
Modeling the CRL4A ligase complex to predict target protein ubiquitination induced by cereblon-recruiting PROTACs.
The Journal of biological chemistry
PROteolysis TArgeting Chimeras (PROTACs) are hetero-bifunctional small molecules that can simultaneously recruit target proteins and E3 ligases to form a ternary complex, promoting target protein ubiquitination and degradation via the Ubiquitin-Proteasome System (UPS). PROTACs have gained increasing attention in recent years due to certain advantages over traditional therapeutic modalities and enabling targeting of previously "undruggable" proteins. To better understand the mechanism of PROTAC-induced Target Protein Degradation (TPD), several computational approaches have recently been developed to study and predict ternary complex formation. However, mounting evidence suggests that ubiquitination can also be a rate-limiting step in PROTAC-induced TPD. Here, we propose a structure-based computational approach to predict target protein ubiquitination induced by cereblon (CRBN)-based PROTACs by leveraging available structural information of the CRL4A ligase complex (CRBN/DDB1/CUL4A/Rbx1/NEDD8/E2/Ub). We generated ternary complex ensembles with Rosetta, modeled multiple CRL4A ligase complex conformations, and predicted ubiquitination efficiency by separating the ternary ensemble into productive and unproductive complexes based on the proximity of the ubiquitin to accessible lysines on the target protein. We validated our CRL4A ligase complex models with published ternary complex structures and additionally employed our modeling workflow to predict ubiquitination efficiencies and sites of a series of cyclin-dependent kinases (CDKs) after treatment with TL12-186, a pan-kinase PROTAC. Our predictions are consistent with CDK ubiquitination and site-directed mutagenesis of specific CDK lysine residues as measured using a NanoBRET ubiquitination assay in HEK293 cells. This work structurally links PROTAC-induced ternary formation and ubiquitination, representing an important step toward prediction of target "degradability."
10.1016/j.jbc.2022.101653
Discovery of XL01126: A Potent, Fast, Cooperative, Selective, Orally Bioavailable, and Blood-Brain Barrier Penetrant PROTAC Degrader of Leucine-Rich Repeat Kinase 2.
Journal of the American Chemical Society
Leucine-rich repeat kinase 2 (LRRK2) is one of the most promising targets for Parkinson's disease. LRRK2-targeting strategies have primarily focused on type 1 kinase inhibitors, which, however, have limitations as the inhibited protein can interfere with natural mechanisms, which could lead to undesirable side effects. Herein, we report the development of LRRK2 proteolysis targeting chimeras (PROTACs), culminating in the discovery of degrader XL01126, as an alternative LRRK2-targeting strategy. Initial designs and screens of PROTACs based on ligands for E3 ligases von Hippel-Lindau (VHL), Cereblon (CRBN), and cellular inhibitor of apoptosis (cIAP) identified the best degraders containing thioether-conjugated VHL ligand VH101. A second round of medicinal chemistry exploration led to qualifying XL01126 as a fast and potent degrader of LRRK2 in multiple cell lines, with DC values within 15-72 nM, values ranging from 82 to 90%, and degradation half-lives spanning from 0.6 to 2.4 h. XL01126 exhibits high cell permeability and forms a positively cooperative ternary complex with VHL and LRRK2 (α = 5.7), which compensates for a substantial loss of binary binding affinities to VHL and LRRK2, underscoring its strong degradation performance in cells. Remarkably, XL01126 is orally bioavailable ( = 15%) and can penetrate the blood-brain barrier after either oral or parenteral dosing in mice. Taken together, these experiments qualify XL01126 as a suitable degrader probe to study the noncatalytic and scaffolding functions of LRRK2 and and offer an attractive starting point for future drug development.
10.1021/jacs.2c05499
Accelerating PROTAC drug discovery: Establishing a relationship between ubiquitination and target protein degradation.
Biochemical and biophysical research communications
PROTACs have emerged as a new class of drugs that can target the "undruggable" proteome by hijacking the ubiquitin proteasome system. Despite PROTACs' success, most current PROTACs interface with a limited number of E3 ligases, hindering their expansion to many challenging therapeutic uses. Currently, PROTAC drug discovery relies heavily on traditional Western blotting and reporter gene assays which are insensitive and prone to artifacts, respectively. New reliable methods to monitor true PROTAC function (i.e., ubiquitination and subsequent degradation of targets at physiological expression levels) without external tags are essential to accelerate the PROTAC discovery process and to address many unmet therapeutic areas. In this study, we developed a new high-throughput screening technology using "TUBEs" as ubiquitin-binding entities to monitor PROTAC-mediated poly-ubiquitination of native target proteins with exceptional sensitivity. As a proof of concept, targets including BRD3, Aurora A Kinase, and KRAS were used to demonstrate that ubiquitination kinetics can reliably establish the rank order potencies of PROTAC with variable ligands and linkers. PROTAC-treated cell lysates with the highest levels of endogenous target protein ubiquitination - termed "Ub" - display excellent correlations with DC values obtained from traditional Western blots with the added benefits of being high throughput, providing improved sensitivity, and reducing technical errors.
10.1016/j.bbrc.2022.08.048
PROTAC targeted protein degraders: the past is prologue.
Nature reviews. Drug discovery
Targeted protein degradation (TPD) is an emerging therapeutic modality with the potential to tackle disease-causing proteins that have historically been highly challenging to target with conventional small molecules. In the 20 years since the concept of a proteolysis-targeting chimera (PROTAC) molecule harnessing the ubiquitin-proteasome system to degrade a target protein was reported, TPD has moved from academia to industry, where numerous companies have disclosed programmes in preclinical and early clinical development. With clinical proof-of-concept for PROTAC molecules against two well-established cancer targets provided in 2020, the field is poised to pursue targets that were previously considered 'undruggable'. In this Review, we summarize the first two decades of PROTAC discovery and assess the current landscape, with a focus on industry activity. We then discuss key areas for the future of TPD, including establishing the target classes for which TPD is most suitable, expanding the use of ubiquitin ligases to enable precision medicine and extending the modality beyond oncology.
10.1038/s41573-021-00371-6