logo logo
Vascular Calcification: Key Roles of Phosphate and Pyrophosphate. Villa-Bellosta Ricardo International journal of molecular sciences Cardiovascular complications due to accelerated arterial stiffening and atherosclerosis are the leading cause of morbimortality in Western society. Both pathologies are frequently associated with vascular calcification. Pathologic calcification of cardiovascular structures, or vascular calcification, is associated with several diseases (for example, genetic diseases, diabetes, and chronic kidney disease) and is a common consequence of aging. Calcium phosphate deposition, mainly in the form of hydroxyapatite, is the hallmark of vascular calcification and can occur in the medial layer of arteries (medial calcification), in the atheroma plaque (intimal calcification), and cardiac valves (heart valve calcification). Although various mechanisms have been proposed for the pathogenesis of vascular calcification, our understanding of the pathogenesis of calcification is far from complete. However, in recent years, some risk factors have been identified, including high serum phosphorus concentration (hyperphosphatemia) and defective synthesis of pyrophosphate (pyrophosphate deficiency). The balance between phosphate and pyrophosphate, strictly controlled by several genes, plays a key role in vascular calcification. This review summarizes the current knowledge concerning phosphate and pyrophosphate homeostasis, focusing on the role of extracellular pyrophosphate metabolism in aortic smooth muscle cells and macrophages. 10.3390/ijms222413536
Endothelial dysfunction aggravates arterial media calcification in warfarin administered rats. FASEB journal : official publication of the Federation of American Societies for Experimental Biology Arterial media calcification is an active cell process. This encompasses osteochondrogenic transdifferentiation of vascular smooth muscle cells followed by the deposition of calcium-phosphate crystals. Increasing evidence suggests a significant role for endothelial cells (ECs) in the development of arterial media calcification. This manuscript explores a role for endothelial dysfunction in the disease progression of arterial media calcification. Male rats were randomly assigned to four different groups. The first group received standard chow. The second group was given L-NAME (≈50 mg kg · d ), to induce endothelial dysfunction, in addition to standard chow. The third group and fourth group received a warfarin-supplemented diet to induce mild calcification and the latter group was co-administered L-NAME. Prior to sacrifice, non-invasive measurement of aortic distensibility was performed. Animals were sacrificed after 6 weeks. Arterial media calcification was quantified by measuring aortic calcium and visualized on paraffin-embedded slices by the Von Kossa method. Arterial stiffness and aortic reactivity was assessed on isolated carotid segments using specialized organ chamber setups. Warfarin administration induced mineralization. Simultaneous administration of warfarin and L-NAME aggravated the arterial media calcification process. Through organ chamber experiments an increased vessel tonus was found, which could be linked to reduced basal NO availability, in arteries of warfarin-treated animals. Furthermore, increased calcification because of L-NAME administration was related to a further compromised endothelial function (next to deteriorated basal NO release also deteriorated stimulated NO release). Our findings suggest early EC changes to impact the disease progression of arterial media calcification. 10.1096/fj.202101919R
Resveratrol ameliorates high-phosphate-induced VSMCs to osteoblast-like cells transdifferentiation and arterial medial calcification in CKD through regulating Wnt/β-catenin signaling. European journal of pharmacology Vascular smooth muscle cells (VSMCs) to osteoblast-like cells transdifferentiation induced by high-phosphate is a crucial step in the development of arterial medial calcification (AMC) in patients with chronic kidney disease (CKD), and previous studies implicate Wnt/β-catenin signaling in osteogenic transdifferentiation of VSMCs and AMC. Given that resveratrol's ability to modulate Wnt/β-catenin signaling in other types of cell, we tested the effect of resveratrol on high-phosphate-induced osteogenic transdifferentiation of VSMCs and AMC in CKD. Resveratrol ameliorated AMC in rats with chronic renal failure and calcium deposition in aortic rings and VSMCs cultured in a high-phosphate environment. Resveratrol also diminished high-phosphate-induced osteogenic transdifferentiation of VSMCs in cultured aortic rings and VSMCs. In vitro, resveratrol attenuated the activation of β-catenin induced by high-phosphate and inhibited the expression of Runx2, a downstream effector of Wnt/β-catenin signaling during osteogenic transdifferentiation of VSMCs. Intriguingly, resveratrol inhibited high-phosphate-induced phosphorylation of LRP6 (Ser1490), but didn't inhibit Wnt3a-induced phosphorylation of LRP6 (Ser1490) and Runx2 expression. The expression of several Wnts was induced by high-phosphate, but the expression of Wnt7a, not Wnt2b and Wnt10a could be suppressed by resveratrol. In addition, the expression of both porcupine and wntless, two obligatory proteins for Wnt secretion, was induced by high-phosphate in cultured aortic rings and VSMCs, which could be suppressed by resveratrol. In summary, these findings suggest that resveratrol possesses a vascular protective effect on retarding high-phosphate-induced osteogenic transdifferentiation of VSMCs and AMC in CKD by targeting Wnt/β-catenin signaling, which may, to a large extent, via impeding Wnt secretion. 10.1016/j.ejphar.2022.174953