共0篇 平均IF=NaN (-)更多分析

    加载中

    logo
    Pharmacologic Activation of p53 Triggers Viral Mimicry Response Thereby Abolishing Tumor Immune Evasion and Promoting Antitumor Immunity. Cancer discovery The repression of repetitive elements is an important facet of p53's function as a guardian of the genome. Paradoxically, we found that p53 activated by MDM2 inhibitors induced the expression of endogenous retroviruses (ERV) via increased occupancy on ERV promoters and inhibition of two major ERV repressors, histone demethylase LSD1 and DNA methyltransferase DNMT1. Double-stranded RNA stress caused by ERVs triggered type I/III interferon expression and antigen processing and presentation. Pharmacologic activation of p53 in vivo unleashed the IFN program, promoted T-cell infiltration, and significantly enhanced the efficacy of checkpoint therapy in an allograft tumor model. Furthermore, the MDM2 inhibitor ALRN-6924 induced a viral mimicry pathway and tumor inflammation signature genes in patients with melanoma. Our results identify ERV expression as the central mechanism whereby p53 induction overcomes tumor immune evasion and transforms tumor microenvironment to a favorable phenotype, providing a rationale for the synergy of MDM2 inhibitors and immunotherapy. SIGNIFICANCE:We found that p53 activated by MDM2 inhibitors induced the expression of ERVs, in part via epigenetic factors LSD1 and DNMT1. Induction of IFN response caused by ERV derepression upon p53-targeting therapies provides a possibility to overcome resistance to immune checkpoint blockade and potentially transform "cold" tumors into "hot." This article is highlighted in the In This Issue feature, p. 2945. 10.1158/2159-8290.CD-20-1741
    MYC suppresses STING-dependent innate immunity by transcriptionally upregulating DNMT1 in triple-negative breast cancer. Wu Si-Yu,Xiao Yi,Wei Jin-Li,Xu Xiao-En,Jin Xi,Hu Xin,Li Da-Qiang,Jiang Yi-Zhou,Shao Zhi-Ming Journal for immunotherapy of cancer BACKGROUND:Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer and lacks definite treatment targets. Tumor immune microenvironment (TIME) heterogeneity has a profound impact on the immunotherapy response. Tumors with non-inflamed TIME derive limited benefit from immunotherapy. However, what drives the formation of the non-inflamed TIME in TNBC remains unclear. METHODS:Using our multiomics database of TNBC, we conducted an analysis to explore the key genomic events driving the formation of the non-inflamed TIME in TNBC. In vitro and in vivo studies further revealed potential mechanisms and the efficacy of combination treatment with immunotherapy. RESULTS:With transcriptomic and genomic data, we systematically analyzed the TIME of TNBC and revealed that the classical basal-like subtype of TNBC consisted of two distinct microenvironment phenotypes, defined as the 'inflamed' and 'non-inflamed' subtypes. We performed further screening and demonstrated that amplification and overexpression led to low immune infiltration and cytolytic activity in TIME. Mechanistically, MYC bound to promoter and activated transcription in TNBC cells, thus suppressing the Cyclic GMP-AMP synthase (cGAS)-STING pathway via an epigenetic regulatory way. In MYC-overexpressing TNBC, decitabine, an Food and Drug Administration (FDA)-approved DNA methyltransferase inhibitor, converted tumors from non-inflamed to inflamed tumors by enhancing T cell infiltration. Furthermore, the combination of decitabine with programmed cell death protein 1 (PD-1) inhibitor reversed T cell exhaustion and improved T cell function in mouse models, which elicited potent antitumor activity in MYC-overexpressing TNBC. CONCLUSIONS:Our work elucidates that the classic oncogene induces immune evasion by repressing innate immunity. Furthermore, we provide a rationale for combining DNA methyltransferase inhibition with immunotherapy for the treatment of MYC-overexpressing TNBC. 10.1136/jitc-2021-002528
    DNA methyltransferase 1 as a predictive biomarker and potential therapeutic target for chemotherapy in gastric cancer. Mutze Kathrin,Langer Rupert,Schumacher Felix,Becker Karen,Ott Katja,Novotny Alexander,Hapfelmeier Alexander,Höfler Heinz,Keller Gisela European journal of cancer (Oxford, England : 1990) PURPOSE:DNA methylation contributes to carcinogenesis by mediating transcriptional regulation and chromatin remodelling, which may influence the effect of DNA-damaging drugs. We examined the prognostic and predictive impact of DNA methyltransferase (DNMT) 1 and 3b expression in gastric carcinomas (GC) treated by neoadjuvant chemotherapy. In vitro, DNMT1 expression and chemosensitivity were investigated for a functional relationship and the DNMT inhibitor decitabine (DAC) was tested as an alternative treatment option. PATIENTS AND METHODS:DNMT1/3b expression was analysed immunohistochemically in 127 pretherapeutic biopsies of neoadjuvant (platinum/5-fluorouracil)-treated GC patients and correlated with response and overall survival (OS). Short hairpin RNA technology was used to knockdown DNMT1 in the GC cell line, AGS. The chemosensitivity of GC cell lines to DAC alone and to DAC in combination with cisplatin was analysed by XTT or colony formation assays. RESULTS:High DNMT1 and DNMT3b expression was found in 105/127 (83%) and 79/127 (62%) carcinomas, respectively. Patients with low DNMT1 expression demonstrated a significantly better histopathological/clinical response (P=0.03/P=0.008) and OS (P(log-rank)=0.001). In vitro, knockdown of DNMT1 caused an increased chemosensitivity towards cisplatin. Combined treatment with cisplatin and DAC showed a synergistic effect leading to increased cytotoxicity in the cisplatin-resistant cell line AGS. CONCLUSION:Low DNMT1 expression defines a subgroup of GC patients with better outcomes following platinum/5FU-based neoadjuvant chemotherapy. In vitro data support a functional relationship between DNMT1 and cisplatin sensitivity. Besides its potential use as a predictive biomarker, DNMT1 may represent a promising target for alternative therapeutic strategies for a subset of GC patients. 10.1016/j.ejca.2011.02.024
    Induction of HRR genes and inhibition of DNMT1 is associated with anthracycline anti-tumor antibiotic-tolerant breast carcinoma cells. Dasgupta Hemantika,Islam Md Saimul,Alam Neyaz,Roy Anup,Roychoudhury Susanta,Panda Chinmay Kumar Molecular and cellular biochemistry The aim of the study was to understand the role of homologous recombination repair (HRR) pathway genes in development of chemotolerance in breast cancer (BC). For this purpose, chemotolerant BC cells were developed in MCF-7 and MDA MB 231 cell lines after treatment with two anthracycline anti-tumor antibiotics doxorubicin and nogalamycin at different concentrations for 48 h with differential cell viability. The drugs were more effective in MCF-7 (IC50: 0.214-0.242 µM) than in MDA MB 231 (IC50: 0.346-0.37 µM) as shown by cell viability assay. The drugs could reduce the protein expression of PCNA in the cell lines. Increased mRNA/protein expression of the HRR (BRCA1, BRCA2, FANCC, FANCD2, and BRIT1) genes was seen in the cell lines in the presence of the drugs at different concentrations (lower IC50, IC50, and higher IC50) irrespective of the cell viability (68-41%). Quantitative methylation assay showed an increased percentage of hypomethylation of the promoters of these genes after drug treatment in the cell lines. Similarly, chemotolerant neoadjuvant chemotherapy (NACT) treated primary BC samples showed significantly higher frequency of hypomethylation of the genes than the pretherapeutic BC samples. The drugs in different concentrations could reduce m-RNA and protein expression of DNMT1 (DNA methyltransferase 1) in the cell lines. Similar phenomenon was also evident in the NACT samples than in the pretherapeutic BC samples. Thus, our data indicate that reduced DNMT1 expression along with promoter hypomethylation and increased expression of the HRR genes might have importance in chemotolerance in BC. 10.1007/s11010-018-3442-5
    Silencing of miR-152 contributes to DNMT1-mediated CpG methylation of the PTEN promoter in bladder cancer. Liu Peihua,Wu Longxiang,Chand Harripersaud,Li Chao,Hu Xiheng,Li Yangle Life sciences AIM:Bladder cancer (BCa) is one of the most commonly occurring urological malignancy. DNA methylation mediated by DNA methyltransferase 1 (DNMT1) plays a crucial role in the physiological and pathological processes of cancer. However, the role of upstream regulatory factors and downstream target genes of DNA methylation mediated by DNMT1 needs further study in BCa. We aim to discover the upstream regulatory factor and downstream target gene of DNMT1, which form a signaling pathway to regulate the progression of BCa. MAIN METHODS:DNMT1 expression in BCa tissues and cells was detected by qPCR and Western Blot. Balbc/nu/nu mice were used to determine the relationship between DNMT1 expression and tumor growth. CCK8, EdU, and transwell assays were employed to measure cell viability, proliferation, and migration respectively. RNA immunoprecipitation (RIP) assays and dual luciferase reporter assays were applied to determine the relationships among DNMT1, miR-152-3p and PTEN. KEY FINDINGS:A significant up-regulation of DNMT1 in BCa tissues and cells, and silencing of DNMT1 expression inhibited the tumor growth in vivo. Knockdown of DNMT1 inhibited the cell growth and migration of BCa cells. miR-152-3p inhibited the DNMT1 and over-expression of DNMT1 restored the cellular function of miR-152-3p in BCa cells. DNMT1 regulated the phosphatase and tensin homolog (PTEN) expression via modulating the status of DNA methylation in the promoter of PTEN. SIGNIFICANCE:This study confirmed the role and underlying mechanism of DNMT1-mediated DNA methylation and displayed a novel regulatory pathway miR-152/DNMT1/PTEN in BCa, thus, providing a potential diagnostic and therapeutic targets for BCa. 10.1016/j.lfs.2020.118311
    DNMT1 as a therapeutic target in pancreatic cancer: mechanisms and clinical implications. Wong Kah Keng Cellular oncology (Dordrecht) BACKGROUND:Pancreatic cancer or pancreatic ductal adenocarcinoma (PDAC) is one of the most devastating cancer types with a 5-year survival rate of only 9%. PDAC is one of the leading causes of cancer-related deaths in both genders. Epigenetic alterations may lead to the suppression of tumor suppressor genes, and DNA methylation is a predominant epigenetic modification. DNA methyltransferase 1 (DNMT1) is required for maintaining patterns of DNA methylation during cellular replication. Accumulating evidence has implicated the oncogenic roles of DNMT1 in various malignancies including PDACs. CONCLUSIONS:Herein, the expression profiles, oncogenic roles, regulators and inhibitors of DNMT1 in PDACs are presented and discussed. DNMT1 is overexpressed in PDAC cases compared with non-cancerous pancreatic ducts, and its expression gradually increases from pre-neoplastic lesions to PDACs. DNMT1 plays oncogenic roles in suppressing PDAC cell differentiation and in promoting their proliferation, migration and invasion, as well as in induction of the self-renewal capacity of PDAC cancer stem cells. These effects are achieved via promoter hypermethylation of tumor suppressor genes, including cyclin-dependent kinase inhibitors (e.g., p14, p15, p16, p21 and p27), suppressors of epithelial-mesenchymal transition (e.g., E-cadherin) and tumor suppressor miRNAs (e.g., miR-148a, miR-152 and miR-17-92 cluster). Pre-clinical investigations have shown the potency of novel non-nucleoside DNMT1 inhibitors against PDAC cells. Finally, phase I/II clinical trials of DNMT1 inhibitors (azacitidine, decitabine and guadecitabine) in PDAC patients are currently underway, where these inhibitors have the potential to sensitize PDACs to chemotherapy and immune checkpoint blockade therapy. 10.1007/s13402-020-00526-4
    DNMT1: A key drug target in triple-negative breast cancer. Wong Kah Keng Seminars in cancer biology Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer. Altered epigenetics regulation including DNA hypermethylation by DNA methyltransferase 1 (DNMT1) has been implicated as one of the causes of TNBC tumorigenesis. In this review, the oncogenic functions rendered by DNMT1 in TNBCs, and DNMT1 inhibitors targeting TNBC cells are presented and discussed. In summary, DNMT1 expression is associated with poor breast cancer survival, and it is overexpressed in TNBC subtype. The oncogenic roles of DNMT1 in TNBCs include: (1) Repression of estrogen receptor (ER) expression; (2) Promotion of epithelial-mesenchymal transition (EMT) required for metastasis; (3) Induces cellular autophagy and; (4) Promotes the growth of cancer stem cells in TNBCs. DNMT1 confers these phenotypes by hypermethylating the promoter regions of ER, multiple tumor suppressor genes, microRNAs and epithelial markers involved in suppressing EMT. DNMT1 inhibitors exert anti-tumorigenic effects against TNBC cells. This includes the hypomethylating agents azacitidine, decitabine and guadecitabine that might sensitize TNBC patients to immune checkpoint blockade therapy. DNMT1 represents an epigenetic target for TNBC cells destruction as well as to derail their metastatic and aggressive phenotypes. 10.1016/j.semcancer.2020.05.010