logo logo
FoxO3a depletion accelerates cutaneous wound healing by regulating epithelial‑mesenchymal transition through β‑catenin activation. Liu Ting,Huang Jing-Zhuo,Lei Ze-Yuan,Yan Rong-Shuai,Fan Dong-Li Molecular medicine reports The hysteresis of keratinocyte (KC) re‑epithelialization is an important factor resulting in chronic wounds; however, the molecular mechanisms involved in this cellular response remain yet to be completely elucidated. The present study demonstrated the function of transcription factor Forkhead box O3a (FoxO3a) in KC growth and migration functional effects, resulting in restrained KC re‑epithelialization during wound healing. In chronic wound tissue samples, the expression of FoxO3a was significantly increased when compared with the acute wound healing group (P<0.01). Overexpressing FoxO3a significantly inhibited, whereas silencing endogenous FoxO3a enhanced, the growth and migration of HaCaT cells in vitro. Further investigation revealed that FoxO3a negatively regulated matrix metalloproteinases 1 and 9, and increased the expression of tissue inhibitor of metalloproteinase 1. In addition, the upregulation of FoxO3a retarded, whereas the downregulation of FoxO3a accelerated, transforming growth factor‑β1‑induced epithelial‑mesenchymal transition in HaCaT cells. Mechanistically, the overexpression of FoxO3a inactivated β‑catenin signaling and markedly reduced the levels of nuclear β‑catenin. These results reveal a novel mechanism of FoxO3a in regulating KC re‑epithelialization, and provide novel targets for the prevention and treatment of chronic wounds. 10.3892/mmr.2020.10912
Single-Cell RNA-Sequencing Reveals Lineage-Specific Regulatory Changes of Fibroblasts and Vascular Endothelial Cells in Keloids. Liu Xuanyu,Chen Wen,Zeng Qingyi,Ma Baihui,Li Zhujun,Meng Tian,Chen Jie,Yu Nanze,Zhou Zhou,Long Xiao The Journal of investigative dermatology Keloids are a benign dermal fibrotic disorder with features similar to malignant tumors. keloids remain a therapeutic challenge and lack medical therapies, which is partially due to the incomplete understanding of the pathogenesis mechanism. We performed single-cell RNA-sequencing of 28,064 cells from keloid skin tissue and adjacent relatively normal tissue. Unbiased clustering revealed substantial cellular heterogeneity of keloid tissue, which included 21 clusters assigned to 11 cell lineages. We observed significant expansion of fibroblast and vascular endothelial cell subpopulations in keloids, reflecting their strong association with keloid pathogenesis. Comparative analyses were performed to identify the dysregulated pathways, regulators and ligand-receptor interactions in keloid fibroblasts and vascular endothelial cells. Our results highlight the roles of TGFβ and Eph-ephrin signaling pathways in both the aberrant fibrogenesis and angiogenesis of keloids. Critical regulators probably involved in the fibrogenesis of keloid fibroblasts, such as TWIST1, FOXO3 and SMAD3, were identified. TWIST1 inhibitor harmine could significantly suppress the fibrogenesis of keloid fibroblasts. In addition, tumor-related pathways were activated in keloid fibroblasts and vascular endothelial cells, which may be responsible for the malignant features of keloids. Our study put insights into the pathogenesis of keloids and provides potential targets for medical therapies. 10.1016/j.jid.2021.06.010
IL-10 alleviates lipopolysaccharide-induced skin scarring via IL-10R/STAT3 axis regulating TLR4/NF-κB pathway in dermal fibroblasts. Shi Jihong,Shi Shan,Xie Wenbo,Zhao Ming,Li Yan,Zhang Jian,Li Na,Bai Xiaozhi,Cai Weixia,Hu Xiaolong,Hu Dahai,Han Juntao,Guan Hao Journal of cellular and molecular medicine Hypertrophic scar (HS) is a severe fibrotic skin disease. It has always been a major problem in clinical treatment, mainly because its pathogenesis has not been well understood. The roles of bacterial contamination and prolonged wound inflammation were considered significant. IL-10 is a potent anti-inflammatory cytokine and plays a pivotal role in wound healing and scar formation. Here, we investigate whether IL-10 alleviates lipopolysaccharide (LPS)-induced inflammatory response and skin scarring and explore the possible mechanism of scar formation. Our results showed that the expression of TLR4 and pp65 was higher in HS and HS-derived fibroblasts (HSFs) than their counterpart normal skin (NS) and NS-derived fibroblasts (NSFs). LPS could up-regulate the expression of TLR4, pp65, Col I, Col III and α-SMA in NSFs, but IL-10 could down-regulate their expression in both HSFs and LPS-induced NSFs. Blocking IL-10 receptor (IL-10R) or the phosphorylation of STAT3, their expression was up-regulated. In addition, in vitro and in vivo models results showed that IL-10 could alleviate LPS-induced fibroblast-populated collagen lattice (FPCL) contraction and scar formation. Therefore, IL-10 alleviates LPS-induced skin scarring via IL-10R/STAT3 axis regulating TLR4/NF-κB pathway in dermal fibroblasts by reducing ECM proteins deposition and the conversion of fibroblasts to myofibroblasts. Our results indicate that IL-10 can alleviate the LPS-induced harmful effect on wound healing, reduce scar contracture, scar formation and skin fibrosis. Therefore, the down-regulation of inflammation may lead to a suitable scar outcome and be a better option for improving scar quality. 10.1111/jcmm.16250
STAT3 signalling pathway is implicated in keloid pathogenesis by preliminary transcriptome and open chromatin analyses. Lee Yun-Shain,Liang Ya-Chen,Wu Ping,Kulber David A,Tanabe Kylie,Chuong Cheng-Ming,Widelitz Randall,Tuan Tai-Lan Experimental dermatology Keloids are wounding-induced fibroproliferative human tumor-like skin scars of complex genetic makeup and poorly defined pathogenesis. To reveal dynamic epigenetic and transcriptome changes of keloid fibroblasts, we performed RNA-seq and ATAC-seq analysis on an early passage keloid fibroblast cell strain and its paired normal control fibroblasts. This keloid strain produced keloid-like scars in a plasma clot-based skin equivalent humanized keloid animal model. RNA-seq analysis reveals gene ontology terms including hepatic fibrosis, Wnt-β-catenin, TGF-β, regulation of epithelial-mesenchymal transition (EMT), STAT3 and adherens junction. ATAC-seq analysis suggests STAT3 signalling is the most significantly enriched gene ontology term in keloid fibroblasts, followed by Wnt signalling (Wnt5) and regulation of the EMT pathway. Immunohistochemistry confirms that STAT3 (Tyr705 phospho-STAT3) is activated and β-catenin is up-regulated in the dermis of keloid clinical specimens and keloid skin equivalent implants from the humanized mouse model. A non-linear dose-response of cucurbitacin I, a selective JAK2/STAT3 inhibitor, in collagen type I expression of keloid-derived plasma clot-based skin equivalents implicates a likely role of STAT3 signalling in keloid pathogenesis. This work also demonstrates the utility of the recently established humanized keloid mouse model in exploring the mechanism of keloid formation. 10.1111/exd.13923
ASC-J9 Blocks Cell Proliferation and Extracellular Matrix Production of Keloid Fibroblasts through Inhibiting STAT3 Signaling. International journal of molecular sciences Keloids are a fibrotic skin disorder caused by abnormal wound healing and featuring the activation and expansion of fibroblasts beyond the original wound margin. Signal transducer and activator of transcription 3 (STAT3) has been found to mediate the biological functions of keloid fibroblasts (KFs). Therefore, we aimed to demonstrate whether ASC-J9, an inhibitor of STAT3 phosphorylation, can suppress the activation of KFs. Western blotting results showed that ASC-J9 inhibited the levels of COL1A1 and FN1 proteins, which were upregulated in KFs, by decreasing the expression of pSTAT3 and STAT3. RNA sequencing and in vitro studies further demonstrated that ASC-J9 treatment of KFs reduced cell division, inflammation, and ROS generation, as well as extracellular matrix (ECM) synthesis. ELISA assays verified that ASC-J9 treatment significantly mitigated IL-6 protein secretion in KFs. Transmission electron microscopy images revealed that ASC-J9 induced the formation of multilamellar bodies in KFs, which is associated with autophagy-related signaling. These results suggested that inhibiting a vicious cycle of the ROS/STAT3/IL-6 axis by ASC-J9 may represent a potential therapeutic approach to suppress cell proliferation and ECM production in KFs. 10.3390/ijms23105549
IL-17 Induced Stromal Cell-Derived Factor-1 and Profibrotic Factor in Keloid-Derived Skin Fibroblasts via the STAT3 Pathway. Lee Seon-Yeong,Kim Eun Kyung,Seo Hyun Beom,Choi Jeong Won,Yoo Jin Hee,Jung Kyoung Ah,Kim Da-Som,Yang Seung Cheon,Moon Soo Jin,Lee Jung Ho,Cho Mi-La Inflammation The pathogenesis of keloids has not been elucidated, and the disease is thought to be caused by abnormal secretion of proinflammatory mediators and irregular responses to other inflammatory signals mediated by keloid fibroblasts (KFs). In this study, we investigated whether a local increase in interleukin IL-17 in keloid tissues stimulates the production of stromal cell-derived factor-1 (SDF-1) in KFs causing further recruitment of IL-17-producing T helper 17 (Th17) cells, which subsequently creates a positive feedback loop. Histological assessment was performed and the change in the expression of IL-17, IL-1β, IL-6, and TNF-α which of fibrosis and inflammation associated markers was examined. In addition, fibroblasts were treated with IL-17 in the presence or absence of STAT3 inhibitor STA-21; SDF-1 levels and fibrosis genes were measured. Our results showed that fibrotic reaction and expression of proinflammatory cytokines including IL-17 were most prominent in the growing margin (perilesional area) of keloid tissue and Th17 cells significantly infiltrated the perilesional area. In addition, IL-17 upregulated the expression of SDF-1, collagen, and α-SMA in KFs. Finally, STA-21 decreased SDF-1α expression and the expression of fibrosis genes in KFs even after IL-17 stimulation. Our study demonstrated that a local increase in IL-17 in keloid tissues stimulates the production of SDF-1 in KFs causing further recruitment of IL-17-producing T helper 17 (Th17) cells, which subsequently creates a positive feedback loop. These findings suggest that STAT3 inhibition can be used to treat keloid scars by reversing the vicious cycle between Th17 cells and KFs. 10.1007/s10753-019-01148-1
M2-polarized macrophages mediate wound healing by regulating connective tissue growth factor via AKT, ERK1/2, and STAT3 signaling pathways. Zhang Si-Min,Wei Chuan-Yuan,Wang Qiang,Wang Lu,Lu Lu,Qi Fa-Zhi Molecular biology reports BACKGROUND:Timely and sufficient M1 recruitment and M2 polarization are necessary for fibrosis during wound healing. The mechanism of how M2 mediates wound healing is worth exploring. Abnormally up-regulated connective tissue growth factor (CTGF) influences multiple organ fibrosis, including cardiac, pulmonary, hepatic, renal, and cutaneous fibrosis. Previous studies reported that M2 contributed to hepatic and renal fibrosis by secreting CTGF. It is worth discussing if M2 regulates fibrosis through secreting CTGF in wound healing. METHODS AND RESULTS:We established the murine wound model and inhibited macrophages during proliferation phase with clodronate liposomes in vivo. Macrophages depletion led to down-regulation of wound healing rates, collagen deposition, as well as expression of collagen 1/3 and Ki67. M2 was induced by interleukin-4 (IL-4) and measured by flow cytometry in vitro. Secreted pro-fibrotic and anti-fibrotic factors were tested by enzyme-linked immunosorbent assay (ELISA). M2 was polarized, which producing more CTGF, transforming growth factor-beta1 (TGF-β1), and IL-6, as well as less tumor necrosis factor-α (TNF-α) and IL-10. M2 CTGF gene was blocked using siCTGF. Effects of M2 on fibroblasts activities were detected by cell counting kit 8 (CCK8) and cellular wound healing assay. Expressions of related signaling pathway were assessed by western blotting. Blockade of CTGF in M2 deactivated fibroblasts proliferation and migration by regulating AKT, ERK1/2, and STAT3 pathway. Recombinant CTGF restored these effects. CONCLUSIONS:Our research, for the first time, indicated that M2 promoted wound healing by secreting CTGF, which further mediating proliferation and migration of fibroblasts via AKT, ERK1/2, and STAT3 pathway. 10.1007/s11033-021-06646-w
STAT3 operates as a novel transcription factor that regulates NEDD4 in Keloid. Wang Yu,Yuan Bo,Qiao Liang,Yang Huizhong,Li Xuechuan Biochemical and biophysical research communications Keloid, marked by excessive deposition of extracellular matrix components, usually occurs after cutaneous trauma. The molecular mechanism involved in the etiology of keloid remains largely unknown in spite of extensive studies presented on the mechanism of Keloid. NEDD4 has come to be recognized as a potential mediator implicated in inflammation and keloid that could chronically develop. Despite this, the working mechanism of NEDD4 involved in keloid remains unclear. In our present report, STAT3 was identified as a novel transcriptional factor that can diametrically regulate the transcription of NEDD4 and the translation that ensues. The regulation by STAT3 over NEDD4 can be abolished as long as the p-STAT3 was inactivated in the presence of Niclosamide, a kind of inhibitors that work specifically on STAT3 signaling pathway. In turn, silencing of NEDD4 was also shown to be able to down-regulate the expression of p-STAT3. No direct protein-protein interactions between STAT3 and NEDD4 can be identified in our setting. The data we provided herein enrich the knowledge regarding the molecular mechanism of NEDD4 involved in the pathogenesis of keloid, defining a new regulatory role for STAT3 in keloid. 10.1016/j.bbrc.2019.08.110
IL-17 Induces Autophagy Dysfunction to Promote Inflammatory Cell Death and Fibrosis in Keloid Fibroblasts the STAT3 and HIF-1α Dependent Signaling Pathways. Frontiers in immunology Keloid is an abnormal fibrotic disease after cutaneous injury characterized by exaggerated scar tissue formation, which often extends beyond the boundaries of the original wound. Although chronic inflammation is known to be associated with the excessive inflammation in keloid tissue, there are few studies on the role of autophagy in the pathogenesis of keloid. In this study, we evaluated the pattern of autophagy in keloid fibroblasts (KF) and normal fibroblasts (NF). Expression of HIF-1α, STAT3 and autophagic flux markers were evaluated in KF and NF. Defective autophagy caused by IL-17 was evaluated, and the relationship between defective autophagy and necroptosis was also examined. The expression of IL-17, HIF-1α and STAT3 was significantly increased in keloid tissue, and autophagosome-to autophagolysosome conversion was defective in KF. IL-17 treatment significantly elevated the expression of STAT3 and HIF-1α in NF and caused defective autophagy, which was reversed by HIF-1α inhibitor. In addition, the defective autophagy was associated with the increased necroptosis and fibrosis. In keloid tissue, the elevated necroptosis marker was confirmed, and with the HIF-1α inhibitor, the defective autophagy, necroptosis and fibrosis was decreased in KF. In conclusion, autophagy was defective in keloid tissue, which was associated with increased necroptosis and fibrosis. The IL-17-STAT3-HIF-1α axis was involved in defective autophagy in KF, and this suggests that targeting the axis could alleviate chronic inflammation in keloid disease. 10.3389/fimmu.2022.888719