共0篇 平均IF=NaN (-)更多分析

    加载中

    logo
    The ER protein Creld regulates ER-mitochondria contact dynamics and respiratory complex 1 activity. Science advances Dynamic contacts are formed between endoplasmic reticulum (ER) and mitochondria that enable the exchange of calcium and phospholipids. Disturbed contacts between ER and mitochondria impair mitochondrial dynamics and are a molecular hallmark of Parkinson's disease, which is also characterized by impaired complex I activity and dopaminergic neuron degeneration. Here, we analyzed the role of cysteine-rich with EGF-like domain (Creld), a poorly characterized risk gene for Parkinson's disease, in the regulation of mitochondrial dynamics and function. We found that loss of Creld leads to mitochondrial hyperfusion and reduced ROS signaling in , , and human cells. Creld fly mutants show differences in ER-mitochondria contacts and reduced respiratory complex I activity. The resulting low-hydrogen peroxide levels are linked to disturbed neuronal activity and lead to impaired locomotion, but not neurodegeneration, in Creld mutants. We conclude that Creld regulates ER-mitochondria communication and thereby hydrogen peroxide formation, which is required for normal neuron function. 10.1126/sciadv.abo0155
    Mitochondria - Nucleus communication in neurodegenerative disease. Who talks first, who talks louder? Biochimica et biophysica acta. Bioenergetics Mitochondria - nuclear coadaptation has been central to eukaryotic evolution. The dynamic dialogue between the two compartments within the context of multiorganellar interactions is critical for maintaining cellular homeostasis and directing the balance survival-death in case of cellular stress. The conceptualisation of mitochondria - nucleus communication has so far been focused on the communication from the mitochondria under stress to the nucleus and the consequent signalling responses, as well as from the nucleus to mitochondria in the context of DNA damage and repair. During ageing processes this dialogue may be better viewed as an integrated bidirectional 'talk' with feedback loops that expand beyond these two organelles depending on physiological cues. Here we explore the current views on mitochondria - nucleus dialogue and its role in maintaining cellular health with a focus on brain cells and neurodegenerative disease. Thus, we detail the transcriptional responses initiated by mitochondrial dysfunction in order to protect itself and the general cellular homeostasis. Additionally, we are reviewing the knowledge of the stress pathways initiated by DNA damage which affect mitochondria homeostasis and we add the information provided by the study of combined mitochondrial and genotoxic damage. Finally, we reflect on how each organelle may take the lead in this dialogue in an ageing context where both compartments undergo accumulation of stress and damage and where, perhaps, even the communications' mechanisms may suffer interruptions. 10.1016/j.bbabio.2022.148588
    Calcium, mitochondria and the initiation of acute pancreatitis. Pancreatology : official journal of the International Association of Pancreatology (IAP) ... [et al.] Acute pancreatitis is characterized by necrosis of its parenchymal cells and influx and activation of inflammatory cells that further promote injury and necrosis. This review is intended to discuss the central role of disorders of calcium metabolism and mitochondrial dysfunction in the mechanism of pancreatitis development. The disorders are placed in context of calcium and mitochondria in physiologic function of the pancreas. Moreover, we discuss potential therapeutics for preventing pathologic calcium signals that injure mitochondria and interventions that promote the removal of injured mitochondria and regenerate new and heathy populations of mitochondria. 10.1016/j.pan.2022.07.011
    From tryptophan to novel mitochondria-disruptive agent, synthesis and biological evaluation of 1,2,3,6-tetrasubstituted carbazoles. European journal of medicinal chemistry Mitochondrial targeting plays an important role in anticancer therapy. The Mn(III)-promoted cyclization of 5-(1H-indol-3-yl)-3-oxopentanoic acid allow to obtain novel substituted carbazole derivatives that can act as mitochondria-disruptive agents. The starting materials used for the synthesis of these new aminocarbazoles are oxopentanoate derivatives of tryptophan. The scope and limitation of this method of synthesis are determined by a series of experiments. The prepared carbazole derivatives are screened for their in vitro anticancer activity against a broad panel of human cancer cells and normal cell lines. Among the tested compounds, the most active ones are examined further against human colon cancer cells (HCT-116) and human bone osteosarcoma (U-2 OS), in complex in vitro cellular assays, including studies on cell cycle distribution, intracellular compartmentalization, antimigratory properties, mitochondrial generation of reactive oxygen species, DNA damage, and type of cellular death. The results reveal that the synthesized compounds display potent oxidative activity inducing massive accumulation of DNA double-strand breaks, which lead to a parallel change in the assembly of mitochondria causing their dysfunction. These findings provide new leads for the treatment of colon cancer and osteosarcoma. 10.1016/j.ejmech.2022.114453
    Mitochondria dysfunction in Charcot Marie Tooth 2B Peripheral Sensory Neuropathy. Communications biology Rab7 GTPase regulates mitochondrial morphology and function. Missense mutation(s) of Rab7 underlies the pathogenesis of Charcot Marie Tooth 2B (CMT2B) peripheral neuropathy. Herein, we investigate how mitochondrial morphology and function are impacted by the CMT2B associated Rab7 mutation. In contrast to recent studies of using heterologous overexpression systems, our results demonstrate significant mitochondrial fragmentation in both human CMT2B patient fibroblasts and CMT2B embryonic fibroblasts (MEFs). Primary cultured E18 dorsal root ganglion (DRG) sensory neurons also show mitochondrial fragmentation and altered axonal mitochondrial movement. In addition, we demonstrate that inhibitors to either the mitochondrial fission protein Drp1 or to the nucleotide binding to Rab7 normalize the mitochondrial deficits in both MEFs and E18 cultured DRG neurons. Our study reveals, for the first time, that expression of CMT2B Rab7 mutation at the physiological level enhances Drp1 activity to promote mitochondrial fission, potentially underlying selective vulnerability of peripheral sensory neurons in CMT2B pathogenesis. 10.1038/s42003-022-03632-1
    Autophagic secretion of mitochondria (ASM): an alternative way for getting rid of damaged mitochondria. Autophagy PINK1-PRKN/Parkin-mediated mitophagy represents an important mitochondrial quality control (MQC) pathway that clears damaged/dysfunctional mitochondria. Although the conjugation of mammalian Atg8-family proteins (mATG8s) to phosphatidylethanolamine (PE) is a defining step in autophagy, its role in mitophagy remains unclear. In our recent study, we found that the mATG8 conjugation system is not required for PINK1-PRKN-mediated mitochondria clearance. Instead, mATG8 conjugation system-independent mitochondria clearance relies on secretory autophagy, a process we term as the autophagic secretion of mitochondria (ASM). As ASM results in the spurious activation of the CGAS-STING1 pathway, we propose that defects in mATG8 lipidation may promote inflammation through ASM. 10.1080/15548627.2022.2107310
    A new hope: Mitochondria, a critical factor in the war against prions. Mitochondrion Prion diseases encompass a group of incurable neurodegenerative disorders that occur due to the misfolding and aggregation of infectious proteins. The most well-known prion diseases are Creutzfeldt-Jakob disease (CJD), bovine spongiform encephalopathy (also known as mad cow disease), and kuru. It is estimated that around 1-2 persons per million worldwide are affected annually by prion disorders. Infectious prion proteins propagate in the brain, clustering in the cells and rapidly inducing tissue degeneration and death. Prion disease alters cell metabolism and energy production damaging mitochondrial function and dynamics leading to a fast accumulation of damage. Dysfunction of mitochondria could be considered as an early precursor and central element in the pathogenesis of prion diseases such as in sporadic CJD. Preserving mitochondria function may help to resist the rapid spread and damage of prion proteins and even clearance. In the war against prions and other degenerative diseases, studying how to preserve the function of mitochondria by using antioxidants and even replacing them with artificial mitochondrial transfer/transplant (AMT/T) may bring a new hope and lead to an increase in patients' survival. In this perspective review, we provide key insights about the relationship between the progression of prion disease and mitochondria, in which understanding how protecting mitochondria function and viability by using antioxidants or AMT/T may help to develop novel therapeutic interventions. 10.1016/j.mito.2022.05.004
    Novel mitochondria-targeting compounds selectively kill human leukemia cells. Leukemia Acute myeloid leukemia (AML) is a heterogeneous group of aggressive hematological malignancies commonly associated with treatment resistance, high risk of relapse, and mitochondrial dysregulation. We identified six mitochondria-affecting compounds (PS compounds) that exhibit selective cytotoxicity against AML cells in vitro. Structure-activity relationship studies identified six analogs from two original scaffolds that had over an order of magnitude difference between LD50 in AML and healthy peripheral blood mononuclear cells. Mechanistically, all hit compounds reduced ATP and selectively impaired both basal and ATP-linked oxygen consumption in leukemic cells. Compounds derived from PS127 significantly upregulated production of reactive oxygen species (ROS) in AML cells and triggered ferroptotic, necroptotic, and/or apoptotic cell death in AML cell lines and refractory/relapsed AML primary samples. These compounds exhibited synergy with several anti-leukemia agents in AML, acute lymphoblastic leukemia (ALL), or chronic myelogenous leukemia (CML). Pilot in vivo efficacy studies indicate anti-leukemic efficacy in a MOLM14/GFP/LUC xenograft model, including extended survival in mice injected with leukemic cells pre-treated with PS127B or PS127E and in mice treated with PS127E at a dose of 5 mg/kg. These compounds are promising leads for development of future combinatorial therapeutic approaches for mitochondria-driven hematologic malignancies such as AML, ALL, and CML. 10.1038/s41375-022-01614-0
    A novel nanoparticle system targeting damaged mitochondria for the treatment of Parkinson's disease. Biomaterials advances Mitochondrial damage is one of the primary causes of neuronal cell death in Parkinson's disease (PD). In PD patients, the mitochondrial damage can be repaired or irreversible. Therefore, mitochondrial damage repair becomes a promising strategy for PD treatment. In this research, hyaluronic acid nanoparticles (HA-NPs) of different molecular weights are used to protect the mitochondria and salvage the mild and limited damage in mitochondria. The HA-NPs with 2190 k Dalton (kDa) HA can improve the mitochondrial function of SH-SY5Y cells and PTEN induced putative kinase 1 (PINK1) knockout mouse embryo fibroblast (MEF) cells. In cases of irreversible damage, NPs with ubiquitin specific peptidase 30 (USP30) siRNA are used to promote mitophagy. Meanwhile, by adding PINK1 antibodies, the NPs can selectively target the irreversibly damaged mitochondria, preventing the excessive clearance of healthy mitochondria. 10.1016/j.bioadv.2022.212876
    type II dehydrogenase is essential for parasite viability irrespective of the presence of an active complex I. Proceedings of the National Academy of Sciences of the United States of America Type II NADH dehydrogenases (NDH2) are monotopic enzymes present in the external or internal face of the mitochondrial inner membrane that contribute to NADH/NAD+ balance by conveying electrons from NADH to ubiquinone without coupled proton translocation. Herein, we characterize the product of a gene present in all species of the human protozoan parasite as a bona fide, matrix-oriented, type II NADH dehydrogenase. Within mitochondria, this respiratory activity concurs with that of type I NADH dehydrogenase (complex I) in some species but not others. To query the significance of NDH2 in parasite physiology, we attempted its genetic disruption in two parasite species, exhibiting a silent (, Li) and a fully operational (, Lm) complex I. Strikingly, this analysis revealed that NDH2 abrogation is not tolerated by , not even by complex I-expressing Lm species. Conversely, complex I is dispensable in both species, provided that NDH2 is sufficiently expressed. That a type II dehydrogenase is essential even in the presence of an active complex I places NADH metabolism into an entirely unique perspective and suggests unexplored functions for NDH2 that span beyond its complex I-overlapping activities. Notably, by showing that the essential character of NDH2 extends to the disease-causing stage of , we genetically validate NDH2-an enzyme without a counterpart in mammals-as a candidate target for leishmanicidal drugs. 10.1073/pnas.2103803118
    Mitochondria and Inflammatory Bowel Diseases: Toward a Stratified Therapeutic Intervention. Annual review of physiology Mitochondria serve numerous critical cellular functions, rapidly responding to extracellular stimuli and cellular demands while dynamically communicating with other organelles. Mitochondrial function in the gastrointestinal epithelium plays a critical role in maintaining intestinal health. Emerging studies implicate the involvement of mitochondrial dysfunction in inflammatory bowel disease (IBD). This review presents mitochondrial metabolism, function, and quality control that converge in intestinal epithelial stemness, differentiation programs, barrier integrity, and innate immunity to influence intestinal inflammation. Intestinal and disease characteristics that set the stage for mitochondrial dysfunction being a key factor in IBD and, in turn, pathogenic mitochondrial mechanisms influencing and potentiating the development of IBD, are discussed. These findings establish the basis for potential mitochondrial-targeted interventions for IBD therapy. 10.1146/annurev-physiol-060821-083306
    Correction to: RAGE-TXNIP axis drives inflammation in Alzheimer's by targeting Aβ to mitochondria in microglia. Cell death & disease 10.1038/s41419-022-04840-7
    Mitochondria-Associated Membrane Scaffolding with Endoplasmic Reticulum: A Dynamic Pathway of Developmental Disease. Frontiers in molecular biosciences Communication between intracellular organelles is essential for overall cellular function. How this communication occurs and under what circumstances alterations transpire are only the beginning to be elucidated. The pathways of calcium homeostasis, lipid transfer, mitochondrial dynamics, and mitophagy/apoptosis have been linked to the endoplasmic reticulum and tethering sites on the outer and/or inner mitochondrial membrane called mitochondria-associated endoplasmic reticulum membranes (MAM). Sensitive visualization by high-powered microscopy coupled with the advent of massive parallel sequencing has elaborated the structure, while patient's diseases have uncovered the physiological function of these networks. Using specific patient examples from our pediatric mitochondrial center, we expand how specific genetic pathological variants in certain MAM structures induce disease. Genetic variants in , , , , and can induce early development abnormalities in the areas of cognition, motor, and central nervous system structures across multiple MAM pathways and implicate mitochondrial dysregulation. 10.3389/fmolb.2022.908721