pedro,Costell Mercedes,Fässler Reinhard,Sousa Mónica M The Journal of clinical investigation After trauma, regeneration of adult CNS axons is abortive, causing devastating neurologic deficits. Despite progress in rehabilitative care, there is no effective treatment that stimulates axonal growth following injury. Using models with different regenerative capacities, followed by gain- and loss-of-function analysis, we identified profilin 1 (Pfn1) as a coordinator of actin and microtubules (MTs), powering axonal growth and regeneration. In growth cones, Pfn1 increased actin retrograde flow, MT growth speed, and invasion of filopodia by MTs, orchestrating cytoskeletal dynamics toward axonal growth. In vitro, active Pfn1 promoted MT growth in a formin-dependent manner, whereas localization of MTs to growth cone filopodia was facilitated by direct MT binding and interaction with formins. In vivo, Pfn1 ablation limited regeneration of growth-competent axons after sciatic nerve and spinal cord injury. Adeno-associated viral (AAV) delivery of constitutively active Pfn1 to rodents promoted axonal regeneration, neuromuscular junction maturation, and functional recovery of injured sciatic nerves, and increased the ability of regenerating axons to penetrate the inhibitory spinal cord glial scar. Thus, we identify Pfn1 as an important regulator of axonal regeneration and suggest that AAV-mediated delivery of constitutively active Pfn1, together with the identification of modulators of Pfn1 activity, should be considered to treat the injured nervous system. 10.1172/JCI125771
    Subcellular localization and Ser-137 phosphorylation regulate tumor-suppressive activity of profilin-1. Diamond Marc I,Cai Shirong,Boudreau Aaron,Carey Clifton J,Lyle Nicholas,Pappu Rohit V,Swamidass S Joshua,Bissell Mina,Piwnica-Worms Helen,Shao Jieya The Journal of biological chemistry The actin-binding protein profilin-1 (Pfn1) inhibits tumor growth and yet is also required for cell proliferation and survival, an apparent paradox. We previously identified Ser-137 of Pfn1 as a phosphorylation site within the poly-l-proline (PLP) binding pocket. Here we confirm that Ser-137 phosphorylation disrupts Pfn1 binding to its PLP-containing ligands with little effect on actin binding. We find in mouse xenografts of breast cancer cells that mimicking Ser-137 phosphorylation abolishes cell cycle arrest and apoptotic sensitization by Pfn1 and confers a growth advantage to tumors. This indicates a previously unrecognized role of PLP binding in Pfn1 antitumor effects. Spatial restriction of Pfn1 to the nucleus or cytoplasm indicates that inhibition of tumor cell growth by Pfn1 requires its nuclear localization, and this activity is abolished by a phosphomimetic mutation on Ser-137. In contrast, cytoplasmic Pfn1 lacks inhibitory effects on tumor cell growth but rescues morphological and proliferative defects of PFN1 null mouse chondrocytes. These results help reconcile seemingly opposed cellular effects of Pfn1, provide new insights into the antitumor mechanism of Pfn1, and implicate Ser-137 phosphorylation as a potential therapeutic target for breast cancer. 10.1074/jbc.M114.619874
    Structure-based virtual screening identifies a small-molecule inhibitor of the profilin 1-actin interaction. Gau David,Lewis Taber,McDermott Lee,Wipf Peter,Koes David,Roy Partha The Journal of biological chemistry Profilin 1 (Pfn1) is an important regulator of the actin cytoskeleton and plays a vital role in many actin-based cellular processes. Therefore, identification of a small-molecule intervention strategy targeted against the Pfn1-actin interaction could have broad utility in cytoskeletal research and further our understanding of the role of Pfn1 in actin-mediated biological processes. Based on an already resolved Pfn1-actin complex crystal structure, we performed structure-based virtual screening of small-molecule libraries to seek inhibitors of the Pfn1-actin interaction. We identified compounds that match the pharmacophore of the key actin residues of Pfn1-actin interaction and therefore have the potential to act as competitive inhibitors of this interaction. Subsequent biochemical assays identified two candidate compounds with nearly identical structures that can mitigate the effect of Pfn1 on actin polymerization As a further proof-of-concept test for cellular effects of these compounds, we performed proximity ligation assays in endothelial cells (ECs) to demonstrate compound-induced inhibition of Pfn1-actin interaction. Consistent with the important role of Pfn1 in regulating actin polymerization and various fundamental actin-based cellular activities (migration and proliferation), treatment of these compounds reduced the overall level of cellular filamentous (F) actin, slowed EC migration and proliferation, and inhibited the angiogenic ability of ECs both and In summary, this study provides the first proof of principle of small-molecule-mediated interference with the Pfn1-actin interaction. Our findings may have potential general utility for perturbing actin-mediated cellular activities and biological processes. 10.1074/jbc.M117.809137
    Arp2/3 and Mena/VASP Require Profilin 1 for Actin Network Assembly at the Leading Edge. Skruber Kristen,Warp Peyton V,Shklyarov Rachael,Thomas James D,Swanson Maurice S,Henty-Ridilla Jessica L,Read Tracy-Ann,Vitriol Eric A Current biology : CB Cells have many types of actin structures, which must assemble from a common monomer pool. Yet, it remains poorly understood how monomers are distributed to and shared between different filament networks. Simplified model systems suggest that monomers are limited and heterogeneous, which alters actin network assembly through biased polymerization and internetwork competition. However, less is known about how monomers influence complex actin structures, where different networks competing for monomers overlap and are functionally interdependent. One example is the leading edge of migrating cells, which contains filament networks generated by multiple assembly factors. The leading edge dynamically switches between the formation of different actin structures, such as lamellipodia or filopodia, by altering the balance of these assembly factors' activities. Here, we sought to determine how the monomer-binding protein profilin 1 (PFN1) controls the assembly and organization of actin in mammalian cells. Actin polymerization in PFN1 knockout cells was severely disrupted, particularly at the leading edge, where both Arp2/3 and Mena/VASP-based filament assembly was inhibited. Further studies showed that in the absence of PFN1, Arp2/3 no longer localizes to the leading edge and Mena/VASP is non-functional. Additionally, we discovered that discrete stages of internetwork competition and collaboration between Arp2/3 and Mena/VASP networks exist at different PFN1 concentrations. Low levels of PFN1 caused filopodia to form exclusively at the leading edge, while higher concentrations inhibited filopodia and favored lamellipodia and pre-filopodia bundles. These results demonstrate that dramatic changes to actin architecture can be made simply by modifying PFN1 availability. 10.1016/j.cub.2020.04.085
    The role of profilin-1 in endothelial cell injury induced by advanced glycation end products (AGEs). Li Zhenyu,Zhong Qiaoqing,Yang Tianlun,Xie Xiumei,Chen Meifang Cardiovascular diabetology BACKGROUND:Accumulation of advanced glycation end products (AGEs) in the vasculature triggers a series of morphological and functional changes contributing to endothelial hyperpermeability. The reorganisation and redistribution of the cytoskeleton regulated by profilin-1 mediates endothelial cell contraction, which results in vascular hyperpermeability. This study aimed to investigate the pivotal role of profilin-1 in the process of endothelial cell damage induced by AGEs. METHODS:Human umbilical vein endothelial cells (HUVECs) were incubated with AGEs. The mRNA and protein expression of profilin-1 was determined using real-time PCR and western blotting analyses. The levels of intercellular adhesion molecule-1 (ICAM-1), nitric oxide (NO) and reactive oxygen species (ROS), as well as the activities of nuclear factor-κB (NF-κB) and protein kinase C (PKC), were detected using the appropriate kits. The levels of asymmetric dimethylarginine (ADMA) were determined using HPLC. The distribution of the cytoskeleton was visualised using immunofluorescent staining. RESULTS:Compared with the control, incubation of endothelial cells with AGEs (200 μg/ml) for 4 or 24 h significantly up-regulated the mRNA and protein expression of profilin-1, markedly increased the levels of ICAM-1 and ADMA and decreased the production of NO (P<0.05, P<0.01), which was significantly attenuated by pretreatment with DPI (an antioxidant), GF 109203X (PKC inhibitor) or BAY-117082 (NF-κB inhibitor). DPI (10 μmol/L) markedly decreased the elevated levels of ROS induced by AGEs (200 μg/ml, 24 h); however, GF 109203X (10 μmol/L) and BAY-117082 (5 μmol/L) exhibited no significant effect on the formation of ROS by AGEs. Immunofluorescent staining indicated that AGEs markedly increased the expression of profilin-1 in the cytoplasm and the formation of actin stress fibres, resulting in the rearrangement and redistribution of the cytoskeleton. This effect was significantly ameliorated by DPI, GF 109203X, BAY-117082 or siRNA treatment of profilin-1. Incubation with DPI and GF 109203X markedly inhibited the activation of PKC triggered by AGEs, and DPI and BAY-117082 significantly decreased the activity of NF-κB mediated by AGEs. Disruption of profilin-1 gene expression attenuated the extent of endothelial abnormalities by reducing ICAM-1 and ADMA levels and elevating NO levels (P<0.05, P<0.01), but this disruption had no effect on the activities of NF-κB and PKC (P>0.05). CONCLUSIONS:These findings suggested that profilin-1 might act as an ultimate and common cellular effector in the process of metabolic memory (endothelial abnormalities) mediated by AGEs via the ROS/PKC or ROS/NF-қB signalling pathways. 10.1186/1475-2840-12-141
    Profilin-1 serves as a gatekeeper for actin assembly by Arp2/3-dependent and -independent pathways. Rotty Jeremy D,Wu Congying,Haynes Elizabeth M,Suarez Cristian,Winkelman Jonathan D,Johnson Heath E,Haugh Jason M,Kovar David R,Bear James E Developmental cell Cells contain multiple F-actin assembly pathways, including the Arp2/3 complex, formins, and Ena/VASP, which have largely been analyzed separately. They collectively generate the bulk of F-actin from a common pool of G-actin; however, the interplay and/or competition between these pathways remains poorly understood. Using fibroblast lines derived from an Arpc2 conditional knockout mouse, we established matched-pair cells with and without the Arp2/3 complex. Arpc2(-/-) cells lack lamellipodia and migrate more slowly than WT cells but have F-actin levels indistinguishable from controls. Actin assembly in Arpc2(-/-) cells was resistant to cytochalasin-D and was highly dependent on profilin-1 and Ena/VASP but not formins. Profilin-1 depletion in WT cells increased F-actin and Arp2/3 complex in lamellipodia. Conversely, addition of exogenous profilin-1 inhibited Arp2/3 complex actin nucleation in vitro and in vivo. Antagonism of the Arp2/3 complex by profilin-1 in cells appears to maintain actin homeostasis by balancing Arp2/3 complex-dependent and -independent actin assembly pathways. 10.1016/j.devcel.2014.10.026
    Silencing profilin-1 inhibits gastric cancer progression via integrin β1/focal adhesion kinase pathway modulation. Cheng Ya-Jun,Zhu Zhen-Xin,Zhou Jian-Sheng,Hu Zun-Qi,Zhang Jian-Peng,Cai Qing-Ping,Wang Liang-Hua World journal of gastroenterology AIM:To investigate the role of profilin-1 (PFN1) in gastric cancer and the underlying mechanisms. METHODS:Immunohistochemical analysis, quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot were performed to detect PFN1 expression in clinical gastric carcinoma and adjacent tissues, and the association of PFN1 expression with patient clinicopathological characteristics was analyzed. PFN1 was knocked down to investigate the role of this protein in cell proliferation and metastasis in the SGC-7901 cell line. To explore the underlying mechanisms, the expression of integrin β1 and the activity of focal adhesion kinase (FAK) and the downstream proteins extracellular-regulated kinase (ERK)1/2, P38 mitogen-activated protein kinase (MAPK), phosphatidylinositol 3-kinase (PI3K), AKT and mammalian target of rapamycin (mTOR) were measured through Western blot or qRT-PCR analysis. Fibronectin (FN), a ligand of integrin β1, was used to verify the correlation between alterations in the integrin β1/FAK pathway and changes in tumor cell aggressiveness upon PFN1 perturbation. RESULTS:Immunohistochemical, Western blot and qRT-PCR analyses revealed that PFN1 expression was higher at both the protein and mRNA levels in gastric carcinoma tissues compared with the adjacent tissues. In addition, high PFN1 expression (53/75, 70.4%) was correlated with tumor infiltration, lymph node metastasis and TNM stage in gastric cancer, but not with gender, age, location, tumor size, or histological differentiation. In vitro experiments showed that PFN1 knockdown inhibited the proliferation of SGC-7901 cells through the induction G0/G1 arrest. Silencing PFN1 inhibited cell migration and invasion and down-regulated the expression of matrix metalloproteinase (MMP)-2 and MMP9. Moreover, silencing PFN1 reduced the expression of integrin β1 at the protein level and inhibited the activity of FAK, and the downstream effectors ERK1/2, P38MAPK, PI3K, AKT and mTOR. FN-promoted cell proliferation and metastasis via the integrin β1/FAK pathway was ameliorated by PFN1 silencing. CONCLUSION:These findings suggest that PFN1 plays a critical role in gastric carcinoma progression, and these effects are likely mediated through the integrin β1/FAK pathway. 10.3748/wjg.v21.i8.2323
    Mutations of Profilin-1 Associated with Amyotrophic Lateral Sclerosis Promote Aggregation Due to Structural Changes of Its Native State. Del Poggetto Edoardo,Bemporad Francesco,Tatini Francesca,Chiti Fabrizio ACS chemical biology The PFN1 gene, coding for profilin-1, has recently been associated with familial amyotrophic lateral sclerosis (fALS), as three mutations, namely C71G, M114T, and G118V, have been found in patients with familial forms of the disease and another, E117G, has been proposed to be a moderate risk factor for disease onset. In this work, we have purified the four profilin-1 variants along with the wild-type protein. The resulting aggregates appear to be fibrillar, to have a weak binding to ThT, and to possess a significant amount of intermolecular β-sheet structure. Using ThT fluorescence assays, far-UV circular dichroism, and dynamic light scattering, we found that all four variants have an aggregation propensity higher than that of the wild-type counterpart. In particular, the C71G mutation was found to induce the most dramatic change in aggregation, followed by the G118V and M114T substitutions and then the E117G mutation. Such a propensity was found not to strictly correlate with the conformational stability in this group of profilin-1 variants, determined using both urea-induced denaturation at equilibrium and folding/unfolding kinetics. However, it correlated with structural changes of the folded states, as monitored with far-UV circular dichroism, intrinsic fluorescence spectroscopy, ANS binding, acrylamide quenching, and dynamic light scattering. Overall, the results suggest that all four mutations increase the tendency of profilin-1 to aggregate and that such aggregation behavior is largely determined by the mutation-induced structural changes occurring in the folded state of the protein. 10.1021/acschembio.5b00598
    S137 phosphorylation of profilin 1 is an important signaling event in breast cancer progression. Rizwani Wasia,Fasim Aneesa,Sharma Deepshikha,Reddy Divya J,Bin Omar Nabil A M,Singh Surya S PloS one BACKGROUND:Profilins are actin-modulating proteins regulating many intracellular functions based on their multiple and diverse ligand interactions. They have been implicated to play a role in many pathological conditions such as allergies, cardiovascular diseases, muscular atrophy, diabetes, dementia and cancer. Post-translational modifications of profilin 1 can alter its properties and subsequently its function in a cell. In the present study, we identify the importance of phosphorylation of profilin 1 at serine 137 (S137) residue in breast cancer progression. METHODS/PRINCIPAL FINDINGS:We found elevated profilin 1 (PFN) in human breast cancer tissues when compared to adjacent normal tissues. Overexpression of wild-type profilin 1 (PFN-WT) in breast cancer MCF7 cells made them more migratory, invasive and adherent independent in comparison to empty vector transfected cells. Mutation in serine phosphorylation site (S137) of profilin 1 (PFN-S137A) significantly abrogated these properties. Mutation affecting actin-binding ability (PFN-R74E) of profilin 1 enhanced its tumorigenic function whereas mutation affecting its poly-L-proline binding function (PFN-H133S) alleviated these mechanisms in breast cancer cells. PFN-WT was found to activate matrix metalloproteinases by zymography, MMP2 and MMP9 in presence of PDBu (phorbol 12, 13 dibutyrate, PI3K agonist) to enhance migration and invasion in MCF7 cells while PFN-S137A did not. Phosphorylation increased migration and invasion in other mutants of profilin 1. Nuclear profilin levels also increased in the presence of PDBu. CONCLUSIONS:Previous studies show that profilin could be executing a dual role in cancer by either suppressing or promoting tumorigenesis in a context dependent manner. In this study we demonstrate for the first time that phosphorylation of profilin 1 at serine 137 enhances oncogenic properties in breast cancer cells. Inhibitors targeting profilin 1 phosphorylation directly or indirectly through inhibition of kinases that phosphorylate profilin could be valuable therapeutic agents that can alter its activity and thereby control the progression of cancer. 10.1371/journal.pone.0103868
    The role of profilin-1 in cardiovascular diseases. Journal of cell science Dynamic remodeling of the actin cytoskeleton is an essential feature for virtually all actin-dependent cellular processes, including cell migration, cell cycle progression, chromatin remodeling and gene expression, and even the DNA damage response. An altered actin cytoskeleton is a structural hallmark associated with numerous pathologies ranging from cardiovascular diseases to immune disorders, neurological diseases and cancer. The actin cytoskeleton in cells is regulated through the orchestrated actions of a myriad of actin-binding proteins. In this Review, we provide a brief overview of the structure and functions of the actin-monomer-binding protein profilin-1 (Pfn1) and then discuss how dysregulated expression of Pfn1 contributes to diseases associated with the cardiovascular system. 10.1242/jcs.249060
    Silencing of Profilin-1 suppresses cell adhesion and tumor growth via predicted alterations in integrin and Ca2+ signaling in T24M-based bladder cancer models. Frantzi Maria,Klimou Zoi,Makridakis Manousos,Zoidakis Jerome,Latosinska Agnieszka,Borràs Daniel M,Janssen Bart,Giannopoulou Ioanna,Lygirou Vasiliki,Lazaris Andreas C,Anagnou Nicholas P,Mischak Harald,Roubelakis Maria G,Vlahou Antonia Oncotarget Bladder cancer (BC) is the second most common malignancy of the genitourinary system, characterized by the highest recurrence rate of all cancers. Treatment options are limited; thus a thorough understanding of the underlying molecular mechanisms is needed to guide the discovery of novel therapeutic targets. Profilins are actin binding proteins with attributed pleiotropic functions to cytoskeletal remodeling, cell adhesion, motility, even transcriptional regulation, not fully characterized yet. Earlier studies from our laboratory revealed that decreased tissue levels of Profilin-1 (PFN1) are correlated with BC progression to muscle invasive disease. Herein, we describe a comprehensive analysis of PFN1 silencing via shRNA, in vitro (by employing T24M cells) and in vivo [(with T24M xenografts in non-obese diabetic severe combined immunodeficient mice (NOD/SCID) mice]. A combination of phenotypic and molecular assays, including migration, proliferation, adhesion assays, flow cytometry and total mRNA sequencing, as well as immunohistochemistry for investigation of selected findings in human specimens were applied. A decrease in BC cell adhesion and tumor growth in vivo following PFN downregulation are observed, likely associated with the concomitant downregulation of Fibronectin receptor, Endothelin-1, and Actin polymerization. A decrease in the levels of multiple key members of the non-canonical Wnt/Ca2+ signaling pathway is also detected following PFN1 suppression, providing the groundwork for future studies, addressing the specific role of PFN1 in Ca2+ signaling, particularly in the muscle invasive disease. 10.18632/oncotarget.12218
    Screening of the PFN1 gene in sporadic amyotrophic lateral sclerosis and in frontotemporal dementia. Tiloca Cinzia,Ticozzi Nicola,Pensato Viviana,Corrado Lucia,Del Bo Roberto,Bertolin Cinzia,Fenoglio Chiara,Gagliardi Stella,Calini Daniela,Lauria Giuseppe,Castellotti Barbara,Bagarotti Alessandra,Corti Stefania,Galimberti Daniela,Cagnin Annachiara,Gabelli Carlo,Ranieri Michela,Ceroni Mauro,Siciliano Gabriele,Mazzini Letizia,Cereda Cristina,Scarpini Elio,Sorarù Gianni,Comi Giacomo P,D'Alfonso Sandra,Gellera Cinzia,Ratti Antonia,Landers John E,Silani Vincenzo, Neurobiology of aging Mutations in the profilin 1 (PFN1) gene, encoding a protein regulating filamentous actin growth through its binding to monomeric G-actin, have been recently identified in familial amyotrophic lateral sclerosis (ALS). Functional studies performed on ALS-associated PFN1 mutants demonstrated aggregation propensity, alterations in growth cone, and cytoskeletal dynamics. Previous screening of PFN1 gene in sporadic ALS (SALS) cases led to the identification of the p.E117G mutation, which is likely to represent a less pathogenic variant according to both frequency data in control subjects and cases, and functional experiments. To determine the effective contribution of PFN1 mutations in SALS, we analyzed a large cohort of 1168 Italian SALS patients and also included 203 frontotemporal dementia (FTD) cases because of the great overlap between these 2 neurodegenerative diseases. We detected the p.E117G variant in 1 SALS patient and the novel synonymous change p.G15G in another patient, but none in a panel of 1512 control subjects. Our results suggest that PFN1 mutations in sporadic ALS and in FTD are rare, at least in the Italian population. 10.1016/j.neurobiolaging.2012.09.016
    PFN1 mutations are rare in Han Chinese populations with amyotrophic lateral sclerosis. Chen YongPing,Zheng Zhen-Zhen,Huang Rui,Chen Ke,Song Wei,Zhao Bi,Chen XuePing,Yang Yuan,Yuan LiXing,Shang Hui-Fang Neurobiology of aging Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease with unknown pathophysiological mechanisms. Profilin 1 gene (PFN1) has been identified as a causative gene, which accounts for 1% to 2% of familial ALS. In this study, we investigated the mutation spectrum of PFN1 in Chinese patients with ALS. A total of 550 ALS patients (including 540 sporadic ALS [SALS] and 10 familial ALS) from the Department of Neurology, West China Hospital of Sichuan University, were recruited for the study. From the same region, 545 healthy control individuals (HC) were recruited as a control group. The encoding regions of the PFN1 gene were screened by direct sequencing. Novel candidate mutations or variations were confirmed by polymerase chain reaction-restriction fragment length polymorphism. A novel nonsynonymous p.R136W mutation was identified in an early-onset SALS female patient. A novel synonymous mutation p.L88L detected in a late-onset SALS female patient was considered nonpathogenic, as it was also detected in a control subject. No mutations were found in 10 familial ALS patients. Moreover, we found a significant difference in the genotype distribution of reported rs13204 (p.L112L) between SALS patients and HC (p = 0.0030). The frequency of minor allele 'T' of rs13204 in the SALS group was significantly lower than that in HC (p = 0.0040, OR = 0.7270, 95% CI = 0.5848-0.9039). Our results suggest that PFN1 mutation is an uncommon cause of ALS in the Han Chinese population. The SNP rs13204 of the PFN1 gene may have an important function in ALS development. The phenotype of ALS patients with mutantPFN1 gene varies among different genetic backgrounds. 10.1016/j.neurobiolaging.2013.01.013
    Clinical, Biochemical, Radiological, and Genetic Analyses of a Patient with VCP Gene Variant-Induced Paget's Disease of Bone. Calcified tissue international Paget's disease of bone (PDB) is a rare metabolic bone disorder, which is extremely rare in Asian population. This study aimed to investigate the phenotypes and the pathogenic mutations of woman with early-onset PDB. The clinical features, bone mineral density, x-ray, radionuclide bone scan, and serum levels of alkaline phosphatase (ALP), procollagen type 1 N-terminal propeptide (P1NP), and β-carboxy-terminal cross-linked telopeptide of type 1 collagen (β-CTX) were measured in detail. The pathogenic mutations were identified by whole-exon sequencing and confirmed by Sanger sequencing. We also evaluated the effects of intravenous infusion of zoledronic acid on the bones of the patient and summarized the phenotypic characteristics of reported patients with mutation at position 155 of the valosin-containing protein (VCP). The patient only exhibited bone pain as the initial manifestation with vertebral compression fracture and extremely elevated ALP, P1NP, and β-CTX levels; she had no inclusion body myopathy and frontotemporal dementia. The missense mutation in exon 5 of the VCP gene (p.Arg155His) was identified by whole-exome sequencing and further confirmed by Sanger sequencing. No mutation in candidate genes of PDB, such as SQSTM1, CSF1, TM7SF4, OPTN, PFN1, and TNFRSF11A, were identified in the patient by Sanger sequencing. Rapid relief of bone pain and a marked decline in ALP, P1NP, and β-CTX levels were observed after zoledronic acid treatment. Previously reported patients with VCP missense mutation at position 155 (R155H) always had myopathy, frontotemporal dementia, and PDB, but the patient in this study exhibited only PDB. This was the first report of R155H mutation-induced early-onset in the VCP gene in Asian population. PDB was the only manifestation having a favorable response to zoledronic acid treatment. We broadened the genetic and clinical phenotype spectra of the VCP mutation. 10.1007/s00223-021-00929-x
    Profilin1 is expressed in osteocytes and regulates cell shape and migration. Lin Wanting,Izu Yayoi,Smriti Arayal,Kawasaki Makiri,Pawaputanon Chantida,Böttcher Ralph T,Costell Mercedes,Moriyama Keiji,Noda Masaki,Ezura Yoichi Journal of cellular physiology Osteocytes are the most abundant cells in bone and regulate bone metabolism in coordination with osteoblasts and osteoclasts. However, the molecules that control osteocytes are still incompletely understood. Profilin1 is an actin-binding protein that is involved in actin polymerization. Osteocytes possess characteristic dendritic process formed based on actin cytoskeleton. Here, we examined the expression of profilin1 and its function in osteocytes. Profilin1 mRNA was expressed in osteocytic MLO-Y4 cells and its levels were gradually increased along with the time in culture. With regard to functional aspect, knockdown of profilin1 by siRNA enhanced BMP-induced increase in alkaline phosphatase expression levels in MLO-Y4 cells. Profilin1 knockdown suppressed the levels of dendritic processes and migration of MLO-Y4 cells. Since aging causes an increase in ROS in the body, we further examined the effects of hydrogen peroxide on the expression of profilin1. Hydrogen peroxide treatment increased the levels of profilin1 mRNA in MLO-Y4 cells in contrast to the decline in alkaline phosphatase. Profilin1 was expressed not only in MLO-Y4cells but also in the primary cultures of osteocytes. Importantly, profilin1 mRNA levels in primary cultures of osteocytes were higher than those in primary cultures of osteoblasts. To examine in vivo role of profilin1 in osteocytes, profilin1 was conditionally knocked out by using DMP1-cre and profilin1 floxed mice. This conditional deletion of profilin1 specifically in osteocytes resulted in reduction in the levels of bone volume and bone mineral density. These data indicate that profilin1 is expressed in osteocytes and regulates cell shape, migration and bone mass. 10.1002/jcp.25872
    Specificity and Redundancy of Profilin 1 and 2 Function in Brain Development and Neuronal Structure. Di Domenico Marina,Jokwitz Melanie,Witke Walter,Pilo Boyl Pietro Cells Profilin functions have been discussed in numerous cellular processes, including actin polymerization. One puzzling aspect is the concomitant expression of more than one profilin isoform in most tissues. In neuronal precursors and in neurons, and are co-expressed, but their specific and redundant functions in brain morphogenesis are still unclear. Using a conditional knockout mouse model to inactivate both in the developing CNS, we found that threshold levels of profilin are necessary for the maintenance of the neuronal stem-cell compartment and the generation of the differentiated neurons, irrespective of the specific isoform. During embryonic development, profilin 1 is more abundant than profilin 2; consequently, modulation of profilin 1 levels resulted in a more severe phenotype than depletion of profilin 2. Interestingly, the relevance of the isoforms was reversed in the postnatal brain. Morphology of mature neurons showed a stronger dependence on profilin 2, since this is the predominant isoform in neurons. Our data highlight redundant functions of profilins in neuronal precursor expansion and differentiation, as well as in the maintenance of pyramidal neuron dendritic arborization. The specific profilin isoform is less relevant; however, a threshold profilin level is essential. We propose that the common activity of profilin 1 and profilin 2 in actin dynamics is responsible for the observed compensatory effects. 10.3390/cells10092310