logo logo
Autophagy Activated by Peroxiredoxin of . Li Xia,Zhang Yuhan,Zhao Yanqing,Qiao Ke,Feng Meng,Zhou Hang,Tachibana Hiroshi,Cheng Xunjia Cells Autophagy, an evolutionarily conserved mechanism to remove redundant or dangerous cellular components, plays an important role in innate immunity and defense against pathogens, which, in turn, can regulate autophagy to establish infection within a host. However, for , an intestinal protozoan parasite causing human amoebic colitis, the interaction with the host cell autophagy mechanism has not been investigated. In this study, we found that peroxiredoxin (Prx), an antioxidant enzyme critical for parasite survival during the invasion of host tissues, could activate autophagy in macrophages. The formation of autophagosomes in macrophages treated with recombinant Prx of for 24 h was revealed by immunofluorescence and immunoblotting in RAW264.7 cells and in mice. Prx was cytotoxic for RAW264.7 macrophages after 48-h treatment, which was partly attributed to autophagy-dependent cell death. RNA interference experiments revealed that Prx induced autophagy mostly through the toll-like receptor 4 (TLR4)-TIR domain-containing adaptor-inducing interferon (TRIF) pathway. The C-terminal part of Prx comprising 100 amino acids was the key functional domain to activate autophagy. These results indicated that Prx of could induce autophagy and cytotoxic effects in macrophages, revealing a new pathogenic mechanism activated by in host cells. 10.3390/cells9112462
A Sialic Acid-Binding Protein SABP1 of Toxoplasma gondii Mediates Host Cell Attachment and Invasion. Xing Mengen,Yang Na,Jiang Ning,Wang Dawei,Sang Xiaoyu,Feng Ying,Chen Ran,Wang Xinyi,Chen Qijun The Journal of infectious diseases Many obligate intracellular apicomplexan parasites have adapted a distinct invasion mechanism involving a close interaction between the parasite ligands and the sialic acid (SA) receptor. We found that sialic acid binding protein-1 (SABP1), localized on the outer membrane of the zoonotic parasite Toxoplasma gondii, readily binds to sialic acid on the host cell surface. The binding was sensitive to neuraminidase treatment. Cells preincubated with recombinant SABP1 protein resisted parasite invasion in vitro. The parasite lost its invasion capacity and animal infectivity after the SABP1 gene was deleted, whereas complementation of the SABP1 gene restored the virulence of the knockout strain. These data establish the critical role of SABP1 in the invasion process of T. gondii. The previously uncharacterized protein, SABP1, facilitated T. gondii attachment and invasion via sialic acid receptors. 10.1093/infdis/jiaa072
A Family of Toxoplasma gondii Genes Related to GRA12 Regulate Cyst Burdens and Cyst Reactivation. Guevara Rebekah B,Fox Barbara A,Bzik David J mSphere causes a chronic infection that renders the immunocompromised human host susceptible to toxoplasmic encephalitis triggered by cyst reactivation in the central nervous system. The dense granule protein GRA12 is a major parasite virulence factor required for parasite survival during acute infection. Here, we characterized the role of four GRA12-related genes in acute and chronic stages of infection. While GRA12A, GRA12B, and GRA12D were highly expressed in asexual stage tachyzoites and bradyzoites, expression of GRA12C appeared to be restricted to the sexual stages. In contrast to deletion of GRA12 (Δ), no major defects in acute virulence were observed in Δ, Δ, or Δg parasites, though Δ parasites exhibited an increased tachyzoite replication rate. Bradyzoites secreted GRA12A, GRA12B, and GRA12D and incorporated these molecules into the developing cyst wall, as well as the cyst matrix in distinct patterns. Similar to GRA12, GRA12A, GRA12B, and GRA12D colocalized with the dense granules in extracellular tachyzoites, with GRA2 and the intravacuolar network in the tachyzoite stage parasitophorous vacuole and with GRA2 in the cyst matrix and cyst wall. Chronic stage cyst burdens were decreased in mice infected with Δ parasites and were increased in mice infected with Δ parasites. However, Δ cysts were not efficiently maintained Δ, Δ, and Δ cysts displayed a reduced reactivation efficiency, and reactivation of Δ cysts was delayed. Collectively, our results suggest that a family of genes related to GRA12 play significant roles in the formation, maintenance, and reactivation of chronic stage cysts. If host immunity weakens, cysts recrudesce in the central nervous system and cause a severe toxoplasmic encephalitis. Current therapies target acute stage infection but do not eliminate chronic cysts. Parasite molecules that mediate the development and persistence of chronic infection are poorly characterized. Dense granule (GRA) proteins such as GRA12 are key virulence factors during acute infection. Here, we investigated four GRA12-related genes. GRA12-related genes were not major virulence factors during acute infection. Instead, GRA12-related proteins localized at the cyst wall and cyst matrix and played significant roles in cyst development, persistence, and reactivation during chronic infection. Similar to GRA12, the GRA12-related proteins selectively associated with the intravacuolar network of membranes inside the vacuole. Collectively, our results support the hypothesis that GRA12 proteins associated with the intravacuolar membrane system support parasite virulence during acute infection and cyst development, persistence, and reactivation during chronic infection. 10.1128/mSphere.00182-21
The State of Art of Extracellular Traps in Protozoan Infections (Review). Zhang Jing,Sun Ying,Zheng Jingtong Frontiers in immunology Protozoan parasite infection causes severe diseases in humans and animals, leading to tremendous economic and medical pressure. Natural immunity is the first line of defence against parasitic infection. Currently, the role of natural host immunity in combatting parasitic infection is unclear, so further research on natural host immunity against parasites will provide a theoretical basis for the prevention and treatment of related parasitic diseases. Extracellular traps (ETs) are an important natural mechanism of immunity involving resistance to pathogens. When immune cells such as neutrophils and macrophages are stimulated by external pathogens, they release a fibrous network structure, consisting mainly of DNA and protein, that can capture and kill a variety of extracellular pathogenic microorganisms. In this review, we discuss the relevant recently reported data on ET formation induced by protozoan parasite infection, including the molecular mechanisms involved, and discuss the role of ETs in the occurrence and development of parasitic diseases. 10.3389/fimmu.2021.770246