共0篇 平均IF=NaN (-)更多分析

    加载中

    logo
    Comparison of Large Animal Models for Acute Ischemic Stroke: Which Model to Use? Stroke Translation of acute ischemic stroke research to the clinical setting remains limited over the last few decades with only one drug, recombinant tissue-type plasminogen activator, successfully completing the path from experimental study to clinical practice. To improve the selection of experimental treatments before testing in clinical studies, the use of large gyrencephalic animal models of acute ischemic stroke has been recommended. Currently, these models include, among others, dogs, swine, sheep, and nonhuman primates that closely emulate aspects of the human setting of brain ischemia and reperfusion. Species-specific characteristics, such as the cerebrovascular architecture or pathophysiology of thrombotic/ischemic processes, significantly influence the suitability of a model to address specific research questions. In this article, we review key characteristics of the main large animal models used in translational studies of acute ischemic stroke, regarding (1) anatomy and physiology of the cerebral vasculature, including brain morphology, coagulation characteristics, and immune function; (2) ischemic stroke modeling, including vessel occlusion approaches, reproducibility of infarct size, procedural complications, and functional outcome assessment; and (3) implementation aspects, including ethics, logistics, and costs. This review specifically aims to facilitate the selection of the appropriate large animal model for studies on acute ischemic stroke, based on specific research questions and large animal model characteristics. 10.1161/STROKEAHA.121.036050
    Germacrone protects against oxygen-glucose deprivation/reperfusion injury by inhibiting autophagy processes in PC12 cells. Zhang Jianxing,Yuan Li,Wang Sujie,Liu Jiang,Bi Huiqin,Chen Guojuan,Li Jingjing,Chen Lili BMC complementary medicine and therapies BACKGROUND:Germacrone is an anti-inflammatory ingredient in the Chinese medicine zedoary turmeric. The purpose of this study was to explore the protective mechanism of germacrone against PC12 cells injury caused by oxygen-glucose deprivation/reperfusion (OGD/R). METHODS:OGD/R injury model of PC12 cells was established by using OGD/R (2 h/24 h). The cell viability was assessed by MTT assay and LDH release. The ultrastructure of cells was observed by transmission electron microscopy (TEM). The expression of autophagy related proteins in cells was determined by Western Blot. RESULTS:The results of ultrastructural observation showed that PC12 cells damaged by OGD/R showed typical autophagy characteristics. In addition, OGD/R observably up-regulated the expression of autophagy related proteins: the class III type phosphoinositide 3-kinase (PI3K III), light chain 3(LC3), and Beclin-1 in PC12 cells, and inhibited the expression of the class I type phosphoinositide 3-kinase (PI3K I), Protein kinase B (Akt), the mammalian target of rapamycin (mTOR), and B-cell lymphoma 2(Bcl-2) proteins. Furthermore, germacrone increased the cell viability of OGD/R-damaged PC12 cells by down-regulating the expression of LC3 protein in cells in a concentration-dependent manner. More importantly, germacrone significantly inhibited the expression of PI3K III, LC3, and Beclin-1 in OGD/R-injured PC12 cells, and up-regulated the expressionof PI3K I, Akt, mTOR, and Bcl-2 proteins in cells, and this inhibited or up-regulated effect was reversed by PI3K I inhibitor (ZSTK474). CONCLUSION:The above results indicated that germacrone could inhibit the autophagy effect in OGD/R injury model of PC12 cells, the mechanism of inhibition was regulated by PI3K III/Beclin-1/Bcl-2 and PI3K I/Akt/mTOR pathways, thereby improving the cell viability of PC12 cells and playing a neuroprotective role, which provided a new drug for the treatment of OGD/R. 10.1186/s12906-020-2865-1
    MiR-107 Aggravates Oxygen-Glucose Deprivation/Reoxygenation (OGD/R)-Induced Injury Through Inactivating PI3K-AKT Signalling Pathway by Targeting FGF9/FGF12 in PC12 Cells. Journal of stroke and cerebrovascular diseases : the official journal of National Stroke Association OBJECTIVES:The aberrant expression of miR-107 has been confirmed in some neurological diseases, including ischemic stroke (IS). However, the function of miR-107 and underlying mechanisms are ambiguous. MATERIALS AND METHODS:Oxygen-Glucose Deprivation/Reoxygenation (OGD/R)-induced PC12 cells were used to mimic IS condition. MiR-107 expression and differentially expressed genes (DEGs) responding to IS were analyzed by GSE97532 and GSE61616 datasets, respectively. The target genes of miR-107 were predicted by TargetScan and confirmed by dual-luciferase reporter assay. Cell counting kit-8 and apoptosis assays were conducted to explore the role of miR-107 in biological behaviors of OGD/R-induced PC12 cells. RESULTS:Bioinformatics analysis revealed that miR-107 expression was elevated in rats with middle cerebral artery occlusion (MCAO), which was confirmed in OGD/R-treated PC12 cells. Notably, miR-107 strongly inhibited the proliferation of OGD/R-treated PC12 cells. As most DEGs were enriched in PI3K-AKT signaling pathway, which was critical for IS, DEGs in this pathway was compared with the down-regulated genes and the predicted genes to obtain potential target genes of miR-107, and ultimately fibroblast growth factor (FGF)9 and FGF12 stood out. The experiments demonstrated that miR-107 inhibited viability and promoted apoptosis of OGD/R-treated PC12 cells by down-regulating FGF9/FGF12 level. Mechanically, for the first time, we clarified the mechanism via which miR-107 inactivated PI3K-AKT signaling pathway by targeting FGF9/FGF12. CONCLUSIONS:We summarized that miR-107 aggravates OGD/R-induced injury through inactivating PI3K-AKT signaling pathway via targeting FGF9/FGF12. Therefore, our study elucidates the neurotoxicity of miR-107 in IS development and provides a new promising therapy strategy for IS. 10.1016/j.jstrokecerebrovasdis.2021.106295