共0篇 平均IF=NaN (-)更多分析


    Increased mammalian lifespan and a segmental and tissue-specific slowing of aging after genetic reduction of mTOR expression. Wu J Julie,Liu Jie,Chen Edmund B,Wang Jennifer J,Cao Liu,Narayan Nisha,Fergusson Marie M,Rovira Ilsa I,Allen Michele,Springer Danielle A,Lago Cory U,Zhang Shuling,DuBois Wendy,Ward Theresa,deCabo Rafael,Gavrilova Oksana,Mock Beverly,Finkel Toren Cell reports We analyzed aging parameters using a mechanistic target of rapamycin (mTOR) hypomorphic mouse model. Mice with two hypomorphic (mTOR(Δ/Δ)) alleles are viable but express mTOR at approximately 25% of wild-type levels. These animals demonstrate reduced mTORC1 and mTORC2 activity and exhibit an approximately 20% increase in median survival. While mTOR(Δ/Δ) mice are smaller than wild-type mice, these animals do not demonstrate any alterations in normalized food intake, glucose homeostasis, or metabolic rate. Consistent with their increased lifespan, mTOR(Δ/Δ) mice exhibited a reduction in a number of aging tissue biomarkers. Functional assessment suggested that, as mTOR(Δ/Δ) mice age, they exhibit a marked functional preservation in many, but not all, organ systems. Thus, in a mammalian model, while reducing mTOR expression markedly increases overall lifespan, it affects the age-dependent decline in tissue and organ function in a segmental fashion. 10.1016/j.celrep.2013.07.030
    P53 and mTOR signalling determine fitness selection through cell competition during early mouse embryonic development. Bowling Sarah,Di Gregorio Aida,Sancho Margarida,Pozzi Sara,Aarts Marieke,Signore Massimo,D Schneider Michael,Martinez-Barbera Juan Pedro,Gil Jesús,Rodríguez Tristan A Nature communications Ensuring the fitness of the pluripotent cells that will contribute to future development is important both for the integrity of the germline and for proper embryogenesis. Consequently, it is becoming increasingly apparent that pluripotent cells can compare their fitness levels and signal the elimination of those cells that are less fit than their neighbours. In mammals the nature of the pathways that communicate fitness remain largely unknown. Here we identify that in the early mouse embryo and upon exit from naive pluripotency, the confrontation of cells with different fitness levels leads to an inhibition of mTOR signalling in the less fit cell type, causing its elimination. We show that during this process, p53 acts upstream of mTOR and is required to repress its activity. Finally, we demonstrate that during normal development around 35% of cells are eliminated by this pathway, highlighting the importance of this mechanism for embryonic development. 10.1038/s41467-018-04167-y
    Inhibition of mTOR Signaling Enhances Maturation of Cardiomyocytes Derived From Human-Induced Pluripotent Stem Cells via p53-Induced Quiescence. Garbern Jessica C,Helman Aharon,Sereda Rebecca,Sarikhani Mohsen,Ahmed Aishah,Escalante Gabriela O,Ogurlu Roza,Kim Sean L,Zimmerman John F,Cho Alexander,MacQueen Luke,Bezzerides Vassilios J,Parker Kevin Kit,Melton Douglas A,Lee Richard T Circulation BACKGROUND:Current differentiation protocols to produce cardiomyocytes from human induced pluripotent stem cells (iPSCs) are capable of generating highly pure cardiomyocyte populations as determined by expression of cardiac troponin T. However, these cardiomyocytes remain immature, more closely resembling the fetal state, with a lower maximum contractile force, slower upstroke velocity, and immature mitochondrial function compared with adult cardiomyocytes. Immaturity of iPSC-derived cardiomyocytes may be a significant barrier to clinical translation of cardiomyocyte cell therapies for heart disease. During development, cardiomyocytes undergo a shift from a proliferative state in the fetus to a more mature but quiescent state after birth. The mechanistic target of rapamycin (mTOR)-signaling pathway plays a key role in nutrient sensing and growth. We hypothesized that transient inhibition of the mTOR-signaling pathway could lead cardiomyocytes to a quiescent state and enhance cardiomyocyte maturation. METHODS:Cardiomyocytes were differentiated from 3 human iPSC lines using small molecules to modulate the Wnt pathway. Torin1 (0 to 200 nmol/L) was used to inhibit the mTOR pathway at various time points. We quantified contractile, metabolic, and electrophysiological properties of matured iPSC-derived cardiomyocytes. We utilized the small molecule inhibitor, pifithrin-α, to inhibit p53 signaling, and nutlin-3a, a small molecule inhibitor of MDM2 (mouse double minute 2 homolog) to upregulate and increase activation of p53. RESULTS:Torin1 (200 nmol/L) increased the percentage of quiescent cells (G phase) from 24% to 48% compared with vehicle control (<0.05). Torin1 significantly increased expression of selected sarcomere proteins (including TNNI3 [troponin I, cardiac muscle]) and ion channels (including Kir2.1) in a dose-dependent manner when Torin1 was initiated after onset of cardiomyocyte beating. Torin1-treated cells had an increased relative maximum force of contraction, increased maximum oxygen consumption rate, decreased peak rise time, and increased downstroke velocity. Torin1 treatment increased protein expression of p53, and these effects were inhibited by pifithrin-α. In contrast, nutlin-3a independently upregulated p53, led to an increase in TNNI3 expression and worked synergistically with Torin1 to further increase expression of both p53 and TNNI3. CONCLUSIONS:Transient treatment of human iPSC-derived cardiomyocytes with Torin1 shifts cells to a quiescent state and enhances cardiomyocyte maturity. 10.1161/CIRCULATIONAHA.119.044205
    Longevity genes, cardiac ageing, and the pathogenesis of cardiomyopathy: implications for understanding the effects of current and future treatments for heart failure. European heart journal The two primary molecular regulators of lifespan are sirtuin-1 (SIRT1) and mammalian target of rapamycin complex 1 (mTORC1). Each plays a central role in two highly interconnected pathways that modulate the balance between cellular growth and survival. The activation of SIRT1 [along with peroxisome proliferator-activated receptor-gamma coactivator (PGC-1α) and adenosine monophosphate-activated protein kinase (AMPK)] and the suppression of mTORC1 (along with its upstream regulator, Akt) act to prolong organismal longevity and retard cardiac ageing. Both activation of SIRT1/PGC-1α and inhibition of mTORC1 shifts the balance of cellular priorities so as to promote cardiomyocyte survival over growth, leading to cardioprotective effects in experimental models. These benefits may be related to direct actions to modulate oxidative stress, organellar function, proinflammatory pathways, and maladaptive hypertrophy. In addition, a primary shared benefit of both SIRT1/PGC-1α/AMPK activation and Akt/mTORC1 inhibition is the enhancement of autophagy, a lysosome-dependent degradative pathway, which clears the cytosol of dysfunctional organelles and misfolded proteins that drive the ageing process by increasing oxidative and endoplasmic reticulum stress. Autophagy underlies the ability of SIRT1/PGC-1α/AMPK activation and Akt/mTORC1 suppression to extend lifespan, mitigate cardiac ageing, alleviate cellular stress, and ameliorate the development and progression of cardiomyopathy; silencing of autophagy genes abolishes these benefits. Loss of SIRT1/PGC-1α/AMPK function or hyperactivation of Akt/mTORC1 is a consistent feature of experimental cardiomyopathy, and reversal of these abnormalities mitigates the development of heart failure. Interestingly, most treatments that have been shown to be clinically effective in the treatment of chronic heart failure with a reduced ejection fraction have been reported experimentally to exert favourable effects to activate SIRT1/PGC-1α/AMPK and/or suppress Akt/mTORC1, and thereby, to promote autophagic flux. Therefore, the impairment of autophagy resulting from derangements in longevity gene signalling is likely to represent a seminal event in the evolution and progression of cardiomyopathy. 10.1093/eurheartj/ehaa360
    Leucine induces cardioprotection in vitro by promoting mitochondrial function via mTOR and Opa-1 signaling. Morio Atsushi,Tsutsumi Rie,Kondo Takashi,Miyoshi Hirotsugu,Kato Takahiro,Narasaki Soshi,Satomi Shiho,Nakaya Erika,Kuroda Masashi,Sakaue Hiroshi,Kitamura Tadahiro,Tsutsumi Yasuo M Nutrition, metabolism, and cardiovascular diseases : NMCD BACKGROUND AND AIMS:Coronary heart disease is a major global health concern. Further, severity of this condition is greatly influenced by myocardial ischemia/reperfusion (I/R) injury. Branched-chain amino acids (BCAAs) have cardioprotective effects against I/R via mammalian target of rapamycin (mTOR) activity, wherein Leu is considered to particularly regulate mTOR activation. However, the mechanism underlying cardioprotective effects of Leu via mTOR activity is not fully elucidated. Here, we aimed to study the signaling pathway of cardioprotection and mitochondrial function induced by Leu treatment. METHODS AND RESULTS:Cardiac myocytes isolated from adult male Wistar rats were incubated and exposed to simulated I/R (SI/R) injury by replacing the air content. Cardiac myocytes were treated with Leu and subsequently, their survival rate was calculated. To elucidate the signaling pathway and mitochondrial function, immunoblots and mitochondrial permeability transition pore were examined. Cell survival rate was decreased with SI/R but improved by 160 μM Leu (38.5 ± 3.6% vs. 64.5 ± 4.2%, respectively, p < 0.001). Although rapamycin (mTOR inhibitor) prevented this cardioprotective effect induced by Leu, wortmannin (PI3K inhibitor) did not interfere with this effect. In addition, we indicated that overexpression of Opa-1 and mitochondrial function are ameliorated via Leu-induced mitochondrial biogenesis. In contrast, knockdown of Opa-1 suppressed Leu-induced cardioprotection. CONCLUSION:Leu treatment is critical in rendering a cardioprotective effect exhibited by BCAAs via mTOR signaling. Furthermore, Leu improved mitochondrial function. 10.1016/j.numecd.2021.06.025
    The complex network of mTOR signalling in the heart. Sciarretta Sebastiano,Forte Maurizio,Frati Giacomo,Sadoshima Junichi Cardiovascular research The mechanistic target of rapamycin (mTOR) integrates several intracellular and extracellular signals involved in the regulation of anabolic and catabolic processes. mTOR assembles into two macromolecular complexes, named mTORC1 and mTORC2, which have different regulators, substrates and functions. Studies of gain- and loss-of-function animal models of mTOR signalling revealed that mTORC1/2 elicits both adaptive and maladaptive functions in the cardiovascular system. Both mTORC1 and mTORC2 are indispensable for driving cardiac development and cardiac adaption to stress, such as pressure overload. However, persistent and deregulated mTORC1 activation in the heart is detrimental during stress and contributes to the development and progression of cardiac remodelling and genetic and metabolic cardiomyopathies. In this review, we discuss the latest findings regarding the role of mTOR in the cardiovascular system, both under basal conditions and during stress, such as pressure overload, ischemia, and metabolic stress. Current data suggest that mTOR modulation may represent a potential therapeutic strategy for the treatment of cardiac diseases. 10.1093/cvr/cvab033