共0篇 平均IF=NaN (-)更多分析

    加载中

    logo
    Exogenous spermine inhibits the proliferation of human pulmonary artery smooth muscle cells caused by chemically-induced hypoxia via the suppression of the ERK1/2- and PI3K/AKT-associated pathways. Wei Can,Li Hong-Zhu,Wang Yue-Hong,Peng Xue,Shao Hong-Jiang,Li Hong-Xia,Bai Shu-Zhi,Lu Xiao-Xiao,Wu Ling-Yun,Wang Rui,Xu Chang-Qing International journal of molecular medicine Pulmonary vascular remodeling is a significant pathological feature of hypoxia-induced pulmonary hypertension (HPH), while pulmonary artery smooth muscle cell (PASMC) proliferation plays a leading role in pulmonary vascular remodeling. Spermine (Sp), a polyamine, plays a critical role in periodic cell proliferation and apoptosis. The present study was conducted to observe the association between hypoxia-induced PASMC proliferation and polyamine metabolism, and to explore the effects of exogenous Sp on PASMC poliferation and the related mechanisms. In the present study, PASMCs were cultured with cobalt chloride (CoCl2) to establish a hypoxia model, and Sp at various final concentrations (0.1, 1, 10 and 100 µM) was added to the medium of PASMCs 40 min prior to the induction of hypoxia. Cell proliferation was measured by 3-(4,5-dimethylthiazol‑2‑yl)‑2,5‑diphenyltetrazolium bromide (MTT) assay, cell counting kit-8 assay and 5-bromo‑2'‑deoxyuridine (BrdU) incorporation assay. Cell cycle progression was determined by flow cytometry, and the protein expression levels of spermidine/spermine N1-acetyltransferase (SSAT; the key enzyme in the terminal degradation of polyamine), ornithine decarboxylase (ODC; the key enzyme of polyamine biosynthesis), cyclin D1 and p27 were measured by western blot analysis. The results revealed that the proliferation of the PASMCs cultured with CoCl2 at 50 µM for 24 h markedly increased. The expression of ODC was decreased and the expression of SSAT was increased in the cells under hypoxic conditions. Exogenous Sp at concentrations of 1 and 10 µM significantly inhibited hypoxia-induced PASMC proliferation, leading to cell cycle arrest at the G1/G0 phase. In addition, Sp decreased cyclin D1 expression, increased p27 expression, and suppressed the phosphorylation of extracellular signal‑regulated kinase 1/2 (ERK1/2), phosphatidylinositol 3-kinase (PI3K) and protein kinase B (AKT); however, the above-metioned parameters were not markedly affected by Sp at concentrations of 0.1 or 100 µM. These results suggest that hypoxia disrupts polyamine metabolism, and Sp at concentrations of 1 and 10 µM inhibits the increase in human PASMC proliferation caused by chemically-induced hypoxia via the suppression of the ERK1/2- and PI3K/AKT-associated pathways. This study thus offer new insight into the prevention and treatment of HPH. 10.3892/ijmm.2015.2408
    Ligustrazine Suppresses Platelet-Derived Growth Factor-BB-Induced Pulmonary Artery Smooth Muscle Cell Proliferation and Inflammation by Regulating the PI3K/AKT Signaling Pathway. Huang Huiping,Kong Lingjin,Luan Shaohua,Qi Chuanzong,Wu Fanrong The American journal of Chinese medicine Pulmonary arterial hypertension (PAH) is a serious pulmonary vascular disease. Excessive proliferation of pulmonary artery smooth muscle cells (PASMCs) plays an important role in the course of this disease. Ligustrazine is an alkaloid monomer extracted from the rhizome of the herb . It is often used to treat cardiovascular diseases, but its effect on PAH has rarely been reported. This study aims to explore the protective effect and mechanism of ligustrazine on PAH. In the experiment, monocrotaline (MCT) was used to induce PAH in rats, and then ligustrazine (40, 80, 160 mg/kg/day) or sildenafil (25 mg/kg/day) was administered. Four weeks later, hemodynamic changes, right ventricular hypertrophy index, lung morphological characteristics, inflammatory factors, phosphoinositide 3-kinase (PI3K), and AKT expression were evaluated. In addition, primary rat PASMCs were extracted by the tissue adhesion method, a proliferation model was established with platelet-derived growth factor-BB (PDGF-BB), and the cells were treated with ligustrazine to investigate its effects on cell proliferation, inflammation, and cell cycle distribution. The results indicate that ligustrazine can markedly alleviate right ventricular systolic pressure, right ventricular hypertrophy, pulmonary vascular remodeling, and inflammation caused by MCT, and that it decreased PI3K and AKT phosphorylation expression. Moreover, ligustrazine can inhibit the proliferation and inflammation of PASMCs and arrest the progression of G0/G1 to S phase through the PI3K/AKT signaling pathway. Therefore, we conclude that ligustrazine may inhibit the proliferation and inflammation of PASMCs by regulating the activation of the PI3K/AKT signaling pathway, thereby attenuating MCT-induced PAH in rats. Collectively, these findings suggest that ligustrazine may be a promising therapeutic for PAH. 10.1142/S0192415X21500208
    [Hypoxia enhances proliferation and migration of mouse pulmonary artery smooth muscle cells in vitro]. Shen Hui,Zhang Lina,Yao Deshan,Zhang Zhengang,Gong Kaizheng Xi bao yu fen zi mian yi xue za zhi = Chinese journal of cellular and molecular immunology Objective To establish and improve a primary culture method of mouse pulmonary artery smooth muscle cells (PASMCs), and explore the effects of different hypoxic conditions on the proliferation, migration, and apoptosis of PASMCs. Methods Under sterile conditions, pulmonary arteries were isolated from male mice and PASMCs were obtained using an improved method of tissue piece inoculation through digesting with trypsin. Cell morphology was observed under an inverted phase-contrast microscope, and cell growth curve was plotted by cell counting. Immunofluorescence staining of α-smooth muscle actin (α-SMA) was used to assess the cell type and purity of PASMCs. The effect of different oxygen concentrations on the proliferation of PASMCs was detected by CCK-8 assay. Under hypoxia, the migration ability of PASMCs was detected by scratch wound assay, and the expression of BAX protein was detected by Western blot analysis. Results The cells tended to be long spindle and grew in the typical "peak-valley" mode. Cells were confluent after 9 days and the growth curve presented with a sigmoidal shape. The positive expression rate of α-SMA was 96%. Compared with the normoxic group, the proliferation and migration of PASMCs significantly increased under hypoxia at all time points, and the cell proliferation and migration was the most significant under the condition of 10 mL/L oxygen content. Moreover, BAX protein level of the cells was significantly reduced under hypoxia in a time-dependent manner. Conclusion The primary PASMCs with high purity and activity can be obtained by enzyme digestion and tissue mass adherent method. PASMCs exhibit higher proliferation, increased migration, and declined apoptosis under 10 mL/L oxygen concentration.
    Danshensu prevents hypoxic pulmonary hypertension in rats by inhibiting the proliferation of pulmonary artery smooth muscle cells via TGF-β-smad3-associated pathway. Zhang Ning,Dong Mingqing,Luo Ying,Zhao Feng,Li Yongjun European journal of pharmacology Hypoxic pulmonary hypertension is characterized by the remodeling of pulmonary artery. Previously we showed that tanshinone IIA, one lipid-soluble component from the Chinese herb Danshen, ameliorated hypoxic pulmonary hypertension by inhibiting pulmonary artery remodeling. Here we explored the effects of danshensu, one water-soluble component of Danshen, on hypoxic pulmonary hypertension and its mechanism. Rats were exposed to hypobaric hypoxia for 4 weeks to develop hypoxic pulmonary hypertension along with administration of danshensu. Hemodynamics and pulmonary arterial remodeling index were measured. The effects of danshensu on the proliferation of primary pulmonary artery smooth muscle cells and transforming growth factor-β-smad3 pathway were assessed in vitro. Danshensu significantly decreased the right ventricle systolic pressure, the right ventricle hypertrophy and pulmonary vascular remodeling index in hypoxic pulmonary hypertension rats. Danshensu also reduced the increased expression of transforming growth factor-β and phosphorylation of smad3 in pulmonary arteries in hypoxic pulmonary hypertension rats. In vitro, danshensu inhibited the hypoxia- or transforming growth factor-β-induced proliferation of primary pulmonary artery smooth muscle cells. Moreover, danshensu decreased the hypoxia-induced expression and secretion of transforming growth factor in primary pulmonary adventitial fibroblasts and NR8383 cell line, inhibited the hypoxia or transforming growth factor-β-induced phosphorylation of smad3 in rat primary pulmonary artery smooth muscle cells. These results demonstrate that danshensu ameliorates hypoxic pulmonary hypertension in rats by inhibiting the hypoxia-induced proliferation of pulmonary artery smooth muscle cells, and the inhibition effects is associated with transforming growth factor-β-smad3 pathway. Therefore danshensu may be a potential treatment for hypoxic pulmonary hypertension. 10.1016/j.ejphar.2017.12.010
    Paeonol regulates hypoxia-induced proliferation of pulmonary artery smooth muscle cells via EKR 1/2 signalling. Zhang Lixin,Ma Cui,Gu Rui,Zhang Min,Wang Xiaoying,Yang Lin,Liu Ying,Zhou Yutian,He Siyu,Zhu Daling European journal of pharmacology Pulmonary hypertension (PH) is a disease with a developmental origin characterized by obstructive vascular remodelling that is partially due to excessive pulmonary arterial smooth muscle cells (PASMCs) proliferation. Paeonol has important effects on vascular cell proliferation, migration, and inflammation, but researchers have not determined whether paeonol participates in the development and progression of pulmonary vascular remodelling. We explored the remarkable anti-proliferative effects of paeonol on hypoxic PASMCs, which are postulated to be mediated by the extracellular signal-regulated kinase 1 and 2 (ERK1/2) signalling pathway. In this study, hypoxic rodent PH models, Western blotting, flow cytometry, immunochemistry, and morphometric analyses of the lung vasculature and right ventricle (RV) vessels were performed. Paeonol reversed hypoxia-induced increases in right ventricular function, right ventricular systolic pressure and thickening of medial walls. Meanwhile, paeonol ameliorated the hypoxia-induced PASMCs proliferation. Furthermore, paeonol modulated cell proliferation and cell cycle transitions from G/G phase to S phase and G/M phase in an ERK1/2-dependent manner. Our findings emphasize the central function of paeonol in regulating PASMCs proliferation in subjects with PH. Therefore, paeonol represents a potential novel therapeutic approach for the treatment of PH. 10.1016/j.ejphar.2018.07.017
    Magnolol alleviates hypoxia-induced pulmonary vascular remodeling through inhibition of phenotypic transformation in pulmonary arterial smooth muscle cells. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie Phenotypic transformation and excessive proliferation of pulmonary arterial smooth muscle cells (PASMCs) play an important role in vascular remodeling during pulmonary hypertension (PH). Magnolol (5,5'-diallyl-2,2'-dihydroxybiphenyl) is the major bioactive constituent isolated from the bark of Magnolia Officinalis, which has anti-inflammatory, antioxidant, and cardiovascular protection effects. However, the effect of magnolol on the phenotypic transformation of PASMCs is still unknown. This study aims to evaluate the effects of magnolol on the phenotypic transformation of PASMCs induced by hypoxia. In vivo, Sprague Dawley rats were exposed to hypoxia (10% O) for four weeks to establish a PH model. The results showed that hypoxia treatment led to an increase in right ventricle systolic pressure, Fulton index, collagen production, accompanied by upregulation in the expression of collagen Ⅰ, collagen Ⅲ, OPN, PCNA, CyclinD1, p-JAK2, and p-STAT3, as well as decreases in expression of SM-22α; these changes were attenuated by magnolol. In vitro, the primary cultured PASMCs were exposed to 3% O for 48 h to induce phenotypic transformation. Consistent with the findings in vivo, magnolol treatment could prevent the phenotypic transformation and hyperproliferation of PASMCs induced by hypoxia, accompanied by downregulation in the expression of p-JAK2 and p-STAT3. In summary, this study demonstrated that the protective effect of magnolol on PH vascular remodeling is related to the inhibition of phenotypic transformation and hyperproliferation of PASMCs by inhibiting the JAK2/STAT3 pathway. 10.1016/j.biopha.2022.113060