1. SNF5 promotes cell proliferation and immune evasion in non-small cell lung cancer.
期刊:Bioengineered
日期:2022-05-01
DOI :10.1080/21655979.2022.2068894
Immune evasion is the process that tumor cells accelerate growth and metastasis by evading the recognition and attack of immune cells. SNF5 is one of the core subunits of SWI/SNF, which is involved in the development of a variety of malignancies. However, the functions of SNF5 in Non-Small Cell Lung Cancer (NSCLC) and the mechanism of SNF5 regulates immune evasion are still unclear. Based on this, we analyzed the expression of SNF5 and overall survival of lung cancer tissues through the cancer genome atlas (TCGA) database. Then we performed genetic gain and loss of function experiments with SNF5 using lentivirus infection and siRNA in NSCLC A549 and NCI-H1299 cells, respectively. We investigated the proliferation and immune evasion of these cells. We further explored the mechanism of SNF5 on NSCLC cells immune evasion. Our data showed that SNF5 was significantly increased in lung cancer tissues than that in normal lung tissues. Furthermore, SNF5 promoted NSCLC cells proliferation and the expressions of immune evasion-related genes. Meantime, overexpressed SNF5 reduced mortality of A549 cells when co-cultured with T cells. Moreover, SNF5 regulated the immune evasion by activating the signal transducer and activator of transcription (STAT3)/ phospho-STAT3 pathway in NSCLC cells. Together, our results validate SNF5 as a tumor oncogene and provide a new target for NSCLC treatment.
添加收藏
创建看单
引用
2区Q1影响因子: 6.8
跳转PDF
登录
英汉
2. The metastatic promoter DEPDC1B induces epithelial-mesenchymal transition and promotes prostate cancer cell proliferation via Rac1-PAK1 signaling.
期刊:Clinical and translational medicine
日期:2020-10-01
DOI :10.1002/ctm2.191
Metastasis is the major cause of prostate cancer (PCa)-related mortality. Epithelial-mesenchymal transition (EMT) is a vital characteristic feature that empowers cancer cells to adapt and survive at the beginning of metastasis. Therefore, it is essential to identify the regulatory mechanism of EMT in metastatic prostate cancer (mPCa) and to develop a novel therapy to block PCa metastasis. Here, we discovered a novel PCa metastasis oncogene, DEP domain containing 1B (DEPDC1B), which was positively correlated with the metastasis status, high Gleason score, advanced tumor stage, and poor prognosis. Functional assays revealed that DEPDC1B enhanced the migration, invasion, and proliferation of PCa cells in vitro and promoted tumor metastasis and growth in vivo. Mechanistic investigations clarified that DEPDC1B induced EMT and enhanced proliferation by binding to Rac1 and enhancing the Rac1-PAK1 pathway. This DEPDC1B-mediated oncogenic effect was reversed by a Rac1-GTP inhibitor or Rac1 knockdown. In conclusion, we discover that the DEPDC1B-Rac1-PAK1 signaling pathway may serve as a multipotent target for clinical intervention in mPCa.
添加收藏
创建看单
引用
4区Q4影响因子: 1.7
打开PDF
登录
英汉
3. PUM1 is upregulated by DNA methylation to suppress antitumor immunity and results in poor prognosis in pancreatic cancer.
期刊:Translational cancer research
日期:2021-05-01
DOI :10.21037/tcr-20-3295
BACKGROUND:Pancreatic carcinoma (PAAD) is a highly malignant cancer with a poor prognosis and high mortality rate. Pumilio homologous protein 1 (PUM1) promotes cell growth, invasion, and metastasis and suppresses apoptosis in many different kinds of cancers, such as non-small-cell lung carcinoma (NSCLC), ovarian cancer and lymphocyte leukemia. However, the underlying mechanism and potential role of PUM1 in PAAD have not been investigated. METHODS:Bioinformatics analysis was performed using multiple databases [The Cancer Genome Atlas (TCGA), Gene Expression Profiling Interactive Analysis (GEPIA), BBCancer, Human Protein Atlas (HPA), MethSurv, cBioPortal, The Cancer Imaging Archive (TCIA), xCell, Gene Expression Omnibus (GEO)] to explore the diagnostic and prognostic role of PUM1, and the relationship between expression of PUM1 and prognosis of patients with PAAD. The analysis was further validated using the Kaplan-Meier plotter. RESULTS:PUM1 plays a role in both diagnostic and prognostic prediction. The PUM1 mRNA expression level correlates with both the prognosis and incidence of pancreatic cancer. PUM1 can serve as a potential diagnostic indicator for pancreatic cancer. Furthermore, the DNA methylation levels of PUM1 affects its oncogene function in pancreatic cancer. PUM1 can also inhibit the immune microenvironment by altering immune cell infiltration, which affects immunotherapy response in pancreatic cancer. CONCLUSIONS:PUM1 takes a crucial part in the immune microenvironment and immunotherapy response of PAAD and is potentially useful for the development of novel diagnostic and treatment strategies.