logo logo
Spatiotemporal dynamics of animal contests arise from effective forces between contestants. Proceedings of the National Academy of Sciences of the United States of America Competition among animals for resources, notably food, territories, and mates, is ubiquitous at all scales of life. This competition is often resolved through contests among individuals, which are commonly understood according to their outcomes and in particular, how these outcomes depend on decision-making by the contestants. Because they are restricted to end-point predictions, these approaches cannot predict real-time or real-space dynamics of animal contest behavior. This limitation can be overcome by studying systems that feature typical contest behavior while being simple enough to track and model. Here, we propose to use such systems to construct a theoretical framework that describes real-time movements and behaviors of animal contestants. We study the spatiotemporal dynamics of contests in an orb-weaving spider, in which all the common elements of animal contests play out. The confined arena of the web, on which interactions are dominated by vibratory cues in a two-dimensional space, simplifies the analysis of interagent interactions. We ask whether these seemingly complex decision-makers can be modeled as interacting active particles responding only to effective forces of attraction and repulsion due to their interactions. By analyzing the emergent dynamics of "contestant particles," we provide mechanistic explanations for real-time dynamical aspects of animal contests, thereby explaining competitive advantages of larger competitors and demonstrating that complex decision-making need not be invoked in animal contests to achieve adaptive outcomes. Our results demonstrate that physics-based classification and modeling, in terms of effective rules of interaction, provide a powerful framework for understanding animal contest behaviors. 10.1073/pnas.2106269118
Is temporo-spatial dynamics the "common currency" of brain and mind? In Quest of "Spatiotemporal Neuroscience". Northoff Georg,Wainio-Theberge Soren,Evers Kathinka Physics of life reviews Neuroscience has made considerable progress in unraveling the neural correlates of mental phenomena like self, consciousness, and perception. However, the "common currency" shared between neuronal and mental activity, brain and mind, remains yet unclear. In this article, we propose that the dynamics of time and space provides a "common currency" that connects neuronal and mental features. Time and space are here understood in a dynamic context (as in contemporary physics): that is, in terms of the way the brain's spontaneous activity constructs its spatial and temporal relationships, for instance in terms of functional connectivity and different frequencies of fluctuations. Recruiting recent empirical evidence, we show that the different ways in which the spontaneous activity constructs its "inner time and space" are manifested in distinct mental features. Specifically, we demonstrate how spatiotemporal mechanisms like spatiotemporal repertoire, integration, and speed yield mental features like consciousness, self, and time speed perception. The focus on the brain's spatiotemporal mechanisms entails what we describe as "Spatiotemporal Neuroscience". Spatiotemporal Neuroscience conceives neuronal activity in terms of its temporo-spatial dynamics rather than its various functions (e.g., cognitive, affective, social, etc.) as in other branches of neuroscience (as distinguished from Cognitive, Affective, Cultural, Social, etc. Neuroscience). That allows Spatiotemporal Neuroscience to take into view the so-called 'spatio-temporality' of mental features including their non-causal, intrinsic and transformative relationship with neuronal features. In conclusion, Spatiotemporal Neuroscience opens the door to investigate and ultimately reveal the brain's own temporo-spatial dynamics as the hitherto missing "common currency" of neuronal and mental features. 10.1016/j.plrev.2019.05.002
Tumor Necrosis Factor (TNF) Is Required for Spatial Learning and Memory in Male Mice under Physiological, but Not Immune-Challenged Conditions. Cells Increasing evidence demonstrates that inflammatory cytokines-such as tumor necrosis factor (TNF)-are produced at low levels in the brain under physiological conditions and may be crucial for synaptic plasticity, neurogenesis, learning and memory. Here, we examined the effects of developmental TNF deletion on spatial learning and memory using 11-13-month-old TNF knockout (KO) and C57BL6/J wild-type (WT) mice. The animals were tested in the Barnes maze (BM) arena under baseline conditions and 48 h following an injection of the endotoxin lipopolysaccharide (LPS), which was administered at a dose of 0.5 mg/kg. Vehicle-treated KO mice were impaired compared to WT mice during the acquisition and memory-probing phases of the BM test. No behavioral differences were observed between WT and TNF-KO mice after LPS treatment. Moreover, there were no differences in the hippocampal content of glutamate and noradrenaline between groups. The effects of TNF deletion on spatial learning and memory were observed in male, but not female mice, which were not different compared to WT mice under baseline conditions. These results indicate that TNF is required for spatial learning and memory in male mice under physiological, non-inflammatory conditions, however not following the administration of LPS. Inflammatory signalling can thereby modulate spatial cognition in male subjects, highlighting the importance of sex- and probably age-stratified analysis when examining the role of TNF in the brain. 10.3390/cells10030608
Adult neurogenesis promotes efficient, nonspecific search strategies in a spatial alternation water maze task. Yu Ru Qi,Cooke Matthew,Seib Desiree R,Zhao Jiaying,Snyder Jason S Behavioural brain research Goal-directed navigation requires learning strategies that are efficient and minimize costs. In some cases it may be desirable to flexibly adjust behavioral responses depending on the cues that vary from one episode to the next. In others, successful navigation might be achieved with inflexible, habit-like responses that reduce cognitive load. Adult neurogenesis is believed to contribute to the spatial processing functions of the hippocampus, particularly when behavioral flexibility is required. However, little is known about the role of neurogenesis in spatial navigation when goals are unpredictable or change repeatedly according to certain rules. We hypothesized that neurogenesis is necessary in a spatial navigation task that involves different patterns of reinforcement. Intact and neurogenesis-deficient rats were trained to escape to one of two possible platform locations in a spatial water maze. The platform either repeated in the same location for all trials in a day, alternated between two locations across trials, or randomly moved between the two locations. Neurogenesis selectively enhanced escape performance in the alternating condition, but not by improving platform choice accuracy. Instead, neurogenesis-intact rats made fewer search errors and developed an efficient habit-like strategy where they consistently swam to a preferred location. If the platform was not present, they proceeded to the other possible location. In contrast, neurogenesis-deficient rats were indecisive and navigationally less-efficient. Thus, in conditions where goals follow a predictable spatiotemporal pattern, adult neurogenesis promotes the adoption of navigation strategies that are spatially nonspecific but, nonetheless, accurate and efficient. 10.1016/j.bbr.2019.112151
Uncovering spatial representations from spatiotemporal patterns of rodent hippocampal field potentials. Cell reports methods Spatiotemporal patterns of large-scale spiking and field potentials of the rodent hippocampus encode spatial representations during maze runs, immobility, and sleep. Here, we show that multisite hippocampal field potential amplitude at ultra-high-frequency band (FPA), a generalized form of multiunit activity, provides not only a fast and reliable reconstruction of the rodent's position when awake, but also a readout of replay content during sharp-wave ripples. This FPA feature may serve as a robust real-time decoding strategy from large-scale recordings in closed-loop experiments. Furthermore, we develop unsupervised learning approaches to extract low-dimensional spatiotemporal FPA features during run and ripple periods and to infer latent dynamical structures from lower-rank FPA features. We also develop an optical flow-based method to identify propagating spatiotemporal LFP patterns from multisite array recordings, which can be used as a decoding application. Finally, we develop a prospective decoding strategy to predict an animal's future decision in goal-directed navigation. 10.1016/j.crmeth.2021.100101