logo logo
A Review on the Expression and Metabolic Features of Orphan Human Cytochrome P450 2S1 (CYP2S1). Yan Pan,Eng Ong Chin,Yu Chieng Jin Current drug metabolism BACKGROUND:Cytochrome P450 2S1 (CYP2S1) is one of the 'orphan' CYPs, which is expressed primarily among extra-hepatic tissues and it is inducible by dioxin. Although the contribution of extra-hepatic CYPs in drug metabolism is considered less significant, they play more important roles in leading to in situ toxicity in organs with higher expression. METHOD:A non-systemic search was performed to review articles relevant to CYP2S1 in literature. This review will update the findings related to the expression and regulation of CYP2S1 gene and protein, substrate profiles and metabolism mechanisms, genetic polymorphisms, and their association with diseases. RESULTS:The expression of CYP2S1 was mainly in the epithelium of portal of entry organs such as respiratory and gastrointestinal tract. Aryl Hydrocarbon Receptor (AHR) is believed to be partly involved in the induction of CYP2S1. CYP2S1 was found to activate and deactivate pro-drugs which resulted in toxicity and detoxification of carcinogens. The current knowledge of the endogenous functions of CYP2S1 is largely related to cell proliferation and lipid metabolisms. Several polymorphic alleles of CYP2S1 have been reported and documented to date. CONCLUSION:Molecular-based investigations should be performed to better understand the regulation mechanism of CYP2S1 in various cells and tissues. It is pivotal to establish optimum expression and incubation systems in vitro to elucidate the substrate specificity of CYP2S1 and characterise the genetic consequences of variant CYP2S1 in vitro. 10.2174/1389200219666180528090237
Cutaneous expression of cytochrome P450 CYP2S1: individuality in regulation by therapeutic agents for psoriasis and other skin diseases. Smith Gillian,Wolf C Roland,Deeni Yusuf Y,Dawe Robert S,Evans Alan T,Comrie Muriel M,Ferguson James,Ibbotson Sally H Lancet (London, England) BACKGROUND:Treatment of common skin diseases such as psoriasis is complicated by differences between individuals in response to topical drug treatment and photochemotherapy. Individuality in hepatic expression of drug-metabolising enzymes is an important determinant of systemic drug handling; we investigated whether similar variation in cutaneous gene expression contributes to individuality in response to topical therapies. METHODS:We used quantitative real-time RT-PCR to demonstrate the expression in skin of a recently identified cytochrome P450, CYP2S1, in healthy volunteers (n=27) and patients with psoriasis (n=29). We also investigated regulation of CYP2S1 by ultraviolet radiation, psoralen-ultraviolet A (PUVA), and topical drugs used to treat psoriasis. FINDINGS:We found that CYP2S1 is expressed in skin and showed pronounced individuality in constitutive expression of the enzyme and its induction after ultraviolet irradiation or topical drug treatment. Cutaneous expression of CYP2S1 was induced by ultraviolet radiation, PUVA, coal tar, and all-trans retinoic acid; expression was significantly higher in lesional psoriatic skin than in adjacent non-lesional skin (geometric mean 3.38 [95% CI 2.64-4.34] times higher; p<0.0001), which implies that topical drugs are differentially metabolised in psoriatic plaque and non-lesional skin. We showed that all-trans retinoic acid is metabolised by CYP2S1, which has higher cutaneous expression than CYP26, previously described as the specific cutaneous P450 retinoic-acid-metabolising enzyme. INTERPRETATION:These findings increase our understanding of the interaction between therapeutic agents and the skin and suggest a functional role for CYP2S1 in the metabolism of topical drugs and in mediating the response to photochemotherapy in psoriasis. 10.1016/S0140-6736(03)13081-4
Hypoxia as a modulator of cytochromes P450: Overexpression of the cytochromes CYP2S1 and CYP24A1 in human liver cancer cells in hypoxia. Cabrera-Cano Alfredo,Dávila-Borja Víctor Manuel,Juárez-Méndez Sergio,Marcial-Quino Jaime,Gómez-Manzo Saúl,Castillo-Rodríguez Rosa Angélica Cell biochemistry and function Low levels of oxygen (hypoxia) have been reported in solid tumours. This hypoxic microenvironment modulates the expression of genes linked to a more aggressive disease. However, it is unclear if the expression of drug-metabolizing enzymes as cytochromes P450 (CYPs) is affected by hypoxia in cancer. We aimed to define which cytochromes are affected by hypoxia using a liver cancer model in vitro. For this purpose, we assessed whole-genome expression microarrays of HepG2 liver cancer cell line from free repository databases, looking for gene expression hypoxia-associated profiles and selected those cytochromes with significant differences. Then, we corroborated their mRNA expression and protein levels by RT-qPCR and western blot, respectively, as well as immunofluorescence. Based on microarray analysis, we found that the expression of CYP2S1 and CYP24A1 were up-regulated with at least twice fold change compared with normoxia. The levels of mRNA and protein of CYP2S1 and CYP24A1 were increased significantly in hypoxic conditions (P < .05), and this tendency was also observed by immunofluorescence assays. Our data show that the expression of cytochromes CYP2S1 and CYP24A1 are induced in hypoxia, being the first time that CYP24A1 expression is associated with tumour hypoxia; which might have consequences in cancer progression and drug resistance. SIGNIFICANCE OF THE STUDY: Hypoxia is among the most important factors for cellular adaptation to stress. Especially in cancer, a major public health issue, hypoxia plays a substantial role in angiogenesis, metastasis and resistance to therapy. Tumoral hypoxia has been described at least in the brain, breast, cervical, liver, renal, lung, pancreatic and renal cancer. However, the understanding of how hypoxia drives cancer progression is still a major challenge. One emerging question is the role of hypoxia over the expression of drug-metabolizing enzymes, with a significant impact on drug treatment. In this context, our paper focus on the effect of hypoxia on CYPs, which is an essential group of drug-metabolizing enzymes. We show that hypoxia induces the expression of two members of the CYPs family: CYP2S1 and CYP24A1. Importantly, CYP2S1 is a major metabolizer of carcinogenic substances being relevant that hypoxia could promote this function. Interestingly, CYP24A1 limits the action of the active form of vitamin D, which is an anti-proliferative factor in cancer. Our evidence shows for the first time that hypoxia can induce CYP24A1 expression, with a potential effect on cancer progression. Our contribution clarifies a particular effect of tumoral hypoxia and the implications will be useful in the understanding of the progression of cancer, the resistance to treatment and the development of alternative therapies. 10.1002/cbf.3612
Upregulation of CYP2S1 by oxaliplatin is associated with p53 status in colorectal cancer cell lines. Yang Chao,Zhou Qian,Li Minle,Tong Xuemei,Sun Jiayi,Qing Yin,Sun Liya,Yang Xuhan,Hu Xiaowen,Jiang Jie,Yan Xiaomei,He Lin,Wan Chunling Scientific reports Oxaliplatin displays a wide spectrum of antitumor activities and is widely used in the treatment of metastatic colorectal cancer (CRC). However, tumor responses to this agent are variable, and the underlying mechanisms are poorly understood. In the present study, oxaliplatin was found to strongly inhibit the growth of HCT116 cells harboring wild-type p53 but to only weakly inhibit SW480 cells, HT29 cells or p53-/- HCT116 cells, which all lack p53 expression. Administration of oxaliplatin significantly induced p53 accumulation and enhanced expression of CYP2S1 in HCT116 cells with wild-type p53. CYP2S1 knockdown conferred a cell survival advantage after oxaliplatin treatment to cells harboring wild-type p53 in vitro and in vivo. Interestingly, enzyme immunoassays, TOPFlash/FOPFlash reporter activity assays and western blotting analysis demonstrated oxaliplatin-mediated downregulation of PGE2 and Wnt/β-catenin signaling in a manner dependent on p53. Moreover, oxaliplatin treatment of mice with subcutaneous tumor xenografts drastically reduced the volume of wild-type p53 HCT116 tumors but had no effect on isogenic p53-/- HCT116 tumors. These results suggest that oxaliplatin exerts its inhibitory effects in human CRC cells via upregulation of CYP2S1 expression in a p53-dependent manner. 10.1038/srep33078