
Wnt/β-catenin signaling regulates the proliferation and differentiation of mesenchymal progenitor cells through the p53 pathway.
Peng Xu,Yang Liu,Chang Hongxing,Dai Gang,Wang Fuyou,Duan Xiaojun,Guo Lin,Zhang Ying,Chen Guangxing
PloS one
OBJECTIVE:Mesenchymal progenitor cells (MPCs) are found in articular cartilage from normal controls and patients with osteoarthritis (OA). Nevertheless, the molecular mechanisms of the proliferation and differentiation of these cells remain unclear. In this study, we aimed to determine the involvement of Wnt/β-catenin signaling in regulating the proliferation and differentiation of MPCs. METHODS:MPCs were isolated from the articular cartilage of normal and OA patients. Cells were sorted by immunomagnetic cell separation. Cell proliferation capacity was evaluated using the MTT assay. Toluidine blue staining and immunostaining with anti-collagen II or anti-aggrecan antibodies were used to determine the chondrogenic differentiation capabilities of MPCs. The mRNA and protein expression of target genes were examined by quantitative real-time polymerase chain reaction and Western blotting, respectively. Knock-down of p53 expression was achieved with RNA interference. RESULTS:Most cells isolated from the normal and OA patients were CD105(+) and CD166(+) positive (Normal subjects: CD105(+)/CD166(+), 94.6% ± 1.1%; OA: CD105(+)/CD166(+), 93.5% ± 1.1%). MPCs derived from OA subjects exhibited decreased differentiation capabilities and enhanced Wnt/β-catenin activity. Inhibition of Wnt/β-catenin signaling promoted proliferation and differentiation, whereas activation of this pathway by treatment with rWnt3a protein decreased the proliferation and differentiation of normal MPCs. Additionally, Wnt/β-catenin signaling positively regulated p53 expression, and silencing of p53 increased proliferation and differentiation of MPCs. CONCLUSIONS:Wnt/β-catenin regulated the proliferation and differentiation of MPCs through the p53 pathway.
10.1371/journal.pone.0097283
Relative percentage and zonal distribution of mesenchymal progenitor cells in human osteoarthritic and normal cartilage.
Pretzel David,Linss Stefanie,Rochler Steffen,Endres Michaela,Kaps Christian,Alsalameh Saifeddin,Kinne Raimund W
Arthritis research & therapy
INTRODUCTION:Mesenchymal stem cells (MSC) are highly attractive for use in cartilage regeneration. To date, MSC are usually recruited from subchondral bone marrow using microfracture. Recent data suggest that isolated cells from adult human articular cartilage, which express the combination of the cell-surface markers CD105 and CD166, are multi-potent mesenchymal progenitor cells (MPC) with characteristics similar to MSC. MPC within the cartilage matrix, the target of tissue regeneration, may provide the basis for in situ regeneration of focal cartilage defects. However, there is only limited information concerning the presence/abundance of CD105+/CD166+ MPC in human articular cartilage. The present study therefore assessed the relative percentage and particularly the zonal distribution of cartilage MPC using the markers CD105/CD166. METHODS:Specimens of human osteoarthritic (OA; n = 11) and normal (n = 3) cartilage were used for either cell isolation or immunohistochemistry. Due to low numbers, isolated cells were expanded for 2 weeks and then analyzed by flow cytometry (FACS) or immunofluorescence in chamber slides for the expression of CD105 and CD166. Following immunomagnetic separation of CD166+/- OA cells, multi-lineage differentiation assays were performed. Also, the zonal distribution of CD166+ cells within the matrix of OA and normal cartilage was analyzed by immunohistochemistry. RESULTS:FACS analysis showed that 16.7 ± 2.1% (mean ± SEM) of OA and 15.3 ± 2.3 of normal chondrocytes (n.s.) were CD105+/CD166+ and thus carried the established MPC marker combination. Similarly, 13.2% ± 0.9% and 11.7 ± 2.1 of CD105+/CD166+cells, respectively, were identified by immunofluorescence in adherent OA and normal chondrocytes. The CD166+ enriched OA cells showed a stronger induction of the chondrogenic phenotype in differentiation assays than the CD166+ depleted cell population, underlining the chondrogenic potential of the MPC. Strikingly, CD166+ cells in OA and normal articular cartilage sections (22.1 ± 1.7% and 23.6% ± 1.4%, respectively; n.s.) were almost exclusively located in the superficial and middle zone. CONCLUSIONS:The present results underline the suitability of CD166 as a biomarker to identify and, in particular, localize and/or enrich resident MPC with a high chondrogenic potential in human articular cartilage. The percentage of MPC in both OA and normal cartilage is substantially higher than previously reported, suggesting a yet unexplored reserve capacity for regeneration.
10.1186/ar3320
Altered function in cartilage derived mesenchymal stem cell leads to OA-related cartilage erosion.
American journal of translational research
A portion of osteoarthritis (OA) patients with total knee arthroplasty (TKA) had monocondylar destruction in medial femoral condyle, but healthy-appearant cartilage in lateral side. However, there is limited information concerning functional differences of cartilage derived mesenchymal stem cell (CMSC) between these two locations in the same donor and its possible role in the pathogenesis of OA. Cells isolated from the degraded cartilage in medial condyle and normal cartilage in lateral side from OA patients were identified with co-expressed markers CD105 and CD166 and confirmed as CMSCs by immunophenotype. The relative percentage, proliferation activity, multi-lineage differentiation potential and miRNA expression profile of CMSCs in two groups were compared by flow cytometry, CCK-8 assay, cytochemical staining, immunohistochemistry, real-time PCR and miRNA microarray analysis. Our study suggested that the percentage (10.61±6.97% vs. 18.44±9.97%, P<0.05) and proliferation rate (P<0.01) of CD105+/CD166+ CMSCs from the degraded cartilage were significantly reduced compared with those from the normal cartilage. CMSCs from the degraded cartilage also showed stronger osteogenic (P<0.05), weaker adipogenic (P<0.01), and comparable chondrogenic potential (P>0.05) during differentiation. MiR-31-5p and miR-424-5p were down regulated in CMSCs from the degraded cartilage. In conclusion, altered function such as reduced percentage and proliferation ability, as well as changes in differentiation profile of CMSC contributed to homeostasis imbalance, leading to OA-related cartilage erosion. Furthermore, regulatory networks of multiple miRNAs may be partially responsible for the dysfunction of CMSCs.
Primary Cells Isolated from Human Knee Cartilage Reveal Decreased Prevalence of Progenitor Cells but Comparable Biological Potential During Osteoarthritic Disease Progression.
The Journal of bone and joint surgery. American volume
BACKGROUND:Current decisions on cellular therapies for osteoarthritis are based primarily on clinical experience or on assumptions about preferred cell sourcing. They have not been informed by rigorous standardized measurements of the chondrogenic connective-tissue progenitors (CTP-Cs) or their intrinsic diversity of chondrogenic potential. The goal of this study was to quantitatively define the CTP-Cs resident in cartilage of different grades of osteoarthritis and to compare their concentration, prevalence, and biological potential. METHODS:Twenty-three patients who had varus malalignment of the knee and were scheduled to undergo elective total knee arthroplasty for idiopathic osteoarthritis and who had grade 1-2 osteoarthritis on the lateral femoral condyle and grade 3-4 osteoarthritis on the medial femoral condyle were recruited for study of the cartilage removed during surgery. CTP-Cs were assayed by a standardized colony-forming-unit assay using automated image-analysis software based on ASTM standard test method F2944-12. RESULTS:Cell concentration was significantly greater (p < 0.001) in grade 3-4 cartilage than in grade 1-2 cartilage. The prevalence of CTP-Cs varied widely, but it trended lower in grade 3-4 cartilage than in grade 1-2 samples (p = 0.078). The biological performance of CTP-Cs from grade 1-2 and grade 3-4 cartilage was comparable. Increased cell concentration was a significant predictor of decreased CTP-C prevalence (p = 0.002). CONCLUSIONS:Although grade 3-4 cartilage showed fewer CTP-Cs than grade 1-2 cartilage, the range of biological performance was comparable, which suggests that either may be used as a source for potent CTP-Cs. However, the biological reason for the heterogeneity of CTP-Cs in cartilage and the biological implications of that heterogeneity are not well understood and require further study. CLINICAL RELEVANCE:In order to improve the efficacy of cartilage cell therapy procedures, it is key to characterize the quality and quantity of the cells and progenitors being administered. Additionally, understanding the heterogeneity in order to select appropriate subsets of populations will improve the rigor of decisions concerning cell sourcing and targeting for pharmacological and cellular therapies.
10.2106/JBJS.18.00005
Promotion of the intrinsic damage-repair response in articular cartilage by fibroblastic growth factor-2.
Henson F M D,Bowe E A,Davies M E
Osteoarthritis and cartilage
OBJECTIVE:To identify the effect of fibroblastic growth factor-2 (FGF-2) on the intrinsic damage-repair response in articular cartilage in vitro. METHODS:Articular equine cartilage explants, without subchondral bone, had a single impact load of 500 g applied from a height of 2.5 cm. Explants were then cultured in 0, 12, 25, 50 or 100 ng/ml FGF-2 for up to 28 days. Unimpacted discs served as controls for each time-point. Histological and immunohistochemical techniques were used to quantify and characterise the response of putative chondrocyte progenitor cells (CPC) to damage and FGF-2 treatment. RESULTS:FGF-2 significantly accelerated the appearance and increased the numbers of de novo repair cells identified histologically at the cartilage surface. The response was affected by the dose of FGF-2. The repair cells were shown to be chondrocytes by their expression of collagen types II, IX/XI, but not of type I collagen. In addition, these cells, and those underlying the articular surface, were shown to be immunopositive for Notch-1 and PCNA, markers for proliferating cartilage progenitor cells. CONCLUSIONS:The results of this study indicate that, following single impact load, CPC can be stimulated in mature articular cartilage in vitro. These CPC and the cells arising from them appear to represent the cartilage's response to damage. The timing of the appearance of CPC and their overall numbers can be significantly increased by FGF-2, providing further evidence for an important role for FGF-2 in modulating cartilage repair. These results indicate that further study into the mechanisms of repair in mature cartilage using this in vitro model are vital in understanding the repair capacity of mature cartilage.
10.1016/j.joca.2005.02.007
Prevention of cartilage degeneration in a rat model of osteoarthritis by intraarticular treatment with recombinant lubricin.
Flannery Carl R,Zollner Richard,Corcoran Chris,Jones Aled R,Root Adam,Rivera-Bermúdez Moisés A,Blanchet Tracey,Gleghorn Jason P,Bonassar Lawrence J,Bendele Alison M,Morris Elisabeth A,Glasson Sonya S
Arthritis and rheumatism
OBJECTIVE:Lubricin, also referred to as superficial zone protein and PRG4, is a synovial glycoprotein that supplies a friction-resistant, antiadhesive coating to the surfaces of articular cartilage, thereby protecting against arthritis-associated tissue wear and degradation. This study was undertaken to generate and characterize a novel recombinant lubricin protein construct, LUB:1, and to evaluate its therapeutic efficacy following intraarticular delivery in a rat model of osteoarthritis (OA). METHODS:Binding and localization of LUB:1 to cartilage surfaces was assessed by immunohistochemistry. The cartilage-lubricating properties of LUB:1 were determined using a custom friction testing apparatus. A cell-binding assay was performed to quantify the ability of LUB:1 to prevent cell adhesion. Efficacy studies were conducted in a rat meniscal tear model of OA. One week after the surgical induction of OA, LUB:1 or phosphate buffered saline vehicle was administered by intraarticular injection for 4 weeks, with dosing intervals of either once per week or 3 times per week. OA pathology scores were determined by histologic analysis. RESULTS:LUB:1 was shown to bind effectively to cartilage surfaces, and facilitated both cartilage boundary lubrication and inhibition of synovial cell adhesion. Treatment of rat knee joints with LUB:1 resulted in significant disease-modifying, chondroprotective effects during the progression of OA, by markedly reducing cartilage degeneration and structural damage. CONCLUSION:Our findings demonstrate the potential use of recombinant lubricin molecules in novel biotherapeutic approaches to the treatment of OA and associated cartilage abnormalities.
10.1002/art.24304
A single blunt impact on cartilage promotes fibronectin fragmentation and upregulates cartilage degrading stromelysin-1/matrix metalloproteinase-3 in a bovine ex vivo model.
Ding Lei,Guo Danping,Homandberg Gene A,Buckwalter Joseph A,Martin James A
Journal of orthopaedic research : official publication of the Orthopaedic Research Society
Post-traumatic osteoarthritis (PTOA) is characterized by progressive cartilage degeneration in injured joints. Since fibronectin-fragments (Fn-fs) degrade cartilage mainly through up-regulating matrix metalloproteinases (MMPs) and pro-inflammatory cytokines, we hypothesized that Fn-fs play a key role in PTOA by promoting chondrolysis in and around injured cartilage. To test this hypothesis, we profiled the catabolic events focusing on fibronectin fragmentation and proteinase expression in bovine osteochondral explants following a single blunt impact on cartilage with a drop tower device which created partial-thickness tissue damage. Injured and control explants were cultured for up to 14 days. The presence of Fn-fs, MMPs (-1, -3, -13), ADAMTS-5 in culture media and in cartilage was determined with immunoblotting. The daily proteoglycan (PG) depletion of cartilage matrix was assessed with DMMB assay. The effect of explant-conditioned media on chondrocytes was also examined with immunoblotting. Impacted cartilage released significantly higher amount of native Fn, three chondrolytic Fn-fs and PG than non-impacted controls did. Those increases coincided with up-regulation of MMP-3 both in culture media and in impacted cartilage. These findings support our hypothesis that PTOA may be propelled by Fn-fs which act as catabolic mediators through up-regulating cartilage-damaging proteinases.
10.1002/jor.22610
HMGB1, IL-1α, IL-33 and S100 proteins: dual-function alarmins.
Bertheloot Damien,Latz Eicke
Cellular & molecular immunology
Our immune system is based on the close collaboration of the innate and adaptive immune systems for the rapid detection of any threats to the host. Recognition of pathogen-derived molecules is entrusted to specific germline-encoded signaling receptors. The same receptors have now also emerged as efficient detectors of misplaced or altered self-molecules that signal tissue damage and cell death following, for example, disruption of the blood supply and subsequent hypoxia. Many types of endogenous molecules have been shown to provoke such sterile inflammatory states when released from dying cells. However, a group of proteins referred to as alarmins have both intracellular and extracellular functions which have been the subject of intense research. Indeed, alarmins can either exert beneficial cell housekeeping functions, leading to tissue repair, or provoke deleterious uncontrolled inflammation. This group of proteins includes the high-mobility group box 1 protein (HMGB1), interleukin (IL)-1α, IL-33 and the Ca-binding S100 proteins. These dual-function proteins share conserved regulatory mechanisms, such as secretory routes, post-translational modifications and enzymatic processing, that govern their extracellular functions in time and space. Release of alarmins from mesenchymal cells is a highly relevant mechanism by which immune cells can be alerted of tissue damage, and alarmins play a key role in the development of acute or chronic inflammatory diseases and in cancer development.
10.1038/cmi.2016.34
Damage-associated molecular patterns in the pathogenesis of osteoarthritis: potentially novel therapeutic targets.
Rosenberg John H,Rai Vikrant,Dilisio Matthew F,Agrawal Devendra K
Molecular and cellular biochemistry
Osteoarthritis (OA) is a chronic disease that degrades the joints and is often associated with increasing age and obesity. The two most common sites of OA in adults are the knee and hip joints. Increased mechanical stress on the joint from obesity can cause the articular cartilage to degrade and release damage-associated molecular patterns (DAMPs). These DAMPs are involved in various molecular pathways that interact with nuclear factor-kappa B and result in the transcription of inflammatory cytokines and activation of matrix metalloproteinases that progressively destroy cartilage. This review focuses on the interactions and contribution to the pathogenesis and progression of OA through the DAMPs: high-mobility group box 1 (HMGB-1), the receptor for advanced glycation end-products (RAGE), the alarmin proteins S100A8 and S100A9, and heparan sulfate. HMGB-1 is released from damaged or necrotic cells and interacts with toll-like receptors (TLRs) and RAGE to induce inflammatory signals, as well as behave as an inflammatory cytokine to activate innate immune cells. RAGE interacts with HMGB-1, advanced glycation end-products, and innate immune cells to increase local inflammation. The alarmin proteins are released following cell damage and interact through TLRs to increase local inflammation and cartilage degradation. Heparan sulfate has been shown to facilitate the binding of HMGB-1 to RAGE and could play a role in the progression of OA. Targeting these DAMPs may be the potential therapeutic strategies for the treatment of OA.
10.1007/s11010-017-3047-4
Effect of short-term enzymatic treatment on cell migration and cartilage regeneration: in vitro organ culture of bovine articular cartilage.
Seol Dongrim,Yu Yin,Choe Hyeonghun,Jang Keewoong,Brouillette Marc J,Zheng Hongjun,Lim Tae-Hong,Buckwalter Joseph A,Martin James A
Tissue engineering. Part A
Depending on the damage extent and adjacent tissue condition in traumatic cartilage injury, it is possible to heal the tissue by resident cells. Unlike autologous chondrocyte implantation, short-term enzymatic treatment is an effective single-step procedure without extra cell expansion. Moreover, this method has been shown to significantly increase cellularity in lesion edges, resulting in enhanced integration and interfacial strength. We hypothesize that the locally digested extracellular matrix by treatment allows effortless cell migration from the adjacent tissue. Full-thickness cartilage discs and osteochondral explants were prepared from mature bovine stifle joints. These specimens were treated with collagenase in a culture medium. Two concentrations, 0.25 and 0.5 mg/mL, were used with various treating time of 10, 30, and 180 min. The cartilages were subsequently washed and cultured with fibrin hydrogel. The effect of enzymatic treatment on cell migration was apparent in both experiments of the cartilage disc and full-thickness cartilage defect model. In the disc culture, the treatment resulted in an approximately three to four times higher number of migrated cells than nontreated control. In short-term collagenase-treated groups, the proteoglycan (PG) loss was localized in the edge of tissue with minimal cell death. The treatment also accelerated cell migration in the full-thickness cartilage defects and some cells differentiated into chondrocytes with the deposit of PG. Gene expression results could support the characteristics of migrated cells, which had migratory ability and chondrogenic differentiation potential with overexpression of collagen type I and II, respectively. Based on these results, short-term enzymatic treatment, which can accelerate cell migration into traumatically injured cartilage, has great potential for clinical application.
10.1089/ten.TEA.2013.0444
Identification of mesenchymal progenitor cells in normal and osteoarthritic human articular cartilage.
Alsalameh Saifeddin,Amin Rayya,Gemba Takefumi,Lotz Martin
Arthritis and rheumatism
OBJECTIVE:To determine the presence of mesenchymal progenitor cells (MPCs) in human articular cartilage. METHODS:Primary cell cultures established from normal and osteoarthritic (OA) human knee articular cartilage were analyzed for the expression of CD105 and CD166, cell surface markers whose coexpression defines mesenchymal stem cells (MSCs) in bone marrow and perichondrium. The potential of cartilage cells to differentiate to adipogenic, osteogenic, and chondrogenic lineages was analyzed after immunomagnetic selection for CD105+/CD166+ cells and was compared with bone marrow-derived MSCs (BM-MSCs). RESULTS:Up to 95% of isolated cartilage cells were CD105+ and approximately 5% were CD166+. The mean +/- SEM percentage of CD105+/CD166+ cells in normal cartilage was 3.49 +/- 1.93%. Primary cell cultures from OA cartilage contained significantly increased numbers of CD105+/CD166+ cells. Confocal microscopy confirmed the coexpression of both markers in the majority of BM-MSCs and a subpopulation of cartilage cells. Differentiation to adipocytes occurred in cartilage-derived cell cultures, as indicated by characteristic cell morphology and oil red O staining of lipid vacuoles. Osteogenesis was observed in isolated CD105+/CD166+ cells as well as in primary chondrocytes cultured in the presence of osteogenic supplements. Purified cartilage-derived CD105+/CD166+ cells did not express markers of differentiated chondrocytes. However, the cells were capable of chondrocytic differentiation and formed cartilage tissue in micromass pellet cultures. CONCLUSION:These findings indicate that multipotential MPCs are present in adult human articular cartilage and that their frequency is increased in OA cartilage. This observation has implications for understanding the intrinsic repair capacity of articular cartilage and raises the possibility that these progenitor cells might be involved in the pathogenesis of arthritis.
10.1002/art.20269
Radial extracorporeal shockwave promotes subchondral bone stem/progenitor cell self-renewal by activating YAP/TAZ and facilitates cartilage repair in vivo.
Zhao Zhidong,Wang Yuxing,Wang Qian,Liang Jiawu,Hu Wei,Zhao Sen,Li Peilin,Zhu Heng,Li Zhongli
Stem cell research & therapy
BACKGROUND:Radial extracorporeal shockwave (r-ESW), an innovative and noninvasive technique, is gaining increasing attention in regenerative medicine due to its mechanobiological effects. Subchondral bone stem/progenitor cells (SCB-SPCs), originating from the pivotal zone of the osteochondral unit, have been shown to have multipotency and self-renewal properties. However, thus far, little information is available regarding the influences of r-ESW on the biological properties of SCB-SPCs and their therapeutic effects in tissue regeneration. METHODS:SCB-SPCs were isolated from human knee plateau osteochondral specimens and treated with gradient doses of r-ESW in a suspension stimulation system. The optimized parameters for SCB-SPC self-renewal were screened out by colony-forming unit fibroblast assay (CFU-F). Then, the effects of r-ESW on the proliferation, apoptosis, and multipotency of SCB-SPCs were evaluated. Moreover, the repair efficiency of radial shockwave-preconditioned SCB-SPCs was evaluated in vivo via an osteochondral defect model. Potential mechanisms were explored by western blotting, confocal laser scanning, and high-throughput sequencing. RESULTS:The CFU-F data indicate that r-ESW could augment the self-renewal of SCB-SPCs in a dose-dependent manner. The CCK-8 and flow cytometry results showed that the optimized shockwave markedly promoted SCB-SPC proliferation but had no significant influence on cell apoptosis. Radial shockwave exerted no significant influence on osteogenic capacity but strongly suppressed adipogenic ability in the current study. For chondrogenic potentiality, the treated SCB-SPCs were mildly enhanced, while the change was not significant. Importantly, the macroscopic scores and further histological analysis strongly demonstrated that the in vivo therapeutic effects of SCB-SPCs were markedly improved post r-ESW treatment. Further analysis showed that the cartilage-related markers collagen II and proteoglycan were expressed at higher levels compared to their counterpart group. Mechanistic studies suggested that r-ESW treatment strongly increased the expression of YAP and promoted YAP nuclear translocation in SCB-SPCs. More importantly, self-renewal was partially blocked by the YAP-specific inhibitor verteporfin. Moreover, the high-throughput sequencing data indicated that other self-renewal-associated pathways may also be involved in this process. CONCLUSION:We found that r-ESW is capable of promoting the self-renewal of SCB-SPCs in vitro by targeting YAP activity and strengthening its repair efficiency in vivo, indicating promising application prospects.
10.1186/s13287-020-02076-w
Phenotypic plasticity of human articular chondrocytes.
Tallheden T,Dennis J E,Lennon D P,Sjögren-Jansson E,Caplan A I,Lindahl A
The Journal of bone and joint surgery. American volume
BACKGROUND:Progenitor cells in mesenchymal tissues are important in the maintenance of tissue homeostasis and regeneration capacity. Articular cartilage is a tissue with a very low capacity for repair. One explanation could be the lack of chondrogenic progenitor cells within the adult tissue. As a test of chondrogenic differentiation potential, we examined the ability of isolated chondrocytes to take on several phenotypic identities within the mesenchymal lineage by applying culture techniques and markers used in the study of the phenotypic plasticity of marrow-derived mesenchymal stem cells (MSCs). METHODS:Culture-expanded human articular chondrocytes were analyzed for chondrogenic, adipogenic, and osteogenic capacity in defined in vitro culture systems. The osteochondrogenic potential of cells loaded into porous calcium-phosphate ceramic cubes implanted into mice was also determined. RESULTS:The different assays demonstrated that culture-expanded chondrocytes have the potential to form cartilage in pellet mass cultures, to form adipose cells in dense monolayer cultures, and to form a calcium-rich matrix in an osteogenic assay. In the in vitro assays, a variability of phenotypic plasticity was demonstrated among the donors. In contrast with MSCs, chondrocytes formed cartilage only (and not bone) in the in vivo osteochondrogenic assay. CONCLUSIONS:These results suggest that, within articular cartilage, there are chondrogenic cells that exhibit a level of phenotypic plasticity that is comparable with that of MSCs. However, there was a difference in the expression of bone in the in vivo assay.
10.2106/00004623-200300002-00012
Kartogenin mediates cartilage regeneration by stimulating the IL-6/Stat3-dependent proliferation of cartilage stem/progenitor cells.
Liu Tao,Li Xiaolin,Wang Ting,Chen Xuemei,Zhang Shuai,Liao Jinqi,Wang Wenxin,Zou Xuenong,Zhou Guangqian
Biochemical and biophysical research communications
A decrease in the number of endogenous stem cells in cartilage is regarded as the cause of cartilage degeneration. Kartogenin (KGN) is known to induce chondrogenesis of cartilage stem/progenitor cells (CSPCs). Using CSPCs isolated from rat cartilage, we analysed changes in the transcriptome after treatment with KGN in vitro. An animal model of destabilization of the medial meniscus (DMM) was then used to identify the effect of intra-articular (IA) KGN injection on CSPC proliferation in vivo. Here, we demonstrated that KGN promoted the proliferation of CSPCs isolated from cartilage. The percentage of G2-M phase cells in the KGN-treated group reached over 10%, nearly twice that in the control group. Transcriptomic profiling of rat CSPCs revealed significant changes in KGN-treated samples compared to control samples. The gene expression levels of IL-6 and its coreceptor Gp130 were much higher in the KGN-treated group than in the control group. Phosphorylation of the IL-6 downstream molecule Stat3 was enhanced via KGN stimulation. The DMM animal model showed increased articular cartilage thickness after IA KGN injection. IHC staining also demonstrated upregulation of Stat3 phosphorylation and enhanced distribution of CD44/CD105 cells in cartilage following IA KGN injection. Thus, our data suggested that KGN promoted cartilage regeneration at least partially by stimulating IL-6/Stat3-dependent proliferation.
10.1016/j.bbrc.2020.08.059
Prevent action of magnoflorine with hyaluronic acid gel from cartilage degeneration in anterior cruciate ligament transection induced osteoarthritis.
Cai Zhe,Hong Ming,Xu Lei,Yang Kedi,Li Chentian,Sun Tianhao,Feng Yu,Zeng Huasong,Lu William Weijia,Chiu Kwong-Yuen
Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie
According to the Chinese medicine, magnoflorine exerted significant anti-inflammatory effects and potentially promoted synthesis of proteoglycans in chondrocytes to reverse the progression of rheumatoid arthritis. However, the latent beneficial effect of magnoflorine for the treatment of traumatic osteoarthritis (OA) is still unknown. Therefore, we aim to demonstrate the efficacy of magnoflorine combined with HA-gel in attenuating cartilage degeneration in anterior cruciate ligament transection (ACLT) induced OA rat model. We found that the histological results showed the elevated cartilage matrix, chondrogenic signals and chondroprogenitor cells in HA-gel + magnoflorine treatment. HA-gel + magnoflorine treatment resulted in a decreased modified Mankin's score, and a higher volume ratio of hyaline cartilage (HC)/calcified cartilage (CC) and HC/Sum (whole cartilage), compared to ACLT and HA-gel groups. Furthermore, both the volume ratios of HC/Sum and HC/CC were negatively correlated with modified Mankin's scores. Finally, HA-gel + magnoflorine could significantly increase the BV/TV, Tb.Th, and decrease the Tb.Pf, Po(tot), Conn.Dn and Tb.Sp. In vitro, 50 μg/ml magnoflorine treatment could significantly increase the viability, S-phase, migration rate and chondrogenesis of chondroprogenitor cells. There were significant downregulations of MAPK/NF-κB signaling, and upregulations of chondrogenic signals in 50 μg/ml magnoflorine treatment. There were significant downregulations of proinflammatory cytokines and upregulation of IL-10 in HA-gel + magnoflorine treated group. Therefore, our study elucidated a protective effect of HA-gel + magnoflorine on attenuating cartilage degradation and maintaining SCB stabilization in ACLT induced OA.
10.1016/j.biopha.2019.109733
In Vivo Identification and Induction of Articular Cartilage Stem Cells by Inhibiting NF-κB Signaling in Osteoarthritis.
Tong Wenxue,Geng Yiyun,Huang Yan,Shi Yu,Xiang Shengnan,Zhang Ning,Qin Ling,Shi Qin,Chen Qian,Dai Kerong,Zhang Xiaoling
Stem cells (Dayton, Ohio)
Osteoarthritis (OA) is a highly prevalent and debilitating joint disorder characterized by the degeneration of articular cartilage. However, no effective medical therapy has been found yet for such condition. In this study, we directly confirmed the existence of articular cartilage stem cells (ACSCs) in vivo and in situ for the first time both in normal and OA articular cartilage, and explored their chondrogenesis in Interleukin-1β (IL-1β) induced inflammation environment and disclose whether the inhibition of NF-κB signaling can induce ACSCs activation thus improve the progression of experimental OA. We found an interesting phenomenon that ACSCs were activated and exhibited a transient proliferative response in early OA as an initial attempt for self-repair. During the in vitro mechanism study, we discovered IL-1β can efficiently activate the NF-κB pathway and potently impair the responsiveness of ACSCs, whereas the NF-κB pathway inhibitor rescued the ACSCs chondrogenesis. The final in vivo experiments further confirmed ACSCs' activation were maintained by NF-κB pathway inhibitor, which induced cartilage regeneration, and protected articular cartilage from injury in an OA animal model. Our results provided in vivo evidence of the presence of ACSCs, and disclosed their action in the early OA stage and gradual quiet as OA process, presented a potential mechanism for both cartilage intrinsic repair and its final degradation, and demonstrated the feasibility of inducing endogenous adult tissue-specific mesenchymal stem cells for articular cartilage repair and OA therapy.
10.1002/stem.2124
Differential Production of Cartilage ECM in 3D Agarose Constructs by Equine Articular Cartilage Progenitor Cells and Mesenchymal Stromal Cells.
Schmidt Stefanie,Abinzano Florencia,Mensinga Anneloes,Teßmar Jörg,Groll Jürgen,Malda Jos,Levato Riccardo,Blunk Torsten
International journal of molecular sciences
Identification of articular cartilage progenitor cells (ACPCs) has opened up new opportunities for cartilage repair. These cells may be used as alternatives for or in combination with mesenchymal stromal cells (MSCs) in cartilage engineering. However, their potential needs to be further investigated, since only a few studies have compared ACPCs and MSCs when cultured in hydrogels. Therefore, in this study, we compared chondrogenic differentiation of equine ACPCs and MSCs in agarose constructs as monocultures and as zonally layered co-cultures under both normoxic and hypoxic conditions. ACPCs and MSCs exhibited distinctly differential production of the cartilaginous extracellular matrix (ECM). For ACPC constructs, markedly higher glycosaminoglycan (GAG) contents were determined by histological and quantitative biochemical evaluation, both in normoxia and hypoxia. Differential GAG production was also reflected in layered co-culture constructs. For both cell types, similar staining for type II collagen was detected. However, distinctly weaker staining for undesired type I collagen was observed in the ACPC constructs. For ACPCs, only very low alkaline phosphatase (ALP) activity, a marker of terminal differentiation, was determined, in stark contrast to what was found for MSCs. This study underscores the potential of ACPCs as a promising cell source for cartilage engineering.
10.3390/ijms21197071
Volumetric Bioprinting of Complex Living-Tissue Constructs within Seconds.
Bernal Paulina Nuñez,Delrot Paul,Loterie Damien,Li Yang,Malda Jos,Moser Christophe,Levato Riccardo
Advanced materials (Deerfield Beach, Fla.)
Biofabrication technologies, including stereolithography and extrusion-based printing, are revolutionizing the creation of complex engineered tissues. The current paradigm in bioprinting relies on the additive layer-by-layer deposition and assembly of repetitive building blocks, typically cell-laden hydrogel fibers or voxels, single cells, or cellular aggregates. The scalability of these additive manufacturing technologies is limited by their printing velocity, as lengthy biofabrication processes impair cell functionality. Overcoming such limitations, the volumetric bioprinting of clinically relevant sized, anatomically shaped constructs, in a time frame ranging from seconds to tens of seconds is described. An optical-tomography-inspired printing approach, based on visible light projection, is developed to generate cell-laden tissue constructs with high viability (>85%) from gelatin-based photoresponsive hydrogels. Free-form architectures, difficult to reproduce with conventional printing, are obtained, including anatomically correct trabecular bone models with embedded angiogenic sprouts and meniscal grafts. The latter undergoes maturation in vitro as the bioprinted chondroprogenitor cells synthesize neo-fibrocartilage matrix. Moreover, free-floating structures are generated, as demonstrated by printing functional hydrogel-based ball-and-cage fluidic valves. Volumetric bioprinting permits the creation of geometrically complex, centimeter-scale constructs at an unprecedented printing velocity, opening new avenues for upscaling the production of hydrogel-based constructs and for their application in tissue engineering, regenerative medicine, and soft robotics.
10.1002/adma.201904209
Bio-resin for high resolution lithography-based biofabrication of complex cell-laden constructs.
Lim Khoon S,Levato Riccardo,Costa Pedro F,Castilho Miguel D,Alcala-Orozco Cesar R,van Dorenmalen Kim M A,Melchels Ferry P W,Gawlitta Debby,Hooper Gary J,Malda Jos,Woodfield Tim B F
Biofabrication
Lithography-based three-dimensional (3D) printing technologies allow high spatial resolution that exceeds that of typical extrusion-based bioprinting approaches, allowing to better mimic the complex architecture of biological tissues. Additionally, lithographic printing via digital light processing (DLP) enables fabrication of free-form lattice and patterned structures which cannot be easily produced with other 3D printing approaches. While significant progress has been dedicated to the development of cell-laden bioinks for extrusion-based bioprinting, less attention has been directed towards the development of cyto-compatible bio-resins and their application in lithography-based biofabrication, limiting the advancement of this promising technology. In this study, we developed a new bio-resin based on methacrylated poly(vinyl alcohol) (PVA-MA), gelatin-methacryloyl (Gel-MA) and a transition metal-based visible light photoinitiator. The utilization of a visible light photo-initiating system displaying high molar absorptivity allowed the bioprinting of constructs with high resolution features, in the range of 25-50 μm. Biofunctionalization of the resin with 1 wt% Gel-MA allowed long term survival (>90%) of encapsulated cells up to 21 d, and enabled attachment and spreading of endothelial cells seeded on the printed hydrogels. Cell-laden hydrogel constructs of high resolution with complex and ordered architecture were successfully bioprinted, where the encapsulated cells remained viable, homogenously distributed and functional. Bone and cartilage tissue synthesis was confirmed by encapsulated stem cells, underlining the potential of these DLP-bioprinted hydrogels for tissue engineering and biofabrication. Overall, the PVA-MA/Gel-MA bio-resin is a promising material for biofabrication and provides important cues for the further development of lithography-based bioprinting of complex, free-form living tissue analogues.
10.1088/1758-5090/aac00c
Melt electrowriting onto anatomically relevant biodegradable substrates: Resurfacing a diarthrodial joint.
Materials & design
Three-dimensional printed hydrogel constructs with well-organized melt electrowritten (MEW) fibrereinforcing scaffolds have been demonstrated as a promising regenerative approach to treat small cartilage defects. Here, we investige how to translate the fabrication of small fibre-reinforced structures on flat surfaces to anatomically relevant structures. In particular, the accurate deposition of MEW-fibres onto curved surfaces of conductive and non-conductive regenerative biomaterials is studied. This study reveals that clinically relevant materials with low conductivities are compatible with resurfacing with organized MEW fibres. Importantly, accurate patterning on non-flat surfaces was successfully shown, provided that a constant electrical field strength and an electrical force normal to the substrate material is maintained. Furthermore, the application of resurfacing the geometry of the medial human femoral condyle is confirmed by the fabrication of a personalised osteochondral implant. The implant composed of an articular cartilage-resident chondroprogenitor cells (ACPCs)-laden hydrogel reinforced with a well-organized MEW scaffold retained its personalised shape, improved its compressive properties and supported neocartilage formation after 28 days in vitro culture. Overall, this study establishes the groundwork for translatingMEWfrom planar and non-resorbable material substrates to anatomically relevant geometries and regenerative materials that the regenerative medicine field aims to create.
10.1016/j.matdes.2020.109025
A composite hydrogel-3D printed thermoplast osteochondral anchor as example for a zonal approach to cartilage repair: in vivo performance in a long-term equine model.
Mancini I A D,Schmidt S,Brommer H,Pouran B,Schäfer S,Tessmar J,Mensinga A,van Rijen M H P,Groll J,Blunk T,Levato R,Malda J,van Weeren P R
Biofabrication
Recent research has been focusing on the generation of living personalized osteochondral constructs for joint repair. Native articular cartilage has a zonal structure, which is not reflected in current constructs and which may be a cause of the frequent failure of these repair attempts. Therefore, we investigated the performance of a composite implant that further reflects the zonal distribution of cellular component both in vitro and in vivo in a long-term equine model. Constructs constituted of a 3D-printed poly(ϵ-caprolactone) (PCL) bone anchor from which reinforcing fibers protruded into the chondral part of the construct over which two layers of a thiol-ene cross-linkable hyaluronic acid/poly(glycidol) hybrid hydrogel (HA-SH/P(AGE-co-G)) were fabricated. The top layer contained Articular Cartilage Progenitor Cells (ACPCs) derived from the superficial layer of native cartilage tissue, the bottom layer contained mesenchymal stromal cells (MSCs). The chondral part of control constructs were homogeneously filled with MSCs. After six months in vivo, microtomography revealed significant bone growth into the anchor. Histologically, there was only limited production of cartilage-like tissue (despite persistency of hydrogel) both in zonal and non-zonal constructs. There were no differences in histological scoring; however, the repair tissue was significantly stiffer in defects repaired with zonal constructs. The sub-optimal quality of the repair tissue may be related to several factors, including early loss of implanted cells, or inappropriate degradation rate of the hydrogel. Nonetheless, this approach may be promising and research into further tailoring of biomaterials and of construct characteristics seems warranted.
10.1088/1758-5090/ab94ce
Combining multi-scale 3D printing technologies to engineer reinforced hydrogel-ceramic interfaces.
Biofabrication
Multi-material 3D printing technologies that resolve features at different lengths down to the microscale open new avenues for regenerative medicine, particularly in the engineering of tissue interfaces. Herein, extrusion printing of a bone-biomimetic ceramic ink and melt electrowriting (MEW) of spatially organized polymeric microfibres are integrated for the biofabrication of an osteochondral plug, with a mechanically reinforced bone-to-cartilage interface. A printable physiological temperature-setting bioceramic, based on α-tricalcium phosphate, nanohydroxyapatite and a custom-synthesized biodegradable and crosslinkable poloxamer, was developed as bone support. The mild setting reaction of the bone ink enabled us to print directly within melt electrowritten polycaprolactone meshes, preserving their micro-architecture. Ceramic-integrated MEW meshes protruded into the cartilage region of the composite plug, and were embedded with mechanically soft gelatin-based hydrogels, laden with articular cartilage chondroprogenitor cells. Such interlocking design enhanced the hydrogel-to-ceramic adhesion strength >6.5-fold, compared with non-interlocking fibre architectures, enabling structural stability during handling and surgical implantation in osteochondral defects ex vivo. Furthermore, the MEW meshes endowed the chondral compartment with compressive properties approaching those of native cartilage (20-fold reinforcement versus pristine hydrogel). The osteal and chondral compartment supported osteogenesis and cartilage matrix deposition in vitro, and the neo-synthesized cartilage matrix further contributed to the mechanical reinforcement at the ceramic-hydrogel interface. This multi-material, multi-scale 3D printing approach provides a promising strategy for engineering advanced composite constructs for the regeneration of musculoskeletal and connective tissue interfaces.
10.1088/1758-5090/ab69d9
Bio-ink development for three-dimensional bioprinting of hetero-cellular cartilage constructs.
Mouser Vivian H M,Levato Riccardo,Mensinga Anneloes,Dhert Wouter J A,Gawlitta Debby,Malda Jos
Connective tissue research
Bioprinting is a promising tool to fabricate organized cartilage. This study aimed to investigate the printability of gelatin-methacryloyl/gellan gum (gelMA/gellan) hydrogels with and without methacrylated hyaluronic acid (HAMA), and to explore (zone-specific) chondrogenesis of chondrocytes, articular cartilage progenitor cells (ACPCs), and multipotent mesenchymal stromal cells (MSCs) embedded in these bio-inks.The incorporating of HAMA in gelMA/gellan bio-ink increased filament stability, as measured using a filament collapse assay, but did not influence (zone-specific) chondrogenesis of any of the cell types. Highest chondrogenic potential was observed for MSCs, followed by ACPCs, which displayed relatively high proteoglycan IV mRNA levels. Therefore, two-zone constructs were printed with gelMA/gellan/HAMA containing ACPCs in the superficial region and MSCs in the middle/deep region. Chondrogenic differentiation was confirmed, however, printing influence cellular differentiation.ACPC- and MSC-laden gelMA/gellan/HAMA hydrogels are of interest for the fabrication of cartilage constructs. Nevertheless, this study underscores the need for careful evaluation of the effects of printing on cellular differentiation.
10.1080/03008207.2018.1553960
Articular Chondroprogenitor Cells Maintain Chondrogenic Potential but Fail to Form a Functional Matrix When Implanted Into Muscles of SCID Mice.
Marcus Paula,De Bari Cosimo,Dell'Accio Francesco,Archer Charles W
Cartilage
OBJECTIVE:Articular cartilage is a complex tissue comprising phenotypically distinct zones. Research has identified the presence of a progenitor cell population in the surface zone of immature articular cartilage. The aim of the present study was to determine the in vivo plasticity of articular cartilage progenitor. DESIGN:Chondropogenitor cells were isolated from bovine metacarpalphalangeal joints by differential adhesion to fibronectin. Cells were labeled with PKH26 and injected into the thigh muscle of severe-combined immunodeficient (SCID) mice. After 2 weeks, the muscles were dissected and cryosectioned. Sections were stained with safranin O and labeled for sox9 and collagen type II. Polymerase chain reaction analysis was carried out to determine plasticity for a number of tissue-specific markers. Full-depth chondrocytes acted as a control. RESULTS:Fluorescent PKH26 labeled cells were detected after 2 weeks in all samples analyzed. A cartilage pellet was present after injection of freshly isolated chondrocytes. After injection with clonal and enriched populations of chondroprogenitors, no distinct pellet was detected, but diffuse cartilage nodules were found with regions of safranin O staining and Sox9. Low levels of collagen type II were also detected. Polymerase chain reaction analysis identified the presence of the endothelial cell marker PECAM-1 in one clonal cell line, demonstrating phenotypic plasticity into the phenotype of the surrounding host tissues. CONCLUSIONS:The bovine articular cartilage progenitor cells were able to survive in vivo postimplantation, but failed to create a robust cartilage pellet, despite expressing sox9 and type II collagen. This suggests the cells require further signals for chondrogenic differentiation.
10.1177/1947603514541274
Human platelet-rich plasma induces chondrogenic differentiation of subchondral progenitor cells in polyglycolic acid-hyaluronan scaffolds.
Krüger Jan Philipp,Ketzmar Anna-Katharina,Endres Michaela,Pruss Axel,Siclari Alberto,Kaps Christian
Journal of biomedical materials research. Part B, Applied biomaterials
Cartilage repair approaches may be improved by addition of human platelet-rich plasma (PRP) that increases chondrogenic differentiation of mesenchymal stem and progenitor cells. The aim of our study was to evaluate the effect of human PRP on the differentiation of multipotent human subchondral progenitor cells in resorbable polyglycolic acid-hyaluronan (PGA-HA) scaffolds. PGA-HA scaffolds were loaded with subchondral progenitor cells and stimulated with transforming growth factor-beta3 (TGFB3) or 5% PRP, whereas nonstimulated cultures served as controls. Chondrogenic differentiation was evaluated by real-time gene expression analysis of typical chondrogenic marker genes and by immunohistochemical staining of extracellular cartilage matrix molecules such as proteoglycans and collagen type II. TGFB3 and PRP induced the expression of chondrogenic marker genes collagen type II and IX, aggrecan, and cartilage oligomeric matrix protein in subchondral progenitor cells cultured in PGA-HA scaffolds compared with nonstimulated controls. Progenitor cells in PGA-HA scaffolds formed an extracellular matrix rich in proteoglycans and collagen type II on treatment with PRP, but to a lesser extent, than in cultures stimulated with TGFB3. The results suggest that PRP induces chondrogenic differentiation of progenitor cells in PGA-HA scaffolds and may be therefore beneficial in scaffold-assisted cartilage repair approaches involving stem and progenitor cells.
10.1002/jbm.b.33047
Integration of Bioglass Into PHBV-Constructed Tissue-Engineered Cartilages to Improve Chondrogenic Properties of Cartilage Progenitor Cells.
Frontiers in bioengineering and biotechnology
The Poly (3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) scaffold has proven to be a promising three-dimensional (3D) biodegradable and bioactive scaffold for the growth and proliferation of cartilage progenitor cells (CPCs). The addition of Bioglass into PHBV was reported to increase the bioactivity and mechanical properties of the bioactive materials. In the current study, the influence of the addition of Bioglass into PHBV 3D porous scaffolds on the characteristics of CPC-based tissue-engineered cartilages were compared. CPCs were seeded into 3D macroporous PHBV scaffolds and PHBV/10% Bioglass scaffolds. The CPC-scaffold constructs underwent 6 weeks chondrogenic induction culture and were then transplanted for another 6 weeks to evaluate the difference between the CPC-PHBV construct and CPC-PHBV/10% Bioglass construct . Compared with the pure PHBV scaffold, the PHBV/10% Bioglass scaffold has better hydrophilicity and a higher percentage of adhered cells. The CPC-PHBV/10%Bioglass construct produced much more cartilage-like tissues with higher cartilage-relative gene expression and cartilage matrix protein production and better biomechanical performance than the CPC-PHBV construct. The addition of Bioglass into 3D PHBV macroporous scaffolds improves the characteristics of CPC-based tissue-engineered cartilages .
10.3389/fbioe.2022.868719
Evaluation of articular cartilage progenitor cells for the repair of articular defects in an equine model.
Frisbie David D,McCarthy Helen E,Archer Charles W,Barrett Myra F,McIlwraith C Wayne
The Journal of bone and joint surgery. American volume
BACKGROUND:We sought to determine the effectiveness of chondroprogenitor cells derived from autologous and allogenic articular cartilage for the repair of cartilage defects in an equine model. METHODS:Cartilage defects (15 mm) were created on the medial trochlear ridge of the femur. The following experimental treatments were compared with empty-defect controls: fibrin only, autologous chondroprogenitor cells plus fibrin, and allogenic chondroprogenitor cells plus fibrin (n = 4 or 12 per treatment). Horses underwent strenuous exercise throughout the twelve-month study, and evaluations included lameness (pain) and arthroscopic, radiographic, gross, histologic, and immunohistochemical analyses. RESULTS:Arthroscopy and microscopy indicated that defects in the autologous cell group had significantly better repair tissue compared with defects in the fibrin-only and control groups. Repair tissue quality in the allogenic cell group was not superior to that in the fibrin-only group with the exception of the percentage of type-II collagen, which was greater. Radiographic changes in the allogenic cell group were poorer on average than those in the autologous cell group. Autologous cells significantly reduced central osteophyte formation compared with fibrin alone. CONCLUSIONS:On the basis of the arthroscopic, radiographic, and histologic scores, autologous cells in fibrin yielded better results than the other treatments; allogenic cells cannot be recommended at this time.
10.2106/JBJS.N.00404
Plasticity of clonal populations of dedifferentiated adult human articular chondrocytes.
Barbero Andrea,Ploegert Sabine,Heberer Michael,Martin Ivan
Arthritis and rheumatism
OBJECTIVE:To investigate whether adult human articular chondrocytes (AHACs), dedifferentiated by monolayer expansion, can differentiate toward diverse mesenchymal lineages and, if so, whether this ability is regulated by growth factors during monolayer expansion. METHODS:AHACs were expanded as multiclonal or clonal populations in medium without (control) or with factors enhancing cell dedifferentiation (transforming growth factor beta1, fibroblast growth factor 2, and platelet-derived growth factor type BB [TFP]). Cells were then cultured under conditions promoting chondrogenic, osteogenic, or adipogenic differentiation, and the acquired phenotypes were assessed histologically, biochemically, and by real-time reverse transcriptase-polymerase chain reaction. RESULTS:Multiclonal populations of both control- and TFP-expanded AHACs differentiated toward the chondrogenic, osteogenic, and adipogenic lineages. Compared with control-expanded AHACs, TFP-expanded cells displayed enhanced chondrogenic differentiation capacity (2.4-fold higher glycosaminoglycan/DNA content and 2,500-fold higher up-regulation of type II collagen) and osteogenic differentiation capacity (9.4-fold higher increase in alkaline phosphatase activity and 12.4-fold higher up-regulation of bone sialoprotein), but reduced formation of adipocytes (5.2-fold lower oil red O-positive cells/area). Clonal populations of AHACs could be efficiently expanded in TFP, but not in control medium. Most TFP-expanded clones were able to redifferentiate only into chondrocytes (7 of 20) or were unable to differentiate (6 of 20). However, some clones (2 of 20) differentiated toward all of the lineages investigated, thus displaying characteristics of mesenchymal progenitor cells. CONCLUSION:Dedifferentiated AHACs exhibit differentiation plasticity, which is modulated by growth factors used during monolayer expansion and is highly heterogeneous across different clones. Clonal culture of AHACs in the presence of regulatory molecules could lead to the identification of AHAC subpopulations with enhanced cartilage repair capacity.
10.1002/art.10950
Exploiting Joint-Resident Stem Cells by Exogenous SOX9 for Cartilage Regeneration for Therapy of Osteoarthritis.
Zhang Xiaowei,Wu Shili,Zhu Yong,Chu Cong-Qiu
Frontiers in medicine
The lack of effective treatment options for osteoarthritis (OA) is mostly due to the very limited regenerative capacity of articular cartilage. Mesenchymal stem cells (MSCs) have been most extensively explored for cell-based therapy to induce cartilage regeneration for OA. However, current expanded MSC-based approaches have significant drawbacks. On the other hand, osteoarthritic joints contain chondrocyte progenitors and MSCs in several niches which have the potential yet fail to differentiate into chondrocytes for cartilage regeneration. One of the underlying mechanisms of the failure is that these chondrocyte progenitors and MSCs in OA joints are deficient in the activity of chondrogenic transcription factor SOX9 (SRY-type high-mobility group box-9). Thereby, replenishing with exogenous SOX9 would reactivate the potential of these stem cells to differentiate into chondrocytes. Cell-permeable, super-positively charged SOX9 (scSOX9) protein is able to promote hyaline-like cartilage regeneration by inducing chondrogenic differentiation of bone marrow derived MSCs . This scSOX9 protein can be administered into osteoarthritic joints by intra-articular injection. This one-step, cell-free supplement of exogenous SOX9 may harness the regenerative potential of the intrinsic MSCs within the joint cavity to stimulate cartilage regeneration in OA.
10.3389/fmed.2021.622609
Human Articular Cartilage Progenitor Cells Are Responsive to Mechanical Stimulation and Adenoviral-Mediated Overexpression of Bone-Morphogenetic Protein 2.
Neumann Alexander J,Gardner Oliver F W,Williams Rebecca,Alini Mauro,Archer Charles W,Stoddart Martin J
PloS one
Articular cartilage progenitor cells (ACPCs) represent a new and potentially powerful alternative cell source to commonly used cell sources for cartilage repair, such as chondrocytes and bone-marrow derived mesenchymal stem cells (MSCs). This is particularly due to the apparent resistance of ACPCs to hypertrophy. The current study opted to investigate whether human ACPCs (hACPCs) are responsive towards mechanical stimulation and/or adenoviral-mediated overexpression of bone morphogenetic protein 2 (BMP-2). hACPCs were cultured in fibrin-polyurethane composite scaffolds. Cells were cultured in a defined chondro-permissive medium, lacking exogenous growth factors. Constructs were cultured, for 7 or 28 days, under free-swelling conditions or with the application of complex mechanical stimulation, using a custom built bioreactor that is able to generate joint-like movements. Outcome parameters were quantification of BMP-2 and transforming growth factor beta 1 (TGF-β1) concentration within the cell culture medium, biochemical and gene expression analyses, histology and immunohistochemistry. The application of mechanical stimulation alone resulted in the initiation of chondrogenesis, demonstrating the cells are mechanoresponsive. This was evidenced by increased GAG production, lack of expression of hypertrophic markers and a promising gene expression profile (significant up-regulation of cartilaginous marker genes, specifically collagen type II, accompanied by no increase in the hypertrophic marker collagen type X or the osteogenic marker alkaline phosphatase). To further investigate the resistance of ACPCs to hypertrophy, overexpression of a factor associated with hypertrophic differentiation, BMP-2, was investigated. A novel, three-dimensional, transduction protocol was used to transduce cells with an adenovirus coding for BMP-2. Over-expression of BMP-2, independent of load, led to an increase in markers associated with hypertropy. Taken together ACPCs represent a potential alterative cell source for cartilage tissue engineering applications.
10.1371/journal.pone.0136229
Migrating Progenitor Cells Derived From Injured Cartilage Surface Respond to Damage-Associated Molecular Patterns.
Cartilage
OBJECTIVE:To delineate the response of migrating chondrogenic progenitor cells (CPCs) that arose from the surface of mechanically injured articular cartilage to proinflammatory damage-associated-molecular-patterns (DAMPs). DESIGN:Bovine CPCs and non-CPC chondrocytes isolated from either impacted or scratched articular cartilage were studied. Those 2 types of cells were treated with mitochondrial DAMPs (MTDs; 10 nM fMLF and 10 µg/mL CpG DNA), or 10 nM HMGB1, or 10 ng/mL IL-1b for 24 hours. At the end of experiments, conditioned media and cell lysates were collected for analysis of expression levels of matrix metalloproteinases (MMPs), chemokines, and cytokines that are associated with cartilage degeneration with Western blotting and quantitative polymerase chain reaction. The difference of expression levels was compared by Welch's -test. RESULTS:Our data indicated that HMGB1 and MTDs remarkably upregulated pro-MMP-13 expression in CPCs. Compared with non-CPCs, CPCs expressed significantly more baseline mRNAs of MMP-13, CXCL12, and IL-6. MTDs greatly increased the expression of MMP-13 and IL-6 in CPCs by over 100-fold ( < 0.001). MTDs also significantly increased IL-8 expression in CPCs to a similar extent ( < 0.001). However, when IL-1b was present, CPCs expressed less MMP-3 and active MMP-13 proteins as well as less CCL2 and IL-6 than did non-CPCs. CONCLUSIONS:We concluded that CPCs were more sensitive than non-CPCs in response to DAMPs, especially MTDs. The proinflammatory nature of CPCs implied their critical role in the early phase of posttraumatic osteoarthritis development.
10.1177/19476035211049559
Characteristics of meniscus progenitor cells migrated from injured meniscus.
Seol Dongrim,Zhou Cheng,Brouillette Marc J,Song Ino,Yu Yin,Choe Hyeong Hun,Lehman Abigail D,Jang Kee W,Fredericks Douglas C,Laughlin Barbara J,Martin James A
Journal of orthopaedic research : official publication of the Orthopaedic Research Society
Serious meniscus injuries seldom heal and increase the risk for knee osteoarthritis; thus, there is a need to develop new reparative therapies. In that regard, stimulating tissue regeneration by autologous stem/progenitor cells has emerged as a promising new strategy. We showed previously that migratory chondrogenic progenitor cells (CPCs) were recruited to injured cartilage, where they showed a capability in situ tissue repair. Here, we tested the hypothesis that the meniscus contains a similar population of regenerative cells. Explant studies revealed that migrating cells were mainly confined to the red zone in normal menisci: However, these cells were capable of repopulating defects made in the white zone. In vivo, migrating cell numbers increased dramatically in damaged meniscus. Relative to non-migrating meniscus cells, migrating cells were more clonogenic, overexpressed progenitor cell markers, and included a larger side population. Gene expression profiling showed that the migrating population was more similar to CPCs than other meniscus cells. Finally, migrating cells equaled CPCs in chondrogenic potential, indicating a capacity for repair of the cartilaginous white zone of the meniscus. These findings demonstrate that, much as in articular cartilage, injuries to the meniscus mobilize an intrinsic progenitor cell population with strong reparative potential. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:1966-1972, 2017.
10.1002/jor.23472
Incorporation of bioactive polyvinylpyrrolidone-iodine within bilayered collagen scaffolds enhances the differentiation and subchondral osteogenesis of mesenchymal stem cells.
Jiang Yangzi,Chen Longkun,Zhang Shufang,Tong Tong,Zhang Wei,Liu Wanlu,Xu Guowei,Tuan Rocky S,Heng Boon Chin,Crawford Ross,Xiao Yin,Ouyang Hong Wei
Acta biomaterialia
Polyvinylpyrrolidone-iodine (Povidone-iodine, PVP-I) is widely used as an antiseptic agent for lavation during joint surgery; however, the biological effects of PVP-I on cells from joint tissue are unknown. This study examined the biocompatibility and biological effects of PVP-I on cells from joint tissue, with the aim of optimizing cell-scaffold based joint repair. Cells from joint tissue, including cartilage derived progenitor cells (CPC), subchondral bone derived osteoblast and bone marrow derived mesenchymal stem cells (BM-MSC) were isolated. The concentration-dependent effects of PVP-I on cell proliferation, migration and differentiation were evaluated. Additionally, the efficacy and mechanism of a PVP-I loaded bilayer collagen scaffold for osteochondral defect repair was investigated in a rabbit model. A micromolar concentration of PVP-I was found not to affect cell proliferation, CPC migration or extracellular matrix production. Interestingly, micromolar concentrations of PVP-I promote osteogenic differentiation of BM-MSC, as evidenced by up-regulation of RUNX2 and Osteocalcin gene expression, as well as increased mineralization on the three-dimensional scaffold. PVP-I treatment of collagen scaffolds significantly increased fibronectin binding onto the scaffold surface and collagen type I protein synthesis of cultured BM-MSC. Implantation of PVP-I treated collagen scaffolds into rabbit osteochondral defect significantly enhanced subchondral bone regeneration at 6 weeks post-surgery compared with the scaffold alone (subchondral bone histological score of 8.80±1.64 vs. 3.8±2.19, p<0.05). The biocompatibility and pro-osteogenic activity of PVP-I on the cells from joint tissue and the enhanced subchondral bone formation in PVP-I treated scaffolds would thus indicate the potential of PVP-I for osteochondral defect repair.
10.1016/j.actbio.2013.05.014
Cells keep a memory of their tissue origin during axolotl limb regeneration.
Kragl Martin,Knapp Dunja,Nacu Eugen,Khattak Shahryar,Maden Malcolm,Epperlein Hans Henning,Tanaka Elly M
Nature
During limb regeneration adult tissue is converted into a zone of undifferentiated progenitors called the blastema that reforms the diverse tissues of the limb. Previous experiments have led to wide acceptance that limb tissues dedifferentiate to form pluripotent cells. Here we have reexamined this question using an integrated GFP transgene to track the major limb tissues during limb regeneration in the salamander Ambystoma mexicanum (the axolotl). Surprisingly, we find that each tissue produces progenitor cells with restricted potential. Therefore, the blastema is a heterogeneous collection of restricted progenitor cells. On the basis of these findings, we further demonstrate that positional identity is a cell-type-specific property of blastema cells, in which cartilage-derived blastema cells harbour positional identity but Schwann-derived cells do not. Our results show that the complex phenomenon of limb regeneration can be achieved without complete dedifferentiation to a pluripotent state, a conclusion with important implications for regenerative medicine.
10.1038/nature08152
Improving the immunosuppressive potential of articular chondroprogenitors in a three-dimensional culture setting.
Scientific reports
Cartilage repair in osteoarthritic patients remains a challenge. Identifying resident or donor stem/progenitor cell populations is crucial for augmenting the low intrinsic repair potential of hyaline cartilage. Furthermore, mediating the interaction between these cells and the local immunogenic environment is thought to be critical for long term repair and regeneration. In this study we propose articular cartilage progenitor/stem cells (CPSC) as a valid alternative to bone marrow-derived mesenchymal stem cells (BMMSC) for cartilage repair strategies after trauma. Similar to BMMSC, CPSC isolated from osteoarthritic patients express stem cell markers and have chondrogenic, osteogenic, and adipogenic differentiation ability. In an in vitro 2D setting, CPSC show higher expression of SPP1 and LEP, markers of osteogenic and adipogenic differentiation, respectively. CPSC also display a higher commitment toward chondrogenesis as demonstrated by a higher expression of ACAN. BMMSC and CPSC were cultured in vitro using a previously established collagen-chondroitin sulfate 3D scaffold. The scaffold mimics the cartilage niche, allowing both cell populations to maintain their stem cell features and improve their immunosuppressive potential, demonstrated by the inhibition of activated PBMC proliferation in a co-culture setting. As a result, this study suggests articular cartilage derived-CPSC can be used as a novel tool for cellular and acellular regenerative medicine approaches for osteoarthritis (OA). In addition, the benefit of utilizing a biomimetic acellular scaffold as an advanced 3D culture system to more accurately mimic the physiological environment is demonstrated.
10.1038/s41598-020-73188-9
Development of three-dimensional articular cartilage construct using silica nano-patterned substrate.
PloS one
Current strategies for cartilage cell therapy are mostly based on the use of autologous chondrocytes. However, these cells have limitations of a small number of cells available and of low chondrogenic ability, respectively. Many studies now suggest that fetal stem cells are more plastic than adult stem cells and can therefore more efficiently differentiate into target tissues. This study introduces, efficiency chondrogenic differentiation of fetal cartilage-derived progenitor cells (FCPCs) to adult cells can be achieved using a three-dimensional (3D) spheroid culture method based on silica nanopatterning techniques. In evaluating the issue of silica nano-particle size (Diameter of 300, 750, 1200 nm), each particle size was coated into the well of a 6-well tissue culture plate. FCPCs (2 x 105 cells/well in 6-well plate) were seeded in each well with chondrogenic medium. In this study, the 300 nm substrate that formed multi-spheroids and the 1200 nm substrate that showed spreading were due to the cell-cell adhesion force(via N-cadherin) and cell-substrate(via Integrin) force, the 750 nm substrate that formed the mass-aggregation can be interpreted as the result of cell monolayer formation through cell-substrate force followed by cell-cell contact force contraction. We conclude that our 3D spheroid culture system contributes to an optimization for efficient differentiation of FCPC, offers insight into the mechanism of efficient differentiation of engineered 3D culture system, and has promise for wide applications in regeneration medicine and drug discovery fields.
10.1371/journal.pone.0208291
Rapid and cytocompatible cell-laden silk hydrogel formation riboflavin-mediated crosslinking.
Piluso Susanna,Flores Gomez Daniela,Dokter Inge,Moreira Texeira Liliana,Li Yang,Leijten Jeroen,van Weeren René,Vermonden Tina,Karperien Marcel,Malda Jos
Journal of materials chemistry. B
Bioactive hydrogels based on naturally-derived polymers are of great interest for regenerative medicine applications. Among naturally-derived polymers, silk fibroin has been extensively explored as a biomaterial for tissue engineering due to its unique mechanical properties. Here, we demonstrate the rapid gelation of cell-laden silk fibroin hydrogels by visible light-induced crosslinking using riboflavin as a photo-initiator, in presence of an electron acceptor. The gelation kinetics were monitored by in situ photo-rheometry. Gelation was achieved in minutes and could be tuned owing to its direct proportionality to the electron acceptor concentration. The concentration of the electron acceptor did not affect the elastic modulus of the hydrogels, which could be altered by varying the polymer content. Further, the biocompatible riboflavin photo-initiator combined with sodium persulfate allowed for the encapsulation of cells within silk fibroin hydrogels. To confirm the cytocompatibility of the silk fibroin formulations, three cell types (articular cartilage-derived progenitor cells, mesenchymal stem cells and dental-pulp-derived stem cells) were encapsulated within the hydrogels, which associated with a viability >80% for all cell types. These results demonstrated that fast gelation of silk fibroin can be achieved by combining it with riboflavin and electron acceptors, which results in a hydrogel that can be used in tissue engineering and cell delivery applications.
10.1039/d0tb01731k
Human Diseased Articular Cartilage Contains a Mesenchymal Stem Cell-Like Population of Chondroprogenitors with Strong Immunomodulatory Responses.
De Luca Paola,Kouroupis Dimitrios,Viganò Marco,Perucca-Orfei Carlotta,Kaplan Lee,Zagra Luigi,de Girolamo Laura,Correa Diego,Colombini Alessandra
Journal of clinical medicine
BACKGROUND:osteoarthritic human articular cartilage (AC)-derived cartilage cells (CCs) with same-donor bone marrow (BMSCs) and adipose tissue (ASCs)-derived mesenchymal stem cells were compared, in terms of stemness features, and secretory and immunomodulatory responses to inflammation. METHODS:proteoglycan 4 (PRG4) presence was evaluated in AC and CCs. MSCs and CCs ( = 8) were cultured (P1 to P4) and characterized for clonogenicity, nanog homeobox (), and POU class 5 homeobox 1 () expression, immunotypification, and tri-lineage differentiation. Their basal and interleukin-1β (IL-1β)-stimulated expression of matrix metalloproteases (MMPs), tissue inhibitors (TIMPs), release of growth factors, and cytokines were analyzed, along with the immunomodulatory ability of CCs. RESULTS:PRG4 was mainly expressed in the intact AC surface, whereas shifted to the intermediate zone in damaged cartilage and increased its expression in CCs upon culture. All cells exhibited a similar phenotype and stemness maintenance over passages. CCs showed highest chondrogenic ability, no adipogenic potential, a superior basal secretion of growth factors and cytokines, the latter further increased after inflammatory stimulation, and an immunomodulatory behavior. All stimulated cells shared an increased MMP expression without a corresponding TIMP production. CONCLUSION:based on the observed features, CCs obtained from pathological joints may constitute a potential tissue-specific therapeutic target or agent to improve damaged cartilage healing, especially damage caused by inflammatory/immune mediated conditions.
10.3390/jcm8040423
Progenitor cells in auricular cartilage demonstrate cartilage-forming capacity in 3D hydrogel culture.
Otto I A,Levato R,Webb W R,Khan I M,Breugem C C,Malda J
European cells & materials
Paramount for the generation of auricular structures of clinically-relevant size is the acquisition of a large number of cells maintaining an elastic cartilage phenotype, which is the key in producing a tissue capable of withstanding forces subjected to the auricle. Current regenerative medicine strategies utilize chondrocytes from various locations or mesenchymal stromal cells (MSCs). However, the quality of neo-tissues resulting from these cell types is inadequate due to inefficient chondrogenic differentiation and endochondral ossification, respectively. Recently, a subpopulation of stem/progenitor cells has been identified within the auricular cartilage tissue, with similarities to MSCs in terms of proliferative capacity and cell surface biomarkers, but their potential for tissue engineering has not yet been explored. This study compared the in vitro cartilage-forming ability of equine auricular cartilage progenitor cells (AuCPCs), bone marrow-derived MSCs and auricular chondrocytes in gelatin methacryloyl (gelMA)-based hydrogels over a period of 56 d, by assessing their ability to undergo chondrogenic differentiation. Neocartilage formation was assessed through gene expression profiling, compression testing, biochemical composition and histology. Similar to MSCs and chondrocytes, AuCPCs displayed a marked ability to generate cartilaginous matrix, although, under the applied culture conditions, MSCs outperformed both cartilage-derived cell types in terms of matrix production and mechanical properties. AuCPCs demonstrated upregulated mRNA expression of elastin, low expression of collagen type X and similar levels of proteoglycan production and mechanical properties as compared to chondrocytes. These results underscored the AuCPCs' tissue-specific differentiation potential, making them an interesting cell source for the next generation of elastic cartilage tissue-engineered constructs.
10.22203/eCM.v035a10
Core regulatory RNA molecules identified in articular cartilage stem/progenitor cells during osteoarthritis progression.
Zhang Shuai,An Qier,Hu Peilin,Wu Xiaomin,Pan Xiaohua,Peng Wenjin,Wang Rikang,Gan Jingyi,Chen Di,Li Zhen,Wang Tianfu,Zhou Guangqian
Epigenomics
To assess cartilage-derived stem/progenitor cells (CSPCs) in osteoarthritis (OA) by employing mRNA-miRNA-circRNA-lncRNA network biology approach. Differentially expressed (DE) RNAs in CSPCs from 2-/4-/8-month-old STR/Ort and CBA mice were identified to construct networks via RNA sequencing. Compared with age-matched CBA mice, 4-/8-month-old STR/Ort mice had cartilage lesions and their CSPCs exhibited lower proliferative and differentiation capacity (decreased CD44 and CD90), and identified 7082 DE RNAs in STR/Ort mice were associated with strain differences or OA progression. OA-related core RNAs were identified via the networks constructed with the predominant DE RNAs, which were involved in the signaling pathways (NF-κB/MAPK/Hippo/Wnt/TGF-β/cytoskeleton organization). The core RNAs (miR-322-5p/miR-493-5p/miR-378c/) were validated in CSPCs from OA patients. RNA-based networks identifying core RNAs and signaling pathways contribute to CSPC-dependent OA mechanisms.
10.2217/epi-2018-0212
Molecular Characterization and Differentiation of Mesenchymal Progenitor Cells from Human Rheumatoid Arthritis Cartilage.
Cells, tissues, organs
The presence of mesenchymal progenitor cells (MPCs) in rheumatoid arthritis (RA) articular cartilage is sparsely investigated largely owing to the persistent pathogenic disease condition and lack of specific biomarkers. Considering the recent advancements for potential cell-based therapies in immunomodulatory diseases, such as RA, this in vitro study was aimed at investigating the cellular, molecular, and differentiation characteristics of human RA cartilage-derived MPCs. Articular cartilage fragments from RA patients were obtained for the isolation of MPCs and characterization of their cellular and biological properties, cytogenetic stability, pluripotency, and plasticity. Established MPCs were phenotypically identified using a panel of markers, and their differentiation ability into mesenchymal lineages was assessed by cytochemical staining and the expression of molecular markers. MPCs displayed a heterogenous population of cells with characteristic features of multipotent stem cells. Cells had higher viability, proliferative rate, and colony-forming ability. Further, MPCs showed the expression of pluripotency markers, cytogenetic stability, and minimal replicative senescence. In addition, MPCs differentiated into osteocytes, adipocytes, and chondrocytes, and modulated the expression of each lineage-specific gene markers. The results demonstrated the availability of a viable pool of MPCs residing in RA cartilage, which could serve as an ideal cell source for reinstating native homotypic cartilage.
10.1159/000526677
Assessment of Clinical, Tissue, and Cell-Level Metrics Identify Four Biologically Distinct Knee Osteoarthritis Patient Phenotypes.
Cartilage
OBJECTIVE:Clinical heterogeneity of primary osteoarthritis (OA) is a major challenge in understanding pathogenesis and development of targeted therapeutic strategies. This study aims to (1) identify OA patient subgroups phenotypes and (2) determine predictors of OA severity and cartilage-derived stem/progenitor concentration using clinical-, tissue-, and cell- level metrics. DESIGN:Cartilage, synovium (SYN) and infrapatellar fatpad (IPFP) were collected from 90 total knee arthroplasty patients. Clinical metrics (patient demographics, radiograph-based joint space width (JSW), Kellgren and Lawrence score (KL)), tissue metrics (cartilage histopathology grade, glycosaminoglycans (GAGs)) and cell-based metrics (cartilage-, SYN-, and IPFP-derived cell concentration ([Cell], cells/mg), connective tissue progenitor (CTP) prevalence (P, CTPs/million cells plated), CTP concentration, [CTP], CTPs/mg)) were assessed using -mean clustering and linear regression model. RESULTS:Four patient subgroups were identified. Clusters 1 and 2 comprised of younger, high body mass index (BMI) patients with healthier cartilage, where Cluster 1 had high CTP in cartilage, SYN, and IPFP, and Cluster 2 had low [CTP] in cartilage, SYN, and IPFP. Clusters 3 and 4 comprised of older, low BMI patients with diseased cartilage where Cluster 3 had low [CTP] in SYN, IPFP but high [CTP] in cartilage, and Cluster 4 had high [CTP] in SYN, IPFP but low [CTP] in cartilage. Age ( = 0.23, = 0.026), JSW ( = 0.28, = 0.007), KL ( = 0.26, = 0.012), GAG/mg cartilage tissue ( = -0.31, = 0.007), and SYN-derived [Cell] ( = 0.25, = 0.049) were weak but significant predictors of OA severity. Cartilage-derived [Cell] ( = 0.38, < 0.001) and ( = 0.9, < 0.001) were moderate/strong predictors of cartilage-derived [CTP]. CONCLUSION:Initial findings suggests the presence of OA patient subgroups that could define opportunities for more targeted patient-specific approaches to prevention and treatment.
10.1177/19476035221074003
Gene Expression and Chondrogenic Potential of Cartilage Cells: Osteoarthritis Grade Differences.
International journal of molecular sciences
Recent data suggest that cells isolated from osteoarthritic (OA) cartilage express mesenchymal progenitor cell (MPC) markers that have the capacity to form hyaline-like cartilage tissue. Whether or not these cells are influenced by the severity of OA remains unexplored. Therefore, we analyzed MPC marker expression and chondrogenetic potential of cells from mild, moderate and severe OA tissue. Human osteoarthritic tibial plateaus were obtained from 25 patients undergoing total knee replacement. Each sample was classified as mild, moderate or severe OA according to OARSI scoring. mRNA expression levels of MPC markers-CD105, CD166, Notch 1, Sox9; mature chondrocyte markers-Aggrecan (Acan), Col II A1, hypertrophic chondrocyte and osteoarthritis-related markers-Col I A1, MMP-13 and ALPL were measured at the tissue level (day 0), after 2 weeks of in vitro expansion (day 14) and following chondrogenic in vitro re-differentiation (day 35). Pellet matrix composition after in vitro chondrogenesis of different OA-derived cells was tested for proteoglycans, collagen II and I by safranin O and immunofluorescence staining. Multiple MPC markers were found in OA cartilage resident tissue within a single OA joint with no significant difference between grades except for Notch1, which was higher in severe OA tissues. Expression levels of CD105 and Notch 1 were comparable between OA cartilage-derived cells of different disease grades and bone marrow mesenchymal stem cell (BM-MSC) line (healthy control). However, the MPC marker Sox 9 was conserved after in vitro expansion and significantly higher in OA cartilage-derived cells compared to its levels in the BM-MSC. The in vitro expansion of cartilage-derived cells resulted in enrichment while re-differentiation in reduction of MPC markers for all three analyzed grades. However, only moderate OA-derived cells after the in vitro chondrogenesis resulted in the formation of hyaline cartilage-like tissue. The latter tissue samples were also highly positive for collagen II and proteoglycans with no expression of osteoarthritis-related markers (collagen I, ALPL and MMP13). MPC marker expression did not differ between OA grades at the tissue level. Interestingly after in vitro re-differentiation, only moderate OA-derived cells showed the capacity to form hyaline cartilage-like tissue. These findings may have implications for clinical practice to understand the intrinsic repair capacity of articular cartilage in OA tissues and raises the possibility of these progenitor cells as a candidate for articular cartilage repair.
10.3390/ijms231810610
Pin1-mediated regulation of articular cartilage stem/progenitor cell aging.
Tissue & cell
Cartilage stem/progenitor cells (CSPCs) was recently isolated and identified from the cartilage tissue. CSPCs is essential for repair and regeneration of cartilage in osteoarthritis (OA). Aging is a primary risk factor for cartilage damage and joint OA. Although studies have confirmed the link between cell aging and OA, the underlying molecular mechanisms regulating CSPCs aging are not fully understood. In this study, we investigated the role of Pin1 in the aging of rat knee joint CSPCs. We isolated CSPCs from rat knee joints and demonstrated that, in long-term in vitro culture, Pin1 protein levels are significantly reduced. At the same time, expression of the senescence-related β-galactosidase and the senescence marker p16 were markedly elevated. In addition, Pin1 overexpression reversed the progression of cellular senescence, as evidenced by the down-regulation of senescence-related β-galactosidase, increased EdU positive cells and diminished levels of p16. In contrast, Pin1 siRNA incorporation promoted CSPCs senescence. In addition, we also observed the distribution of cell cycles through flow cytometry and revealed that Pin1 deficiency results in cell cycle arrest in the G1 phase, suggesting severe lack of proliferation ability, a sign of cellular senescence. Collectively, these results validated that Pin1 is an essential regulator of CSPCs aging.
10.1016/j.tice.2022.101765
Fetal Cartilage-Derived Cells Have Stem Cell Properties and Are a Highly Potent Cell Source for Cartilage Regeneration.
Choi Woo Hee,Kim Hwal Ran,Lee Su Jeong,Jeong Nayoung,Park So Ra,Choi Byung Hyune,Min Byoung-Hyun
Cell transplantation
Current strategies for cartilage cell therapy are mostly based on the use of autologous chondrocytes or mesenchymal stem cells (MSCs). However, these cells have limitations of a small number of cells available and of low chondrogenic ability, respectively. Many studies now suggest that fetal stem cells are more plastic than adult stem cells and can therefore more efficiently differentiate into target tissues. However, the characteristics and the potential of progenitor cells from fetal tissue remain poorly defined. In this study, we examined cells from human fetal cartilage at 12 weeks after gestation in comparison with bone marrow-derived MSCs or cartilage chondrocytes from young donors (8-25 years old). The fetal cartilage-derived progenitor cells (FCPCs) showed higher yields by approximately 24 times than that of chondrocytes from young cartilage. The morphology of the FCPCs was polygonal at passage 0, being similar to that of the young chondrocytes, but it changed later at passage 5, assuming a fibroblastic shape more akin to that of MSCs. As the passages advanced, the FCPCs showed a much greater proliferation ability than the young chondrocytes and MSCs, with the doubling times ranging from 2∼4 days until passage 15. The surface marker profile of the FCPCs at passage 2 was quite similar to that of the MSCs, showing high expressions of CD29, CD90, CD105, and Stro-1. When compared to the young chondrocytes, the FCPCs showed much less staining of SA-β-gal, a senescence indicator, at passage 10 and no decrease in SOX9 expression until passage 5. They also showed a much greater chondrogenic potential than the young chondrocytes and the MSCs in a three-dimensional pellet culture in vitro and in polyglycolic acid (PGA) scaffolds in vivo. In addition, they could differentiate into adipogenic and osteogenic lineages as efficiently as MSCs in vitro. These results suggest that FCPCs have stem cell properties to some extent and that they are more active in terms of proliferation and chondrogenic differentiation than young chondrocytes or MSCs.
10.3727/096368915X688641
The bio in the ink: cartilage regeneration with bioprintable hydrogels and articular cartilage-derived progenitor cells.
Acta biomaterialia
Cell-laden hydrogels are the primary building blocks for bioprinting, and, also termed bioinks, are the foundations for creating structures that can potentially recapitulate the architecture of articular cartilage. To be functional, hydrogel constructs need to unlock the regenerative capacity of encapsulated cells. The recent identification of multipotent articular cartilage-resident chondroprogenitor cells (ACPCs), which share important traits with adult stem cells, represents a new opportunity for cartilage regeneration. However, little is known about the suitability of ACPCs for tissue engineering, especially in combination with biomaterials. This study aimed to investigate the potential of ACPCs in hydrogels for cartilage regeneration and biofabrication, and to evaluate their ability for zone-specific matrix production. Gelatin methacryloyl (gelMA)-based hydrogels were used to culture ACPCs, bone marrow mesenchymal stromal cells (MSCs) and chondrocytes, and as bioinks for printing. Our data shows ACPCs outperformed chondrocytes in terms of neo-cartilage production and unlike MSCs, ACPCs had the lowest gene expression levels of hypertrophy marker collagen type X, and the highest expression of PRG4, a key factor in joint lubrication. Co-cultures of the cell types in multi-compartment hydrogels allowed generating constructs with a layered distribution of collagens and glycosaminoglycans. By combining ACPC- and MSC-laden bioinks, a bioprinted model of articular cartilage was generated, consisting of defined superficial and deep regions, each with distinct cellular and extracellular matrix composition. Taken together, these results provide important information for the use of ACPC-laden hydrogels in regenerative medicine, and pave the way to the biofabrication of 3D constructs with multiple cell types for cartilage regeneration or in vitro tissue models. STATEMENT OF SIGNIFICANCE:Despite its limited ability to repair, articular cartilage harbors an endogenous population of progenitor cells (ACPCs), that to date, received limited attention in biomaterials and tissue engineering applications. Harnessing the potential of these cells in 3D hydrogels can open new avenues for biomaterial-based regenerative therapies, especially with advanced biofabrication technologies (e.g. bioprinting). This study highlights the potential of ACPCs to generate neo-cartilage in a gelatin-based hydrogel and bioink. The ACPC-laden hydrogel is a suitable substrate for chondrogenesis and data shows it has a bias in directing cells towards a superficial zone phenotype. For the first time, ACPC-hydrogels are evaluated both as alternative for and in combination with chondrocytes and MSCs, using co-cultures and bioprinting for cartilage regeneration in vitro. This study provides important cues on ACPCs, indicating they represent a promising cell source for the next generation of cartilage constructs with increased biomimicry.
10.1016/j.actbio.2017.08.005
Comparison of fetal cartilage-derived progenitor cells isolated at different developmental stages in a rat model.
Kim Mijin,Kim Jiyoung,Park So Ra,Park Do Young,Kim Young Jick,Choi Byung Hyune,Min Byoung-Hyun
Development, growth & differentiation
Fetal cartilage-derived progenitor cells (FCPCs) could be a useful cell source in cell-based therapies for cartilage disorders. However, their characteristics can vary depending on the developmental stages. The aim of this study was to compare the characteristics of rat FCPCs from the hind limb on embryonic day 14 (E14), E16 and E20 regarding proliferation, pluripotency, and differentiation. Morphologically, rat fetal cartilage tissue showed an increase in cartilaginous differentiation features (Safranin-O, type II collagen) and decrease in pluripotency marker (Sox2) in the order of E14, E16 and E20. E14 FCPCs showed significantly higher doubling time compared to E16 and E20 FCPCs. While the E14 FCPCs expressed pluripotent genes (Sox2, Oct4, Nanog), the E16 and E20 FCPCs expressed chondrogenic markers (Sox9, Col2a1, Acan). E20 FCPCs showed the highest ability to both chondrogenic and adipogenic differentiation and E14 FCPCs showed relatively better activity in osteogenic differentiation. Further analysis showed that E20 FCPCs expressed both adipogenic (C/ebpß) and osteogenic (Runx2, Sp7, Taz) transcription factors as well as chondrogenic transcription factors. Our results show an inverse relationship overall between the expression of pluripotency genes and that of chondrogenic and lineage-specific genes in FCPCs under development. Due to its exceptional proliferation and chondrogenic differentiation ability, fetal cells from epiphyseal cartilage (E20 in rats) may be a suitable cell source for cartilage regeneration.
10.1111/dgd.12267
Human Fetal Cartilage-Derived Progenitor Cells Exhibit Anti-Inflammatory Effect on IL-1β-Mediated Osteoarthritis Phenotypes In Vitro.
Tissue engineering and regenerative medicine
BACKGROUND:In this study, we have investigated whether human fetal cartilage progenitor cells (hFCPCs) have anti-inflammatory activity and can alleviate osteoarthritis (OA) phenotypes in vitro. METHODS:hFCPCs were stimulated with various cytokines and their combinations and expression of paracrine factors was examined to find an optimal priming factor. Human chondrocytes or SW982 synoviocytes were treated with interleukin-1β (IL-1β) to produce OA phenotype, and co-cultured with polyinosinic-polycytidylic acid (poly(I-C))-primed hFCPCs to address their anti-inflammatory effect by measuring the expression of OA-related genes. The effect of poly(I-C) on the surface marker expression and differentiation of hFCPCs into 3 mesodermal lineages was also examined. RESULTS:Among the priming factors tested, poly(I-C) (1 µg/mL) most significantly induced the expression of paracrine factors such as indoleamine 2,3-dioxygenase, histocompatibility antigen, class I, G, tumor necrosis factor- stimulated gene-6, leukemia inhibitory factor, transforming growth factor-β1 and hepatocyte growth factor from hFCPCs. In the OA model in vitro, co-treatment of poly(I-C)-primed hFCPCs significantly alleviated IL-1β-induced expression of inflammatory factors such as IL-6, monocyte chemoattractant protein-1 and IL-1β, and matrix metalloproteinases in SW982, while it increased the expression of cartilage extracellular matrix such as aggrecan and collagen type II in human chondrocytes. We also found that treatment of poly(I-C) did not cause significant changes in the surface marker profile of hFCPCs, while showed some changes in the 3 lineages differentiation. CONCLUSION:These results suggest that poly(I-C)-primed hFCPCs have an ability to modulate inflammatory response and OA phenotypes in vitro and encourage further studies to apply them in animal models of OA in the future.
10.1007/s13770-022-00478-w
Engineered cartilage utilizing fetal cartilage-derived progenitor cells for cartilage repair.
Park Do Young,Min Byoung-Hyun,Park So Ra,Oh Hyun Ju,Truong Minh-Dung,Kim Mijin,Choi Ja-Young,Park In-Su,Choi Byung Hyune
Scientific reports
The aim of this study was to develop a fetal cartilage-derived progenitor cell (FCPC) based cartilage gel through self-assembly for cartilage repair surgery, with clinically useful properties including adhesiveness, plasticity, and continued chondrogenic remodeling after transplantation. Characterization of the gels according to in vitro self-assembly period resulted in increased chondrogenic features over time. Adhesion strength of the cartilage gels were significantly higher compared to alginate gel, with the 2-wk group showing a near 20-fold higher strength (1.8 ± 0.15 kPa vs. 0.09 ± 0.01 kPa, p < 0.001). The in vivo remodeling process analysis of the 2 wk cultured gels showed increased cartilage repair characteristics and stiffness over time, with higher integration-failure stress compared to osteochondral autograft controls at 4 weeks (p < 0.01). In the nonhuman primate investigation, cartilage repair scores were significantly better in the gel group compared to defects alone after 24 weeks (p < 0.001). Cell distribution analysis at 24 weeks showed that human cells remained within the transplanted defects only. A self-assembled, FCPC-based cartilage gel showed chondrogenic repair potential as well as adhesive properties, beneficial for cartilage repair.
10.1038/s41598-020-62580-0
Immunophenotype and Immune-Modulatory Activities of Human Fetal Cartilage-Derived Progenitor Cells.
Lee Su Jeong,Kim Jiyoung,Choi Woo Hee,Park So Ra,Choi Byung Hyune,Min Byoung-Hyun
Cell transplantation
We have previously reported human fetal cartilage progenitor cells (hFCPCs) as a novel source of therapeutic cells showing high proliferation and stem cell properties superior to those of adult mesenchymal stem cells (MSCs). In this study, we investigated the immunophenotype and immune-modulatory activities of hFCPCs. With institutional review board approval, hFCPCs were isolated from fetuses at 11-13 weeks of gestation. hFCPCs showed strong expression of HLA class I molecules but low or no expression of HLA class II and co-stimulatory molecules, which was not changed significantly after 4 days of IFN-γ treatment. In a mixed lymphocyte reaction (MLR), hFCPCs showed no allogeneic immune response to peripheral blood lymphocytes (PBLs) and suppressed concanavalin A (Con A)-mediated proliferation of PBLs in a dose-dependent manner. In addition, hFCPCs inhibited Con A-induced secretion of pro-inflammatory cytokines TNF-α and IFN-γ from PBLs but showed no significant decrease of secretion of IL-10, anti-inflammatory cytokine. Co-culture of hFCPCs with stimulated PBLs for 4 days resulted in a significant increase in CD4CD25FoxP3 T regulatory cells (Tregs). hFCPCs expressed LIF, TGF-β1, TSG-6, and sHLA-G5 but did not express IDO and HGF. Stimulation of hFCPCs with TNF-α for 12 h showed slight induction in the expression of LIF, TSG-6, IDO, and HGF, whereas stimulation with IFN-γ did not affect expression of any of these factors. These results suggest that hFCPCs have low allogeneic immunogenicity and immune-modulatory activity , comparable to those of MSCs. However, compared with MSCs, hFCPCs were less responsive to TNF-α and IFN-γ, and the mechanisms underlying responses to these two cell types appeared distinct.
10.1177/0963689719842166
The clinical potential of articular cartilage-derived progenitor cells: a systematic review.
NPJ Regenerative medicine
Over the past two decades, evidence has emerged for the existence of a distinct population of endogenous progenitor cells in adult articular cartilage, predominantly referred to as articular cartilage-derived progenitor cells (ACPCs). This progenitor population can be isolated from articular cartilage of a broad range of species, including human, equine, and bovine cartilage. In vitro, ACPCs possess mesenchymal stromal cell (MSC)-like characteristics, such as colony forming potential, extensive proliferation, and multilineage potential. Contrary to bone marrow-derived MSCs, ACPCs exhibit no signs of hypertrophic differentiation and therefore hold potential for cartilage repair. As no unique cell marker or marker set has been established to specifically identify ACPCs, isolation and characterization protocols vary greatly. This systematic review summarizes the state-of-the-art research on this promising cell type for use in cartilage repair therapies. It provides an overview of the available literature on endogenous progenitor cells in adult articular cartilage and specifically compares identification of these cell populations in healthy and osteoarthritic (OA) cartilage, isolation procedures, in vitro characterization, and advantages over other cell types used for cartilage repair. The methods for the systematic review were prospectively registered in PROSPERO (CRD42020184775).
10.1038/s41536-021-00203-6
Long-Term Tri-Modal In Vivo Tracking of Engrafted Cartilage-Derived Stem/Progenitor Cells Based on Upconversion Nanoparticles.
Chen Chu-Hsin,Tang Na,Xue Ke,Zhang Hui-Zhong,Chen Ya-Hong,Xu Peng,Sun Kang,Tao Ke,Liu Kai
Biomolecules
Cartilage-derived stem/progenitor cells (CSPCs) are a potential choice for seed cells in osteal and chondral regeneration, and the outcomes of their survival and position distribution in vivo form the basis for the investigation of their mechanism. However, the current use of in vivo stem cell tracing techniques in laboratories is relatively limited, owing to their high operating costs and cytotoxicity. Herein, we performed tri-modal in vivo imaging of CSPCs during subcutaneous chondrogenesis using upconversion nanoparticles (UCNPs) for 28 days. Distinctive signals at accurate positions were acquired without signal noise from X-ray computed tomography, magnetic resonance imaging, and upconversion luminescence. The measured intensities were all significantly proportional to the cell numbers, thereby enabling real-time in vivo quantification of the implanted cells. However, limitations of the detectable range of cell numbers were also observed, owing to the imaging shortcomings of UCNPs, which requires further improvement of the nanoparticles. Our study explores the application value of upconversion nanomaterials in the tri-modal monitoring of implanted stem cells and provides new perspectives for future clinical translation.
10.3390/biom11070958
Cartilage-specific β-catenin signaling regulates chondrocyte maturation, generation of ossification centers, and perichondrial bone formation during skeletal development.
Dao Debbie Y,Jonason Jennifer H,Zhang Yongchun,Hsu Wei,Chen Di,Hilton Matthew J,O'Keefe Regis J
Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research
The WNT/β-catenin signaling pathway is a critical regulator of chondrocyte and osteoblast differentiation during multiple phases of cartilage and bone development. Although the importance of β-catenin signaling during the process of endochondral bone development has been previously appreciated using a variety of genetic models that manipulate β-catenin in skeletal progenitors and osteoblasts, genetic evidence demonstrating a specific role for β-catenin in committed growth-plate chondrocytes has been less robust. To identify the specific role of cartilage-derived β-catenin in regulating cartilage and bone development, we studied chondrocyte-specific gain- and loss-of-function genetic mouse models using the tamoxifen-inducible Col2Cre(ERT2) transgene in combination with β-catenin(fx(exon3)/wt) or β-catenin(fx/fx) floxed alleles, respectively. From these genetic models and biochemical data, three significant and novel findings were uncovered. First, cartilage-specific β-catenin signaling promotes chondrocyte maturation, possibly involving a bone morphogenic protein 2 (BMP2)-mediated mechanism. Second, cartilage-specific β-catenin facilitates primary and secondary ossification center formation via the induction of chondrocyte hypertrophy, possibly through enhanced matrix metalloproteinase (MMP) expression at sites of cartilage degradation, and potentially by enhancing Indian hedgehog (IHH) signaling activity to recruit vascular tissues. Finally, cartilage-specific β-catenin signaling promotes perichondrial bone formation possibly via a mechanism in which BMP2 and IHH paracrine signals synergize to accelerate perichondrial osteoblastic differentiation. The work presented here supports the concept that the cartilage-derived β-catenin signal is a central mediator for major events during endochondral bone formation, including chondrocyte maturation, primary and secondary ossification center development, vascularization, and perichondrial bone formation.
10.1002/jbmr.1639
Distal-Less Homeobox 5 Is a Therapeutic Target for Attenuating Hypertrophy and Apoptosis of Mesenchymal Progenitor Cells.
International journal of molecular sciences
Chondrocyte hypertrophy is a hallmark of osteoarthritis (OA) pathology. In the present study, we elucidated the mechanism underlying the relationship between the hypertrophy/apoptotic phenotype and OA pathogenesis in bone marrow-derived mesenchymal stem cells (BM-MSCs) via gene targeting of distal-less homeobox 5 (DLX5). Our primary objectives were (1) to determine whether DLX5 is a predictive biomarker of cellular hypertrophy in human osteoarthritic tissues; (2) To determine whether modulating DLX5 activity can regulate cell hypertrophy in mesenchymal stem/progenitor cells from marrow and cartilage. Whole transcriptome sequencing was performed to identify differences in the RNA expression profile between human-cartilage-derived mesenchymal progenitors (C-PCs) and bone-marrow-derived mesenchymal progenitors (BM-MSCs). Ingenuity Pathway Analysis (IPA) software was used to compare molecular pathways known to regulate hypertrophic terminal cell differentiation. RT-qPCR was used to measure DLX5 and hypertrophy marker COL10 in healthy human chondrocytes and OA chondrocytes. DLX5 was knocked down or overexpressed in BM-MSCs and C-PCs and RT-qPCR were used to measure the expression of hypertrophy/terminal differentiation markers following DLX5 modulation. Apoptotic cell activity was characterized by immunostaining for cleaved caspase 3/7. We demonstrate that DLX5 and downstream hypertrophy markers were significantly upregulated in BM-MSCs, relative to C-PCs. DLX5 and COL10 were also significantly upregulated in cells from OA knee joint tissues, relative to normal non-arthritic joint tissues. Knocking down DLX5 in BM-MSCs inhibited cell hypertrophy and apoptotic activity without attenuating their chondrogenic potential. Overexpression of DLX5 in C-PCs stimulated hypertrophy markers and increased apoptotic cell activity. Modulating DLX5 activity regulates cell hypertrophy and apoptosis in BM-MSCs and C-PCs. These findings suggest that DLX5 is a biomarker of OA changes in human knee joint tissues and confirms the DLX5 mechanism contributes to hypertrophy and apoptosis in BM-MSCs.
10.3390/ijms21144823
Characterization of heterogeneous primary human cartilage-derived cell population using non-invasive live-cell phase-contrast time-lapse imaging.
Cytotherapy
Reliable and reproducible cell therapy strategies to treat osteoarthritis demand an improved characterization of the cell and heterogeneous cell population resident in native cartilage tissue. Using live-cell phase-contrast time-lapse imaging (PC-TLI), this study investigates the morphological attributes and biological performance of the three primary biological objects enzymatically isolated from primary human cartilage: connective tissue progenitors (CTPs), non-progenitors (NPs) and multi-cellular structures (MCSs). The authors' results demonstrated that CTPs were smaller in size in comparison to NPs (P < 0.001). NPs remained part of the adhered cell population throughout the cell culture period. Both NPs and CTP progeny on day 8 increased in size and decreased in circularity in comparison to their counterparts on day 1, although the percent change was considerably less in CTP progeny (P < 0.001). PC-TLI analyses indicated three colony types: single-CTP-derived (29%), multiple-CTP-derived (26%) and MCS-derived (45%), with large heterogeneity with respect to cell morphology, proliferation rate and cell density. On average, clonal (CL) (P = 0.009) and MCS (P = 0.001) colonies exhibited higher cell density (cells per colony area) than multi-clonal (MC) colonies; however, it is interesting to note that the behavior of CL (less cells per colony and less colony area) and MCS (high cells per colony and high colony area) colonies was quite different. Overall effective proliferation rate (EPR) of the CTPs that formed CL colonies was higher than the EPR of CTPs that formed MC colonies (P = 0.02), most likely due to CTPs with varying EPR that formed the MC colonies. Finally, the authors demonstrated that lag time before first cell division of a CTP (early attribute) could potentially help predict its proliferation rate long-term. Quantitative morphological characterization using non-invasive PC-TLI serves as a reliable and reproducible technique to understand cell heterogeneity. Size and circularity parameters can be used to distinguish CTP from NP populations. Morphological cell and colony features can also be used to reliably and reproducibly identify CTP subpopulations with preferred proliferation and differentiation potentials in an effort to improve cell manufacturing and therapeutic outcomes.
10.1016/j.jcyt.2020.09.006
Human Cartilage-Derived Progenitors Resist Terminal Differentiation and Require CXCR4 Activation to Successfully Bridge Meniscus Tissue Tears.
Jayasuriya Chathuraka T,Twomey-Kozak John,Newberry Jake,Desai Salomi,Feltman Peter,Franco Jonathan R,Li Neill,Terek Richard,Ehrlich Michael G,Owens Brett D
Stem cells (Dayton, Ohio)
Meniscus injuries are among the most common orthopedic injuries. Tears in the inner one-third of the meniscus heal poorly and present a significant clinical challenge. In this study, we hypothesized that progenitor cells from healthy human articular cartilage (chondroprogenitor cells [C-PCs]) may be more suitable than bone-marrow mesenchymal stem cells (BM-MSCs) to mediate bridging and reintegration of fibrocartilage tissue tears in meniscus. C-PCs were isolated from healthy human articular cartilage based on their expression of mesenchymal stem/progenitor marker activated leukocyte cell adhesion molecule (ALCAM) (CD166). Our findings revealed that healthy human C-PCs are CD166+, CD90+, CD54+, CD106- cells with multilineage differentiation potential, and elevated basal expression of chondrogenesis marker SOX-9. We show that, similar to BM-MSCs, C-PCs are responsive to the chemokine stromal cell-derived factor-1 (SDF-1) and they can successfully migrate to the area of meniscal tissue damage promoting collagen bridging across inner meniscal tears. In contrast to BM-MSCs, C-PCs maintained reduced expression of cellular hypertrophy marker collagen X in monolayer culture and in an explant organ culture model of meniscus repair. Treatment of C-PCs with SDF-1/CXCR4 pathway inhibitor AMD3100 disrupted cell localization to area of injury and prevented meniscus tissue bridging thereby indicating that the SDF-1/CXCR4 axis is an important mediator of this repair process. This study suggests that C-PCs from healthy human cartilage may potentially be a useful tool for fibrocartilage tissue repair/regeneration because they resist cellular hypertrophy and mobilize in response to chemokine signaling. Stem Cells 2019;37:102-114.
10.1002/stem.2923
Sex differences of chondrogenic progenitor cells in late stages of osteoarthritis.
Koelling Sebastian,Miosge Nicolai
Arthritis and rheumatism
OBJECTIVE:Osteoarthritis (OA), a mainly degenerative disease, is known to be multifactorial in origin. Gene expression patterns vary between populations and sexes. Sex hormone receptors have been described in the cartilage tissue of animals and humans. We undertook this study to determine whether the regenerative potential of chondrogenic progenitor cells (CPCs) present in the arthritic tissue during the late stages of human OA might also be subject to sex-specific differences and influenced by sex steroids. METHODS:We analyzed sex-specific differences in the regenerative potential of CPCs and the involvement of sex hormones in vitro in cartilage samples from patients with late-stage knee OA, using electrochemiluminescence immunoassay, microarray analysis, real-time reverse transcription-polymerase chain reaction, immunohistochemistry, Western blot analysis, fluorescence-activated cell sorting, and cell culture. RESULTS:We detected expression of estrogen and testosterone in the OA synovial fluid as well as CPCs positive for estrogen receptor alpha (ERalpha), ERbeta, and androgen receptor. Both hormones influenced the expression of all 3 receptor genes as well as the chondrogenic potential of CPCs by regulating gene expression of Sox9, Runx2, type II collagen, and type I collagen. We found regulatory effects on the collagens via Sox9 and Runx2 as well as regulatory effects independent of these transcription factors. These effects were sex-specific and relied on hormone concentrations. CONCLUSION:Physiologic concentrations of testosterone in men and premenopausal concentrations of estrogen in women have a positive effect on the chondrogenic potential of CPCs in vitro. Therefore, strategies of hormone replacement in the synovial fluid of women and men might have beneficial effects on the regenerative potential of arthritic cartilage tissue in late stages of human OA.
10.1002/art.27311
Chondrogenic progenitor cells respond to cartilage injury.
Seol Dongrim,McCabe Daniel J,Choe Hyeonghun,Zheng Hongjun,Yu Yin,Jang Keewoong,Walter Morgan W,Lehman Abigail D,Ding Lei,Buckwalter Joseph A,Martin James A
Arthritis and rheumatism
OBJECTIVE:Hypocellularity resulting from chondrocyte death in the aftermath of mechanical injury is thought to contribute to posttraumatic osteoarthritis. However, we observed that nonviable areas in cartilage injured by blunt impact were repopulated within 7-14 days by cells that appeared to migrate from the surrounding matrix. The aim of this study was to assess our hypothesis that the migrating cell population included chondrogenic progenitor cells that were drawn to injured cartilage by alarmins. METHODS:Osteochondral explants obtained from mature cattle were injured by blunt impact or scratching, resulting in localized chondrocyte death. Injured sites were serially imaged by confocal microscopy, and migrating cells were evaluated for chondrogenic progenitor characteristics. Chemotaxis assays were used to measure the responses to chemokines, injury-conditioned medium, dead cell debris, and high mobility group box chromosomal protein 1 (HMGB-1). RESULTS:Migrating cells were highly clonogenic and multipotent and expressed markers associated with chondrogenic progenitor cells. Compared with chondrocytes, these cells overexpressed genes involved in proliferation and migration and underexpressed cartilage matrix genes. They were more active than chondrocytes in chemotaxis assays and responded to cell lysates, conditioned medium, and HMGB-1. Glycyrrhizin, a chelator of HMGB-1 and a blocking antibody to receptor for advanced glycation end products (RAGE), inhibited responses to cell debris and conditioned medium and reduced the numbers of migrating cells on injured explants. CONCLUSION:Injuries that caused chondrocyte death stimulated the emergence and homing of chondrogenic progenitor cells, in part via HMGB-1 release and RAGE-mediated chemotaxis. Their repopulation of the matrix could promote the repair of chondral damage that might otherwise contribute to progressive cartilage loss.
10.1002/art.34613
Gene expression profiles reveal that chondrogenic progenitor cells and synovial cells are closely related.
Zhou Cheng,Zheng Hongjun,Seol Dongrim,Yu Yin,Martin James A
Journal of orthopaedic research : official publication of the Orthopaedic Research Society
We showed previously that chondrogenic progenitor cells (CPCs) from the superficial zone of articular cartilage respond vigorously to cartilage wounding by responding chemotactically to cell debris, but the physiologic functions of CPCs remain unclear. To help bridge this knowledge gap we undertook a comparative analysis of gene expression in bovine CPCs, chondrocytes, synovial fibroblasts (synoviocytes), and cells isolated from synovial fluid (SFCs). Analysis of microarrays parsed the four cell types into two distinct groups, one composed only of chondrocytes and the other of CPCs, synoviocytes, and SFCs. The groups differed with respect to metalloendopeptidase, collagen, and cytokine gene expression. Quantitative PCR showed that, relative to chondrocytes, all other cells under-expressed cartilage matrix genes. CPCs significantly over-expressed genes encoding the chemokines interleukin 8 (IL8), and C-C motif ligand 2, while synoviocytes over-expressed the chemokine C-X-C motif Ligand 12. Sulfated glycosaminoglycan deposition in pellet cultures by CPCs was intermediate between chondrocytes and synoviocytes/SFCs. These results indicate that the CPC phenotype more closely resembles synoviocytes and SFCs than chondrocytes. CPCs show a tendency to over-express chemokines that promote immune cell chemotaxis, suggesting they mediate inflammation in response to cartilage wounding.
10.1002/jor.22641
Interleukin 17 inhibits progenitor cells in rheumatoid arthritis cartilage.
Schminke Boris,Trautmann Sandra,Mai Burkhard,Miosge Nicolai,Blaschke Sabine
European journal of immunology
Mesenchymal stem cells are known to exert immunomodulatory effects in inflammatory diseases. Immuneregulatory cells lead to progressive joint destruction in rheumatoid arthritis (RA). Proinflammatory cytokines, such as tumour necrosis factor α (TNF-α) and interleukins (ILs) are the main players. Here, we studied progenitor cells from RA cartilage (RA-CPCs) that are positive for IL-17 receptors to determinate the effects of inflammation on their chondrogenic potenial. IL-17A/F reduced the chondrogenic potential of these cells via the upregulation of RUNX2 protein and enhanced IL-6 protein and MMP3 mRNA levels. Blocking antibodies against IL-17 positively influenced their repair potential. Furthermore, treating the RA-CPCs with the anti-human IL-17 antibody secukinumab or the anti-TNF-α antibody adalimumab reduced the proinflammatory IL-6 protein level and positively influenced the secretion of anti-inflammatory IL-10 protein. Additionally, adalimumab and secukinumab in particular reduced RUNX2 protein to promote chondrogenesis. The amelioration of inflammation, particularly via IL-17 antagonism, might be a new therapeutic approach for enhancing intrinsic cartilage repair mechanisms in RA patients.
10.1002/eji.201545910
Platelet lysate activates quiescent cell proliferation and reprogramming in human articular cartilage: Involvement of hypoxia inducible factor 1.
Nguyen Van Thi,Cancedda Ranieri,Descalzi Fiorella
Journal of tissue engineering and regenerative medicine
The idea of rescuing the body self-repair capability lost during evolution is progressively gaining ground in regenerative medicine. In particular, growth factors and bioactive molecules derived from activated platelets emerged as promising therapeutic agents acting as trigger for repair of tissue lesions and restoration of tissue functions. Aim of this study was to assess the potential of a platelet lysate (PL) for human articular cartilage repair considering its activity on progenitor cells and differentiated chondrocytes. PL induced the re-entry in the cell cycle of confluent, growth-arrested dedifferentiated/progenitor cartilage cells. In a cartilage permissive culture environment, differentiated cells also resumed proliferation after exposure to PL. These findings correlated with an up-regulation of the proliferation/survival pathways ERKs and Akt and with an induction of cyclin D1. In short- and long-term cultures of articular cartilage explants, we observed a release of proliferating chondroprogenitors able to differentiate and form an "in vitro" tissue with properties of healthy articular cartilage. Moreover, in cultured cartilage cells, PL induced a hypoxia-inducible factor (HIF-1) alpha increase, its nuclear relocation and the binding to HIF-1 responsive elements. These events were possibly related to the cell proliferation because the HIF-1 inhibitor acriflavine inhibited HIF-1 binding to HIF-1 responsive elements and cell proliferation. Our study demonstrates that PL induces quiescent cartilage cell activation and proliferation leading to new cartilage formation, identifies PL activated pathways playing a role in these processes, and provides a rationale to the application of PL for therapeutic treatment of damaged articular cartilage.
10.1002/term.2595
High Mobility Group Box 1 Protein in Osteoarthritic Knee Tissue and Chondrogenic Progenitor Cells: An and Study.
Wagner Gunar,Lehmann Christoph,Bode Christa,Miosge Nicolai,Schubert Andrea
Cartilage
OBJECTIVE:In osteoarthritis (OA), a loss of healthy cartilage extracellular matrix (ECM) results in cartilage degeneration. Attracting chondrogenic progenitor cells (CPCs) to injury sites and stimulating them toward chondrogenic expression profiles is a regenerative approach in OA therapy. High mobility group box 1 protein (HMGB1) is associated with chemoattractant and proinflammatory effects in various pathological processes. Here, we investigate the migratory effects of HMGB1 in knee OA and CPCs for the first time. DESIGN:Immunohistochemistry, immunoblotting, and immunocytochemistry were performed to identify HMGB1 and its receptors, receptor for advanced glycation end products (RAGE) and toll-like receptor 4 (TLR4) in OA knee tissue, chondrocytes, and CPCs. In situ hybridization for HMGB1 mRNA was performed in CPCs . The chemoattractant effects of HMGB1 on CPCs were analyzed in cell migration assays. RESULTS:HMGB1 expression in OA tissue and OA chondrocytes was higher than in healthy specimens and cells. HMGB1, RAGE, and TLR4 were expressed in CPCs and chondrocytes. In situ hybridization revealed HMGB1 mRNA in CPCs after migration into OA knee tissue, and immunohistochemistry confirmed HMGB1 expression at the protein level. Stimulation via HMGB1 significantly increased the migration of CPCs. CONCLUSIONS:Our results show the chemoattractant role of HMGB1 in knee OA. HMGB1 is released by chondrocytes and has migratory effects on CPCs. These effects might be mediated via RAGE and TLR4. The and results of this study need to be confirmed .
10.1177/1947603519835897
Migratory chondroprogenitors retain superior intrinsic chondrogenic potential for regenerative cartilage repair as compared to human fibronectin derived chondroprogenitors.
Vinod Elizabeth,Johnson Noel Naveen,Kumar Sanjay,Amirtham Soosai Manickam,James Jithu Varghese,Livingston Abel,Rebekah Grace,Daniel Alfred Job,Ramasamy Boopalan,Sathishkumar Solomon
Scientific reports
Cell-based therapy for articular hyaline cartilage regeneration predominantly involves the use of mesenchymal stem cells and chondrocytes. However, the regenerated repair tissue is suboptimal due to the formation of mixed hyaline and fibrocartilage, resulting in inferior long-term functional outcomes. Current preclinical research points towards the potential use of cartilage-derived chondroprogenitors as a viable option for cartilage healing. Fibronectin adhesion assay-derived chondroprogenitors (FAA-CP) and migratory chondroprogenitors (MCP) exhibit features suitable for neocartilage formation but are isolated using distinct protocols. In order to assess superiority between the two cell groups, this study was the first attempt to compare human FAA-CPs with MCPs in normoxic and hypoxic culture conditions, investigating their growth characteristics, surface marker profile and trilineage potency. Their chondrogenic potential was assessed using mRNA expression for markers of chondrogenesis and hypertrophy, glycosaminoglycan content (GAG), and histological staining. MCPs displayed lower levels of hypertrophy markers (RUNX2 and COL1A1), with normoxia-MCP exhibiting significantly higher levels of chondrogenic markers (Aggrecan and COL2A1/COL1A1 ratio), thus showing superior potential towards cartilage repair. Upon chondrogenic induction, normoxia-MCPs also showed significantly higher levels of GAG/DNA with stronger staining. Focused research using MCPs is required as they can be suitable contenders for the generation of hyaline-like repair tissue.
10.1038/s41598-021-03082-5
Strategies to Convert Cells into Hyaline Cartilage: Magic Spells for Adult Stem Cells.
International journal of molecular sciences
Damaged hyaline cartilage gradually decreases joint function and growing pain significantly reduces the quality of a patient's life. The clinically approved procedure of autologous chondrocyte implantation (ACI) for treating knee cartilage lesions has several limits, including the absence of healthy articular cartilage tissues for cell isolation and difficulties related to the chondrocyte expansion in vitro. Today, various ACI modifications are being developed using autologous chondrocytes from alternative sources, such as the auricles, nose and ribs. Adult stem cells from different tissues are also of great interest due to their less traumatic material extraction and their innate abilities of active proliferation and chondrogenic differentiation. According to the different adult stem cell types and their origin, various strategies have been proposed for stem cell expansion and initiation of their chondrogenic differentiation. The current review presents the diversity in developing applied techniques based on autologous adult stem cell differentiation to hyaline cartilage tissue and targeted to articular cartilage damage therapy.
10.3390/ijms231911169
Nasal septum-derived multipotent progenitors: a potent source for stem cell-based regenerative medicine.
Shafiee Abbas,Kabiri Mahboubeh,Ahmadbeigi Naser,Yazdani Saeed Oraee,Mojtahed Mohammad,Amanpour Saeid,Soleimani Masoud
Stem cells and development
Thus far, autologous adult stem cells have attracted great attention for clinical purposes. In this study, we aimed at identifying and comprehensively characterizing a subpopulation of multipotent cells within human nasal septal cartilage. We also conducted a comparative investigation with other well-established stem cells such as bone marrow-mesenchymal stem cells, adipose tissue-mesenchymal stem cells, and unrestricted somatic stem cells. The isolated clonal population was characterized using immunofluorescence, flow cytometry, reverse transcriptase, and real-time polymerase chain reaction. Nasal septal progenitors (NSP) expressed critical pluripotency and mesoectodermal stem cell markers. They also shared many characteristics with MSC in expression of CD90, CD105, CD106, CD166, and HLA-ABC and lack of expression of CD34, CD45, and HLA-DR. NSP distinctly presented CD133 (Prominin-1). These cells could proliferate rapidly in vitro with a higher clonogenic potential and showed a longer lifespan than other studied cells. This population bears some other multipotent properties in showing a high capacity to be differentiated into other lineages including chondrocytes, osteocytes, and neural-like cell types. Another strong/positive feature of this population was their ability to be safely expanded ex vivo with no susceptibility to chromosomal abnormality or tumorigenicity both in vitro and in vivo. In conclusion, NSP could be considered as an alternative autologous cell source that can bring them to the top of therapeutic applications.
10.1089/scd.2010.0420
Chondroitin sulfate sulfation motifs as putative biomarkers for isolation of articular cartilage progenitor cells.
Hayes Anthony J,Tudor Debbie,Nowell Mari A,Caterson Bruce,Hughes Clare E
The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society
Osteoarthritis is a chronic, debilitating joint disease characterized by progressive destruction of articular cartilage. Recently, a number of studies have identified a chondroprogenitor cell population within articular cartilage with significant potential for repair/regeneration. As yet, there are few robust biomarkers of these cells. In this study, we show that monoclonal antibodies recognizing novel chondroitin sulfate sulfation motif epitopes in glycosaminoglycans on proteoglycans can be used to identify metabolically distinct subpopulations of cells specifically within the superficial zone of the tissue and that flow cytometric analysis can recognize these cell subpopulations. Fluorochrome co-localization analysis suggests that the chondroitin sulfate sulphation motifs are associated with a range of cell and extracellular matrix proteoglycans within the stem cell niche that include perlecan and aggrecan but not versican. The unique distributions of these sulphation motifs within the microenvironment of superficial zone chondrocytes, seems to designate early stages of stem/progenitor cell differentiation and is consistent with these molecules playing a functional role in regulating aspects of chondrogenesis. The isolation and further characterization of these cells will lead to an improved understanding of the role novel chondroitin sulfate sulfation plays in articular cartilage development and may contribute significantly to the field of articular cartilage repair.
10.1369/jhc.7A7320.2007
The surface of articular cartilage contains a progenitor cell population.
Dowthwaite Gary P,Bishop Joanna C,Redman Samantha N,Khan Ilyas M,Rooney Paul,Evans Darrell J R,Haughton Laura,Bayram Zubeyde,Boyer Sam,Thomson Brian,Wolfe Michael S,Archer Charles W
Journal of cell science
It is becoming increasingly apparent that articular cartilage growth is achieved by apposition from the articular surface. For such a mechanism to occur, a population of stem/progenitor cells must reside within the articular cartilage to provide transit amplifying progeny for growth. Here, we report on the isolation of an articular cartilage progenitor cell from the surface zone of articular cartilage using differential adhesion to fibronectin. This population of cells exhibits high affinity for fibronectin, possesses a high colony-forming efficiency and expresses the cell fate selector gene Notch 1. Inhibition of Notch signalling abolishes colony forming ability whilst activated Notch rescues this inhibition. The progenitor population also exhibits phenotypic plasticity in its differentiation pathway in an embryonic chick tracking system, such that chondroprogenitors can engraft into a variety of connective tissue types including bone, tendon and perimysium. The identification of a chondrocyte subpopulation with progenitor-like characteristics will allow for advances in our understanding of both cartilage growth and maintenance as well as provide novel solutions to articular cartilage repair.
10.1242/jcs.00912
Reserve or Resident Progenitors in Cartilage? Comparative Analysis of Chondrocytes versus Chondroprogenitors and Their Role in Cartilage Repair.
Vinod Elizabeth,Boopalan P R J V C,Sathishkumar Solomon
Cartilage
Introduction Articular cartilage is made up of hyaline tissue embodying chondrocytes, which arise from mesenchymal stromal cells (MSCs) and specialized extracellular matrix. Despite possessing resident progenitors in and around the joint primed for chondrogenesis, cartilage has limited intrinsic capacity of repair and cell turnover. Advances in isolation, culture, and characterization of these progenitors have raised the possibility for their use in cell-based cartilage repair. Chondroprogenitors (CPCs) have been classified as MSCs and have been postulated to play a vital role in injury response and are identified by their colony forming ability, proliferative potential, telomere dynamics, multipotency, and expression of stem cell markers. The combined presence of CPCs and chondrocytes within the same tissue compartments and the ability of chondrocytes to dedifferentiate and acquire stemness during culture expansion has obscured our ability to define and provide clear-cut differences between these 2 cell populations. Objective This review aims to evaluate and summarize the available literature on CPCs in terms of their origin, growth kinetics, molecular characteristics, and differential and therapeutic potential with emphasis on their difference from daughter chondrocytes. Design For this systematic review, a comprehensive electronic search was performed on PubMed and Google Scholar using relevant terms such as chondrocytes, chondroprogenitors, and surface marker expression. Results and Conclusion Our comparative analysis shows that there is an ill-defined distinction between CPCs and chondrocytes with respect to their cell surface expression (MSC markers and CPC-specific markers) and differentiation potential. Accumulating evidence indicates that the 2 subpopulations may be distinguished based on their growth kinetics and chondrogenic marker.
10.1177/1947603517736108
Properties of the Nasal Cartilage, from Development to Adulthood: A Scoping Review.
Cartilage
OBJECTIVE:Nasal septum cartilage is a hyaline cartilage that provides structural support to the nasal cavity and midface. Currently, information on its cellular and mechanical properties is widely dispersed and has often been inferred from studies conducted on other cartilage types such as the knee. A detailed understanding of nasal cartilage properties is important for several biological, clinical, and engineering disciplines. The objectives of this scoping review are to (1) consolidate actual existing knowledge on nasal cartilage properties and (2) identify gaps of knowledge and research questions requiring future investigations. DESIGN:This scoping review incorporated articles identified using PROSPERO, Cochrane Library (CDSR and Central), WOS BIOSIS, WOS Core Collection, and ProQuest Dissertations and Theses Global databases. Following the screening process, 86 articles were considered. Articles were categorized into three groups: growth, extracellular matrix, and mechanical properties. RESULTS:Most articles investigated growth properties followed by extracellular matrix and mechanical properties. NSC cartilage is not uniform. Nasal cartilage growth varies with age and location. Similarly, extracellular matrix composition and mechanical properties are location-specific within the NSC. Moreover, most articles included in the review investigate these properties in isolation and only very few articles demonstrate the interrelationship between multiple cartilage properties. CONCLUSIONS:This scoping review presents a first comprehensive description of research on NSC properties with a focus on NSC growth, extracellular matrix and mechanical properties. It additionally identifies the needs (1) to understand how these various cartilage properties intersect and (2) for more granular, standardized assessment protocols to describe NSC.
10.1177/19476035221087696
Isolation of human nasoseptal chondrogenic cells: a promise for cartilage engineering.
do Amaral Ronaldo J F C,Pedrosa Carolina da S G,Kochem Michele C L,Silva Karina R da,Aniceto Marcelo,Claudio-da-Silva Cesar,Borojevic Radovan,Baptista Leandra S
Stem cell research
In cartilaginous tissues, perichondrium cambium layer may be the source of new cartilage. Human nasal septal perichondrium is considered to be a homogeneous structure in which some authors do not recognize the perichondrium internal zone or the cambium layer as a layer distinct from adjacent cartilage surface. In the present study, we isolated a chondrogenic cell population from human nasal septal cartilage surface zone. Nasoseptal chondrogenic cells were positive for surface markers described for mesenchymal stem cells, with exception of CD146, a perivascular cell marker, which is consistent with their avascular niche in cartilage. Although only Sox-9 was constitutively expressed, they also revealed osteogenic and chondrogenic, but not adipogenic, potentials in vitro, suggesting a more restricted lineage potential compared to mesenchymal stem cells. Interestingly, even in absence of chondrogenic growth factors in the pellet culture system, nasoseptal chondrogenic cells had a capacity to synthesize sulfated glycosaminoglycans, large amounts of collagen type II and to a lesser extent collagen type I. The spontaneous chondrogenic potential of this population of cells indicates that they may be a possible source for cartilage tissue engineering. Besides, the pellet culture system using nasoseptal chondrogenic cells may also be a model for studies of chondrogenesis.
10.1016/j.scr.2011.09.006
Cartilage regeneration in the rabbit nasal septum.
Kaiser Meghann L,Karam Amir M,Sepehr Ali,Wong Hausin,Liaw Lih-Huei L,Vokes David E,Wong Brian J
The Laryngoscope
OBJECTIVE:Rhinoplasty frequently includes harvesting of nasal septal cartilage. The objective of this prospective basic investigation is to determine whether cartilage can regenerate after submucosal resection (SMR) of the nasal septum in the rabbit. Neocartilage formation has not heretofore been described in this model. METHODS:By lateral rhinotomy, SMR was performed on 17 rabbits followed by reapproximation of the perichondrium. After 7 months, septi were fixed, sectioned, and examined histologically. Findings were photographed and data tabulated according to location and extent. RESULTS:Sites of matrix-secreting isogenous chondrocyte islands were identified between the perichondrial flaps of every animal, principally in the anterior inferior septum. The width of the islands averaged 190 microm, and the mean neocartilage height was found to be 840 microm. The newly formed cartilage consisted of chondrocytes within chondrons and was comparable in shape and structure to native septal cartilage. CONCLUSIONS:After SMR, rabbit cartilage tissue can regenerate and form matrix within the potential space created by surgery. The surrounding stem cell-rich perichondrium may be the site of origin for these chondrocytes. These findings suggest that after SMR of the human nasal septum, it may be possible for new cartilage tissue to develop provided the mucosa is well approximated. This biologic effect may be enhanced by insertion of cytokine-rich tissue scaffolds that exploit the native ability of septal perichondrium to regenerate and repair cartilage tissue.
10.1097/01.mlg.0000231430.81255.75
Bioengineered cartilage in a scaffold-free method by human cartilage-derived progenitor cells: a comparison with human adipose-derived mesenchymal stromal cells.
Baptista Leandra S,Silva Karina R,Pedrosa Carolina S G,Amaral Ronaldo J F C,Belizário João Vitor,Borojevic Radovan,Granjeiro José Mauro
Artificial organs
The objective of our study was to investigate chondrogenesis potential of human adipose-derived mesenchymal stromal cells (MSCs), using as a positive control a human source of cartilage-derived progenitor cells (PCs). This source of PCs was recently described by our group and dwells on the surface of nasoseptal cartilage. Histological analysis using Safranin O staining and immunofluorescence for actin filaments and collagen type II was performed on three-dimensional (3D) pellet cultures. Cartilage PCs and adipose MSCs showed similarities in monolayer culture related to cell morphology and proliferation. Our 3D pellet cultures substantially reduced the actin stress and after 21 days under chondrogenic medium, we observed an increase in the pellet diameter for cartilage PCs (7.4%) and adipose MSCs (21.2%). Adipose-derived MSCs responded to chondrogenic stimulus, as seen by positive areas for collagen type II, but they were not able to recreate a mature extracellular matrix. Using semi-quantitative analysis, we observed a majority of Safranin O areas rising from blue (no stain) to orange (moderate staining) and no changes in fibroblastic morphology (P < 0.0001). For cartilage PCs, chondrogenic induction is responsible for morphological changes and a high percentage of matrix area/number of cells (P ≤ 0.0001), evaluated by computerized histomorphometry. Morphological analyses reveal that adipose-derived MSCs were not able to recreate a bioengineered cartilage. The cost of culture was reduced, as the cartilage PCs under growth-factor free medium exhibit a high score for cartilage formation compared with the induced adipose mesenchymal stromal cells (P = 0.0021). Using a pellet 3D culture, our cartilage PCs were able to produce a cartilage tissue in vitro, leading to the future development of bioengineered products.
10.1111/aor.12121
Enhanced chondrogenesis of human nasal septum derived progenitors on nanofibrous scaffolds.
Shafiee Abbas,Seyedjafari Ehsan,Sadat Taherzadeh Elham,Dinarvand Peyman,Soleimani Masoud,Ai Jafar
Materials science & engineering. C, Materials for biological applications
Topographical cues can be exploited to regulate stem cell attachment, proliferation, differentiation and function in vitro and in vivo. In this study, we aimed to investigate the influence of different nanofibrous topographies on the chondrogenic differentiation potential of nasal septum derived progenitors (NSP) in vitro. Aligned and randomly oriented Ploy (l-lactide) (PLLA)/Polycaprolactone (PCL) hybrid scaffolds were fabricated via electrospinning. First, scaffolds were fully characterized, and then NSP were seeded on them to study their capacity to support stem cell attachment, proliferation and chondrogenic differentiation. Compared to randomly oriented nanofibers, aligned scaffolds showed a high degree of nanofiber alignment with much better tensile strength properties. Both scaffolds supported NSP adhesion, proliferation and chondrogenic differentiation. Despite the higher rate of cell proliferation on random scaffolds, a better chondrogenic differentiation was observed on aligned nanofibers as deduced from higher expression of chondrogenic markers such as collagen type II and aggrecan on aligned scaffolds. These findings demonstrate that electrospun constructs maintain NSP proliferation and differentiation, and that the aligned nanofibrous scaffolds can significantly enhance chondrogenic differentiation of nasal septum derived progenitors.
10.1016/j.msec.2014.04.027
Characteristics of Nasal Septal Cartilage-Derived Progenitor Cells during Prolonged Cultivation.
Kim Do Hyun,Lim Jung Yeon,Kim Sung Won,Lee WeonSun,Park Sang Hi,Kwon Mi Yeon,Park Sun Hwa,Lim Mi Hyun,Back Sang A,Yun Byeong Gon,Jeun Jung Ho,Hwang Se Hwan
Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery
Objective To produce alternate cell sources for tissue regeneration, human nasal septal cartilage-derived progenitor cells (NSPs) were tested to identify whether these cells meet the criteria of cartilage progenitor cells. We also evaluated the effects of prolonged cultivation on the characteristics of NSPs. Study Design In vitro study. Setting Academic research laboratory. Methods NSPs were isolated from discarded human nasal septal cartilage. NSPs were cultured for 10 passages. The expression of septal progenitor cell surface markers was assessed by fluorescence-activated cell sorting. Cell proliferation was measured with a cell-counting kit. Cytokine secretion was analyzed with multiplex immunoassays. Chondrogenic differentiation of NSPs without differentiation induction was analyzed with type II collagen immunohistochemistry. Cartilage-specific protein expression was evaluated by Western blotting. Under osteo- and adipodifferentiation media, 2 lineage differentiation potentials were evaluated by histology and gene expression analysis. Results Surface epitope analysis revealed that NSPs are positive for mesenchymal stem cells markers and negative for hematopoietic cell markers. Cultured NSPs showed sufficient cell expansion and chondrogenic potential, as demonstrated by immunostaining and expression of cartilage-specific protein. IL-6, IL-8, and transforming growth factor ß were secreted by over 200 pg/mL. The osteo- and adipodifferentiation potentials of NSPs were identified by histology and specific gene expression. The aforementioned characteristics were not influenced by prolonged cultivation. Conclusion NSPs represent an initial step toward creating a cell source from surgically discarded tissue that may prove useful in cartilage regeneration.
10.1177/0194599818777195
Isolation, Culture, and Characterization of Chicken Cartilage Stem/Progenitor Cells.
Li Lu,Ma Yuehui,Li Xianglong,Li Xiangchen,Bai Chunyu,Ji Meng,Zhang Shuang,Guan Weijun,Li Junjie
BioMed research international
A chondrocyte progenitor population isolated from the surface zone of articular cartilage has become a promising cell source for cell-based cartilage repair. The cartilage-derived stem/progenitor cells are multipotent stem cells, which can differentiate into three cell types in vitro including adipocytes, osteoblasts, and chondrocytes. Much work has been done on cartilage stem/progenitor cells (CSPCs) from people, horses, and cattle, but the relatively little literature has been published about these cells in chickens. In our work, CSPCs were isolated from chicken embryos in incubated eggs for 20 days. In order to inquire into the biological characteristics of chicken CSPCs, immunofluorescence, reverse transcription-polymerase chain reaction (RT-PCR), and flow cytometry were adopted to detect the characteristic surface markers of CSPCs. Primary CSPCs were subcultured to passage 22 and, for purpose of knowing the change of cell numbers, we drew the growth curves. Isolated CSPCs were induced to adipocytes, osteoblasts, and chondrocytes. Our results suggest that we have identified and characterised a novel cartilage progenitor population resident in chicken articular cartilage and CSPCs isolated from chickens possess similar biological characteristics to those from other species, which will greatly benefit future cell-based cartilage repair therapies.
10.1155/2015/586290
[ISOLATION, CULTURE AND IDENTIFICATION OF CARTILAGE DERIVED STEM CELLS FROM THREE SUBTYPES OF CARTILAGES].
Xue Ke,Zhang Xiaodie,Liu Kai
Zhongguo xiu fu chong jian wai ke za zhi = Zhongguo xiufu chongjian waike zazhi = Chinese journal of reparative and reconstructive surgery
OBJECTIVE:To isolate and culture cartilage derived stem cells from different subtypes of cartilages, and to identify their characteristics. METHODS:Cartilage derived stem cells were isolated from different subtypes of cartilages (auricle cartilage, articular cartilage, and intervertebral cartilage) by using adhesive method of fibronectin. The expressions of positive surface markers (CD29 and CD90) and negative surface markers (CD34 and CD45) in cartilage derived stem cells were detected via flow cytometry. The single cell colony-forming efficiency of cartilage derived stem cells was determined by clonal formation unit test; the multipotent differentiation capacity was identified by chondrogensis, osteogenesis, and adipogenesis induction. RT-PCR was used to test the expression of osteogenic, chondrogenic, and adipogenic genes; and bone marrow mesenchymal stem cells (BMSCs) served as control. RESULTS:Three cell populations were successfully isolated from different subtypes of cartilages, which could express CD29 and CD 90 highly, but did not express CD34 and CD45. After 2 weeks of culture, single cartilage derived stem cell could form single cell colony. In addition, cartilage derived stem cells had high chondrogenesis, osteogenesis, and adipogenesis potentials. After osteogenic induction, the expressions of collagen type I and collagen type X in articular and intervertebral cartilage stem cells were significantly higher than those in BMSCs (P<0.05), while there was no significant difference between auricular cartilage stem cells and BMSCs (P>0.05). The expressions of Aggrecan and collagen type II in cartilage derived stem cells after chondrogenic induction were significantly higher than those in BMSCs (P<0.05). While the ability of adipogenic differentiation was lower than that in BMSCs, but no significant difference was found (P>0.05). CONCLUSION:Cartilage derived stem cells in different subtypes of cartilages possess typical characteristics of stem cells.
Progenitor Cells Activated by Platelet Lysate in Human Articular Cartilage as a Tool for Future Cartilage Engineering and Reparative Strategies.
Cells
Regenerative strategies for human articular cartilage are still challenging despite the presence of resident progenitor cell population. Today, many efforts in the field of regenerative medicine focus on the use of platelet derivatives due to their ability to reactivate endogenous mechanisms supporting tissue repair. While their use in orthopedics continues, mechanisms of action and efficacy need further characterization. We describe that the platelet lysate (PL) is able to activate chondro-progenitor cells in a terminally differentiated cartilage tissue. Primary cultures of human articular chondrocytes (ACs) and cartilage explants were set up from donor hip joint biopsies and were treated in vitro with PL. PL recruited a chondro-progenitors (CPCs)-enriched population from ex vivo cartilage culture, that showed high proliferation rate, clonogenicity and nestin expression. CPCs were positive for in vitro tri-lineage differentiation and formed hyaline cartilage-like tissue in vivo without hypertrophic fate. Moreover, the secretory profile of CPCs was analyzed, together with their migratory capabilities. Some CPC-features were also induced in PL-treated ACs compared to fetal bovine serum (FBS)-control ACs. PL treatment of human articular cartilage activates a stem cell niche responsive to injury. These facts can improve the PL therapeutic efficacy in cartilage applications.
10.3390/cells9041052
Increased recruitment of endogenous stem cells and chondrogenic differentiation by a composite scaffold containing bone marrow homing peptide for cartilage regeneration.
Theranostics
Even small cartilage defects could finally degenerate to osteoarthritis if left untreated, owing to the poor self-healing ability of articular cartilage. Stem cell transplantation has been well implemented as a common approach in cartilage tissue engineering but has technical complexity and safety concerns. The stem cell homing-based technique emerged as an alternative promising therapy for cartilage repair to overcome traditional limitations. In this study, we constructed a composite hydrogel scaffold by combining an oriented acellular cartilage matrix (ACM) with a bone marrow homing peptide (BMHP)-functionalized self-assembling peptide (SAP). We hypothesized that increased recruitment of endogenous stem cells by the composite scaffold could enhance cartilage regeneration. To test our hypothesis, proliferation, attachment and chondrogenic differentiation of rabbit mesenchymal stem cells (MSCs) were tested to confirm the bioactivities of the functionalized peptide hydrogel. The composite scaffold was then implanted into full-thickness cartilage defects on rabbit knee joints for cartilage repair, in comparison with microfracture or other sample groups. Stem cell recruitment was monitored by dual labeling with CD29 and CD90 under confocal microcopy at 1 week after implantation, followed by chondrogenic differentiation examined by qRT-PCR. Repaired tissue of the cartilage defects was evaluated by histological and immunohistochemistry staining, microcomputed tomography (micro-CT) and magnetic resonance imaging (MRI) at 3 and 6 months post-surgery. Macroscopic and histological scoring was done to evaluate the optimal repair outcomes of this composite scaffold. The functionalized SAP hydrogels could stimulate rabbit MSC proliferation, attachment and chondrogenic differentiation during culture. At 7 days after implantation, increased recruitment of MSCs based on CD29 /CD90 double-positive cells was found in the composite hydrogel scaffold, as well as upregulation of cartilage-associated genes (aggrecan, Sox9 and type II collagen). After 3 and 6 months post-surgery, the articular cartilage defect in the composite scaffold-treated group was fully covered with cartilage-like tissue with a smooth surface, which was similar to the surrounding native cartilage, according to the results of histological and immunohistochemistry staining, micro-CT and MRI analysis. Macroscopic and histological scoring confirmed that the quality of cartilage repair was significantly improved with implantation of the composite scaffold at each timepoint, in comparison with microfracture or other sample groups. Our findings demonstrated that the composite scaffold could enhance endogenous stem cell homing and chondrogenic differentiation and significantly improve the therapeutic outcome of chondral defects. The present study provides a promising approach for cartilage repair without cell transplantation. Optimization of this strategy may offer great potential and benefits for clinical application in the future.
10.7150/thno.26981
In Situ Articular Cartilage Regeneration through Endogenous Reparative Cell Homing Using a Functional Bone Marrow-Specific Scaffolding System.
Sun Xun,Yin Heyong,Wang Yu,Lu Jiaju,Shen Xuezhen,Lu Changfeng,Tang He,Meng Haoye,Yang Shuhui,Yu Wen,Zhu Yun,Guo Quanyi,Wang Aiyuan,Xu Wenjing,Liu Shuyun,Lu Shibi,Wang Xiumei,Peng Jiang
ACS applied materials & interfaces
In situ tissue regeneration by homing endogenous reparative cells to the injury site has been extensively researched as a promising alternative strategy to facilitate tissue repair. In this study, a promising scaffolding system DCM-RAD/SKP, which integrated a decellularized cartilage matrix (DCM)-derived scaffold with a functionalized self-assembly Ac-(RADA)-CONH/Ac-(RADA)GGSKPPGTSS-CONH (RAD/SKP) peptide nanofiber hydrogel, was designed for repairing rabbit osteochondral defect. In vitro experiments showed that rabbit bone marrow stem cells migrated into and have higher affinity toward the functional scaffolding system DCM-RAD/SKP than the control scaffolds. One week after in vivo implantation, the functional scaffolding system DCM-RAD/SKP facilitated the recruitment of endogenous mesenchymal stem cells within the defect site. Moreover, gene expression analysis indicated that the DCM-RAD/SKP promoted chondrogenesis of the recruited cells. In vivo results showed that the DCM-RAD/SKP achieved superior hyaline-like cartilage repair and successful subchondral bone reconstruction. By contrast, the control groups mostly led to fibrous tissue repair. These findings indicate that the DCM-RAD/SKP can recruit endogenous stem cells into the site of cartilage injury and promote differentiation of the infiltrating cells into the chondrogenic lineage, holding great potential as a one-step surgery strategy for cartilage repair.
10.1021/acsami.8b11687
Endogenous Repair and Regeneration of Injured Articular Cartilage: A Challenging but Promising Therapeutic Strategy.
Hu Hongzhi,Liu Weijian,Sun Caixia,Wang Qiuyuan,Yang Wenbo,Zhang ZhiCai,Xia Zhidao,Shao Zengwu,Wang Baichuan
Aging and disease
Articular cartilage (AC) has a very limited intrinsic repair capacity after injury or disease. Although exogenous cell-based regenerative approaches have obtained acceptable outcomes, they are usually associated with complicated procedures, donor-site morbidities and cell differentiation during expansion. In recent years, endogenous regenerative strategy by recruiting resident mesenchymal stem/progenitor cells (MSPCs) into the injured sites, as a promising alternative, has gained considerable attention. It takes full advantage of body's own regenerative potential to repair and regenerate injured tissue while avoiding exogenous regenerative approach-associated limitations. Like most tissues, there are also multiple stem-cell niches in AC and its surrounding tissues. These MSPCs have the potential to migrate into injured sites to produce replacement cells under appropriate stimuli. Traditional microfracture procedure employs the concept of MSPCs recruitment usually fails to regenerate normal hyaline cartilage. The reasons for this failure might be attributed to an inadequate number of recruiting cells and adverse local tissue microenvironment after cartilage injury. A strategy that effectively improves local matrix microenvironment and recruits resident MSPCs may enhance the success of endogenous AC regeneration (EACR). In this review, we focused on the reasons why AC cannot regenerate itself in spite of potential self-repair capacity and summarized the latest developments of the three key components in the field of EACR. In addition, we discussed the challenges facing in the present EACR strategy. This review will provide an increasing understanding of EACR and attract more researchers to participate in this promising research arena.
10.14336/AD.2020.0902
Endogenous cell recruitment strategy for articular cartilage regeneration.
Yang Zhen,Li Hao,Yuan Zhiguo,Fu Liwei,Jiang Shuangpeng,Gao Cangjian,Wang Fuxin,Zha Kangkang,Tian Guangzhao,Sun Zhiqiang,Huang Bo,Wei Fu,Cao Fuyang,Sui Xiang,Peng Jiang,Lu Shibi,Guo Weimin,Liu Shuyun,Guo Quanyi
Acta biomaterialia
In the absence of timely and proper treatments, injuries to articular cartilage (AC) can lead to cartilage degeneration and ultimately result in osteoarthritis. Regenerative medicine and tissue engineering techniques are emerging as promising approaches for AC regeneration and repair. Although the use of cell-seeded scaffolds prior to implantation can regenerate and repair cartilage lesions to some extent, these approaches are still restricted by limited cell sources, excessive costs, risks of disease transmission and complex manufacturing practices. Recently developed acellular scaffold approaches that rely on the recruitment of endogenous cells to the injured sites avoid these drawbacks and offer great promise for in situ AC regeneration. Multiple endogenous stem/progenitor cells (ESPCs) are found in joint-resident niches and have the capability to migrate to sites of injury to participate in AC regeneration. However, the natural recruitment of ESPCs is insufficient, and the local microenvironment is hostile after injury. Hence, an endogenous cell recruitment strategy based on the combination of chemoattractants and acellular scaffolds to effectively and specifically recruit ESPCs and improve local microenvironment may provide new insights into in situ AC regeneration. This review provides a brief overview of: (1) the status of endogenous cell recruitment strategy; (2) the subpopulations, potential migration routes (PMRs) of joint-resident ESPCs and their immunomodulatory and reparative effects; (3) chemoattractants and their potential adverse effects; (4) scaffold-based drug delivery systems (SDDSs) that are utilized for in situ AC regeneration; and (5) the challenges and future perspectives of endogenous cell recruitment strategy for AC regeneration. STATEMENT OF SIGNIFICANCE: Although the endogenous cell recruitment strategy for articular cartilage (AC) regeneration has been investigated for several decades, much work remains to be performed in this field. Future studies should have the following aims: (1) reporting the up-to-date progress in the endogenous cell recruitment strategies; (2) determining the subpopulations of ESPCs, the cellular and molecular mechanisms underlying the migration of these cells and their anti-inflammatory, immunomodulatory and reparative effects; (3) elucidating the chemoattractants that enhance ESPC recruitment and their potential adverse effects; and (4) developing advanced SDDSs for chemoattractant dispatch. Herein, we present a systematic overview of the aforementioned issues to provide a better understanding of endogenous cell recruitment strategies for AC regeneration and repair.
10.1016/j.actbio.2020.07.008
Mesenchymal Stem/Progenitor Cells Derived from Articular Cartilage, Synovial Membrane and Synovial Fluid for Cartilage Regeneration: Current Status and Future Perspectives.
Huang Yi-Zhou,Xie Hui-Qi,Silini Antonietta,Parolini Ornella,Zhang Yi,Deng Li,Huang Yong-Can
Stem cell reviews and reports
Large articular cartilage defects remain an immense challenge in the field of regenerative medicine because of their poor intrinsic repair capacity. Currently, the available medical interventions can relieve clinical symptoms to some extent, but fail to repair the cartilaginous injuries with authentic hyaline cartilage. There has been a surge of interest in developing cell-based therapies, focused particularly on the use of mesenchymal stem/progenitor cells with or without scaffolds. Mesenchymal stem/progenitor cells are promising graft cells for tissue regeneration, but the most suitable source of cells for cartilage repair remains controversial. The tissue origin of mesenchymal stem/progenitor cells notably influences the biological properties and therapeutic potential. It is well known that mesenchymal stem/progenitor cells derived from synovial joint tissues exhibit superior chondrogenic ability compared with those derived from non-joint tissues; thus, these cell populations are considered ideal sources for cartilage regeneration. In addition to the progress in research and promising preclinical results, many important research questions must be answered before widespread success in cartilage regeneration is achieved. This review outlines the biology of stem/progenitor cells derived from the articular cartilage, the synovial membrane, and the synovial fluid, including their tissue distribution, function and biological characteristics. Furthermore, preclinical and clinical trials focusing on their applications for cartilage regeneration are summarized, and future research perspectives are discussed.
10.1007/s12015-017-9753-1
Cartilage progenitor cells combined with PHBV in cartilage tissue engineering.
Xue Ke,Zhang Xiaodie,Gao Zixu,Xia Wanyao,Qi Lin,Liu Kai
Journal of translational medicine
BACKGROUND:Bone marrow-derived stem cells (BMSCs) and chondrocytes have been reported to present "dedifferentiation" and "phenotypic loss" during the chondrogenic differentiation process in cartilage tissue engineering, and cartilage progenitor cells (CPCs) are novel seeding cells for cartilage tissue engineering. In our previous study, cartilage progenitor cells from different subtypes of cartilage tissue were isolated and identified in vitro, but the study on in vivo chondrogenic characteristics of cartilage progenitor cells remained rarely. In the current study, we explored the feasibility of combining cartilage progenitor cells with poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) to produce tissue-engineered cartilage and compared the proliferation ability and chondrogenic characteristics of cartilage progenitor cells with those of bone marrow-derived stem cells and chondrocytes. METHODS:These three cells combined with PHBV were cultured in vitro for 1 week without chondrogenic induction and then transplanted subcutaneously into nude mice for 6 weeks. The cell-PHBV constructs were evaluated by gross observation, histological staining, glycosaminoglycan content measurement, biomechanical analysis and RT-PCR. RESULTS:The chondrocyte-PHBV constructs and CPC-PHBV constructs became an ivory-whitish cartilage-like tissue, while the BMSC-PHBV constructs became vascularized 6 weeks after the subcutaneous implantation. Histological examination showed that many typical cartilage structures were present in the chondrocyte group, some typical cartilage structures were observed in the CPC group, while no typical cartilage structures were observed in the BMSC group. CONCLUSIONS:Cartilage progenitor cells may undergo chondrogenesis without chondrogenic induction and are better at chondrogenesis than BMSCs but worse than chondrocytes in the application of cartilage tissue engineering.
10.1186/s12967-019-1855-x
Combining freshly isolated chondroprogenitor cells from the infrapatellar fat pad with a growth factor delivery hydrogel as a putative single stage therapy for articular cartilage repair.
Tissue engineering. Part A
Growth factor delivery systems incorporating chondroprogenitor cells are an attractive potential treatment option for damaged cartilage. The rapid isolation, processing, and implantation of therapeutically relevant numbers of autologous chondroprogenitor cells, all performed "in-theatre" during a single surgical procedure, would significantly accelerate the clinical translation of such tissue engineered implants by avoiding the time, financial and regulatory challenges associated with in vitro cell expansion, and differentiation. The first objective of this study was to explore if rapid adherence to a specific substrate could be used as a simple means to quickly identify a subpopulation of chondroprogenitor cells from freshly digested infrapatellar fat pad (IFP) tissue. Adhesion of cells to tissue culture plastic within 30 min was examined as a mechanism of isolating subpopulations of cells from the freshly digested IFP. CD90, a cell surface marker associated with cell adhesion, was found to be more highly expressed in rapidly adhering cells (termed "RA" cells) compared to those that did not adhere (termed "NA" cells) in this timeframe. The NA subpopulation contained a lower number of colony forming cells, but overall had a greater chondrogenic potential but a diminished osteogenic potential compared to the RA subpopulation and unmanipulated freshly isolated (FI) control cells. When cultured in agarose hydrogels, NA cells proliferated faster than RA cells, accumulating significantly higher amounts of total sGAG and collagen. Finally, we sought to determine if cartilage tissue could be engineered by seeding such FI cells into a transforming growth factor-β3 delivery hydrogel. In such a system, both RA and NA cell populations demonstrated an ability to proliferate and produced a matrix rich in sGAG (∼2% w/w) that stained positively for type II collagen; however, the tissues were comparable to that generated using FI cells. Therefore, while the results of these in vitro studies do not provide strong evidence to support the use of selective substrate adhesion as a means to isolate chondroprogenitor cells, the findings demonstrate the potential of combining a growth factor delivery hydrogel and FI IFP cells as a single stage therapy for cartilage defect repair.
10.1089/ten.TEA.2013.0267
CD146 as a new marker for an increased chondroprogenitor cell sub-population in the later stages of osteoarthritis.
Su Xinlin,Zuo Wei,Wu Zhihong,Chen Jun,Wu Nan,Ma Pei,Xia Zenan,Jiang Chao,Ye Zixing,Liu Sen,Liu Jiaqi,Zhou Guangqian,Wan Chao,Qiu Guixing
Journal of orthopaedic research : official publication of the Orthopaedic Research Society
Cartilage-derived mesenchymal stem cells (MSCs) have been isolated with different methods. In this study lateral and medial femoral condyles were respectively collected from patients with late-stage osteoarthritis during the total knee arthroplasty. After digestion of the cartilage tissues with type II collagenase and analysis by fluorescence-activated cell sorting (FACS) with CD146, a chondroprogenitor cell sub-population were isolated and purified. The expression of other MSC-associated markers in the CD146+ chondroprogenitors was analyzed by flow cytometry. Multi-lineage differentiation capacity of CD146+ chondroprogenitors was compared with that of unsorted chondrocytes and adipose-derived MSCs (ADMSCs). Higher percentage of CD146+ chondroprogenitors isolated from the medial femoral condyles was observed than that from the lateral. CD146+ chondroprogenitors expressed high levels of MSC-specific surface antigens, and showed higher chondrogenesis capacity than ADMSCs and unsorted chondrocytes in a 3D cell pellet culture model. Thus CD146 might be a new cell surface marker for cartilage progenitor cell population in the late-stage osteoarthritis.
10.1002/jor.22731
The importance of connexin hemichannels during chondroprogenitor cell differentiation in hydrogel versus microtissue culture models.
Schrobback Karsten,Klein Travis Jacob,Woodfield Tim B F
Tissue engineering. Part A
Appropriate selection of scaffold architecture is a key challenge in cartilage tissue engineering. Gap junction-mediated intercellular contacts play important roles in precartilage condensation of mesenchymal cells. However, scaffold architecture could potentially restrict cell-cell communication and differentiation. This is particularly important when choosing the appropriate culture platform as well as scaffold-based strategy for clinical translation, that is, hydrogel or microtissues, for investigating differentiation of chondroprogenitor cells in cartilage tissue engineering. We, therefore, studied the influence of gap junction-mediated cell-cell communication on chondrogenesis of bone marrow-derived mesenchymal stromal cells (BM-MSCs) and articular chondrocytes. Expanded human chondrocytes and BM-MSCs were either (re-) differentiated in micromass cell pellets or encapsulated as isolated cells in alginate hydrogels. Samples were treated with and without the gap junction inhibitor 18-α glycyrrhetinic acid (18αGCA). DNA and glycosaminoglycan (GAG) content and gene expression levels (collagen I/II/X, aggrecan, and connexin 43) were quantified at various time points. Protein localization was determined using immunofluorescence, and adenosine-5'-triphosphate (ATP) was measured in conditioned media. While GAG/DNA was higher in alginate compared with pellets for chondrocytes, there were no differences in chondrogenic gene expression between culture models. Gap junction blocking reduced collagen II and extracellular ATP in all chondrocyte cultures and in BM-MSC hydrogels. However, differentiation capacity was not abolished completely by 18αGCA. Connexin 43 levels were high throughout chondrocyte cultures and peaked only later during BM-MSC differentiation, consistent with the delayed response of BM-MSCs to 18αGCA. Alginate hydrogels and microtissues are equally suited culture platforms for the chondrogenic (re-)differentiation of expanded human articular chondrocytes and BM-MSCs. Therefore, reducing direct cell-cell contacts does not affect in vitro chondrogenesis. However, blocking gap junctions compromises cell differentiation, pointing to a prominent role for hemichannel function in this process. Therefore, scaffold design strategies that promote an increasing distance between single chondroprogenitor cells do not restrict their differentiation potential in tissue-engineered constructs.
10.1089/ten.TEA.2014.0691
Mechanical fatigue performance of PCL-chondroprogenitor constructs after cell culture under bioreactor mechanical stimulus.
Panadero Juan Alberto,Sencadas Vitor,Silva Sonia C M,Ribeiro Clarisse,Correia Vitor,Gama Francisco M,Gomez Ribelles José Luis,Lanceros-Mendez Senentxu
Journal of biomedical materials research. Part B, Applied biomaterials
In tissue engineering of cartilage, polymeric scaffolds are implanted in the damaged tissue and subjected to repeated compression loading cycles. The possibility of failure due to mechanical fatigue has not been properly addressed in these scaffolds. Nevertheless, the macroporous scaffold is susceptible to failure after repeated loading-unloading cycles. This is related to inherent discontinuities in the material due to the micropore structure of the macro-pore walls that act as stress concentration points. In this work, chondrogenic precursor cells have been seeded in poly-ε-caprolactone (PCL) scaffolds with fibrin and some were submitted to free swelling culture and others to cyclic loading in a bioreactor. After cell culture, all the samples were analyzed for fatigue behavior under repeated loading-unloading cycles. Moreover, some components of the extracellular matrix (ECM) were identified. No differences were observed between samples undergoing free swelling or bioreactor loading conditions, neither respect to matrix components nor to mechanical performance to fatigue. The ECM did not achieve the desired preponderance of collagen type II over collagen type I which is considered the main characteristic of hyaline cartilage ECM. However, prediction in PCL with ECM constructs was possible up to 600 cycles, an enhanced performance when compared to previous works. PCL after cell culture presents an improved fatigue resistance, despite the fact that the measured elastic modulus at the first cycle was similar to PCL with poly(vinyl alcohol) samples. This finding suggests that fatigue analysis in tissue engineering constructs can provide additional information missed with traditional mechanical measurements.
10.1002/jbm.b.33386
Physioxia Promotes the Articular Chondrocyte-Like Phenotype in Human Chondroprogenitor-Derived Self-Organized Tissue.
Anderson Devon E,Markway Brandon D,Weekes Kenneth J,McCarthy Helen E,Johnstone Brian
Tissue engineering. Part A
INTRODUCTION:Biomaterial-based tissue engineering has not successfully reproduced the structural architecture or functional mechanical properties of native articular cartilage. In scaffold-free tissue engineering systems, cells secrete and organize the entire extracellular matrix over time in response to environmental signals such as oxygen level. In this study, we investigated the effect of oxygen on the formation of neocartilage from human-derived chondrogenic cells. MATERIALS AND METHODS:Articular chondrocytes (ACs) and articular cartilage progenitor cells (ACPs) derived from healthy human adults were guided toward cell condensation by centrifugation onto plate inserts that were uncoated or coated with either agarose or fibronectin. Neocartilage discs were cultured at hyperoxic (20%) or physioxic (5%) oxygen levels, and biochemical, biomechanical, and molecular analyses were used to compare the cartilage produced by ACs versus ACPs. RESULTS:Fibronectin-coated inserts proved optimal for growing cartilaginous discs from both cell types. In comparison with culture in hyperoxia, AC neocartilage cultured at physioxia exhibited a significant increase in chondrogenic gene expression, proteoglycan production, and mechanical properties with a concomitant decrease in collagen content. At both oxygen levels, ACP-derived neocartilage produced tissue with significantly enhanced mechanical properties and collagen content relative to AC-derived neocartilage. Both ACs and ACPs produced substantial collagen II and reduced levels of collagens I and X in physioxia relative to hyperoxia. Neocartilage from ACPs exhibited anisotropic organization characteristic of native cartilage with respect to collagen VI of the pericellular matrix when compared with AC-derived neocartilage; however, only ACs produced abundant surface-localized lubricin. DISCUSSION AND CONCLUSIONS:Guiding human-derived cells toward condensation and subsequent culture in physioxia promoted the articular cartilage tissue phenotype for ACs and ACPs. Unlike ACs, ACPs are clonable and highly expandable while retaining chondrogenicity. The ability to generate large tissues utilizing a scaffold-free approach from a single autologous progenitor cell may represent a promising source of neocartilage destined for cartilage repair.
10.1089/ten.TEA.2016.0510
Comparison of human articular chondrocyte and chondroprogenitor cocultures and monocultures: To assess chondrogenic potential and markers of hypertrophy.
Vinod Elizabeth,Kachroo Upasana,Ozbey Ozlem,Sathishkumar Solomon,Boopalan P R J V C
Tissue & cell
BACKGROUND AND OBJECTIVE:In the field of cartilage repair, use of two or more cell populations such as mesenchymal stem cells with chondrocytes in an in-vitro co-culture synergistic environment has been attempted to evade limitations of monoculture systems and promote/induce chondrogenesis. Articular cartilage-derived chondroprogenitors (CPs), considered to have stem-cell like characteristics have been proposed as a potential contender for neocartilage development. Our objective was to assess whether co-cultures using different ratios of chondrocytes(C) and CPs would demonstrate better results in terms of growth kinetics, surface marker expression, chondrogenic potential, tendency for hypertrophy and glycosaminoglycan deposition than monocultures. STUDY DESIGN:Human chondrocytes and CPs (fibronectin adhesion assay) from the same cartilage source were isolated. Passage 2 cells were subjected to monolayer/pellet cultures and were grown as monocultures and cocultures at the following percentage ratios(C:CP) 80:20, 65:35, 50:50, 35:65 and 20:80. RESULTS:Analysis of data acquired from population doubling, flow cytometry, RT-PCR and Safranin O uptake demonstrated similar results in all monoculture and co-culture groups with no significant inter-group variation, even when reported specific markers of identification (CD54 and CD44:chondrocyte markers) and isolation (CD29 and CD49e: forming heterodimeric fibronectin receptor for CP sorting) were examined. CONCLUSION:In conclusion, this study suggests the need for improved sorting techniques based on a characteristic differentiating biomarker for selection of cells which are true representatives of CPs possessing properties of enhanced chondrogenesis and reduced hypertrophy.
10.1016/j.tice.2019.01.007
The comparison of equine articular cartilage progenitor cells and bone marrow-derived stromal cells as potential cell sources for cartilage repair in the horse.
McCarthy Helen E,Bara Jennifer J,Brakspear Karen,Singhrao Sim K,Archer Charles W
Veterinary journal (London, England : 1997)
A chondrocyte progenitor population isolated from the surface zone of articular cartilage presents a promising cell source for cell-based cartilage repair. In this study, equine articular cartilage progenitor cells (ACPCs) and equine bone marrow-derived stromal cells (BMSCs) were compared as potential cell sources for repair. Clonally derived BMSCs and ACPCs demonstrated expression of the cell fate selector gene, Notch-1, and the putative stem cell markers STRO-1, CD90 and CD166. Chondrogenic induction revealed positive labelling for collagen type II and aggrecan. Collagen type X was not detected in ACPC pellets but was observed in all BMSC pellets. In addition, it was observed that BMSCs labelled for Runx2 and matrilin-1 antibodies, whereas ACPC labelling was significantly less or absent. For both cell types, osteogenic induction revealed positive von Kossa staining in addition to positive labelling for osteocalcin. Adipogenic induction revealed a positive result via oil red O staining in both cell types. ACPCs and BMSCs have demonstrated functional equivalence in their multipotent differentiation capacity. Chondrogenic induction of BMSCs resulted in a hypertrophic cartilage (endochondral) phenotype, which can limit cartilage repair as the tissue can undergo mineralisation. ACPCs may therefore be considered superior to BMSCs in producing cartilage capable of functional repair.
10.1016/j.tvjl.2011.08.036
Characterisation of a divergent progenitor cell sub-populations in human osteoarthritic cartilage: the role of telomere erosion and replicative senescence.
Fellows Christopher R,Williams Rebecca,Davies Iwan R,Gohil Kajal,Baird Duncan M,Fairclough John,Rooney Paul,Archer Charles W,Khan Ilyas M
Scientific reports
In recent years it has become increasingly clear that articular cartilage harbours a viable pool of progenitor cells and interest has focussed on their role during development and disease. Analysis of progenitor numbers using fluorescence-activated sorting techniques has resulted in wide-ranging estimates, which may be the result of context-dependent expression of cell surface markers. We have used a colony-forming assay to reliably determine chondroprogenitor numbers in normal and osteoarthritic cartilage where we observed a 2-fold increase in diseased tissue (P < 0.0001). Intriguingly, cell kinetic analysis of clonal isolates derived from single and multiple donors of osteoarthritic cartilage revealed the presence of a divergent progenitor subpopulation characterised by an early senescent phenotype. Divergent sub-populations displayed increased senescence-associated β-galactosidase activity, lower average telomere lengths but retained the capacity to undergo multi-lineage differentiation. Osteoarthritis is an age-related disease and cellular senescence is predicted to be a significant component of the pathological process. This study shows that although early senescence is an inherent property of a subset of activated progenitors, there is also a pool of progenitors with extended viability and regenerative potential residing within osteoarthritic cartilage.
10.1038/srep41421
Isolation and biological characteristic evaluation of a novel type of cartilage stem/progenitor cell derived from Small‑tailed Han sheep embryos.
Ma Caiyun,Lu Tengfei,Wen Hebao,Zheng Yanjie,Han Xiao,Ji Xongda,Guan Weijun
International journal of molecular medicine
Cartilage stem/progenitor cells (CSPCs) are a novel stem cell population and function as promising therapeutic candidates for cell‑based cartilage repair. Until now, numerous existing research materials have been obtained from humans, horses, cows and other mammals, but rarely from sheep. In the present study, CSPCs with potential applications in repairing tissue damage and cell‑based therapy were isolated from 45‑day‑old Small‑tailed Han Sheep embryos, and examined at the cellular and molecular level. The expression level of characteristic surface markers of the fetal sheep CSPCs were also evaluated by immunofluorescence, reverse transcription‑polymerase chain reaction analysis and flow cytometric assays. Biological growth curves were drawn in accordance with cell numbers. Additionally, karyotype analysis showed no marked differences in the in vitro cultured CSPCs and they were genetically stable among different passages. The CSPCs were also capable of adipogenic, osteogenic and chondrogenic lineage progression under the appropriate induction medium in vitro. Together, these findings provide a theoretical basis and experimental evidence for cellular transplant therapy in tissue engineering.
10.3892/ijmm.2018.3629
Cartilage-Derived Progenitor Cell-Laden Injectable Hydrogel-An Approach for Cartilage Tissue Regeneration.
Li Xiaolin,A Sigen,Xu Qian,Alshehri Fatma,Zeng Ming,Zhou Dezhong,Li Jun,Zhou Guangqian,Wang Wenxin
ACS applied bio materials
Cartilage-derived progenitor cells (CPCs) with the capability of self-renewal and multilineage differentiation have been identified as a suitable cell source for cartilage tissue regeneration. Despite decades of development in cell-delivery techniques, improved approaches are still required to maintain cell viability, provide a supportive environment, and implement appropriate cues to guide cartilage regeneration. This research work develops an injectable gelation system as a cell carrier for CPCs to overcome cell-delivery drawbacks. The hydrogel was fabricated through a thiol-ene Michael addition reaction by cross-linking thiol-functionalized hyaluronic acid and hyperbranched poly(ethylene glycol) multi-acrylate macromer. The sol-gel transition, mechanical properties, microstructure, and degradation profile of the hydrogels were evaluated to ensure physical support, cell migration, and nutrient exchange within the system. Encapsulated CPCs maintained a high level of cell viability and proliferation property. Reverse transcription-quantitative real-time polymerase chain reaction confirmed that the extracellular matrix (ECM) secretion was enhanced under chondrogenic conditions. Moreover, the downregulated inflammation gene expression indicated the anti-inflammation ability of encapsulated CPCs. The study demonstrates that this rapid forming hydrogel has excellent potential as a CPC delivery carrier by accelerating ECM production and retaining the phenotype and function of encapsulated CPCs.
10.1021/acsabm.0c00294
Clonal chondroprogenitors maintain telomerase activity and Sox9 expression during extended monolayer culture and retain chondrogenic potential.
Khan I M,Bishop J C,Gilbert S,Archer C W
Osteoarthritis and cartilage
OBJECTIVE:Articular cartilage contains mesenchymally derived chondroprogenitor cells that have the potential to be used for stem cell therapy. The aim of this study was to characterise the growth kinetics and properties of in vitro expanded cloned chondroprogenitors and determine if critical determinants of the progenitor phenotype were maintained or lost in culture. METHODS:Chondroprogenitors were isolated from immature bovine metacarpalphalangeal joints by differential adhesion to fibronectin. Cloned colonies were expanded in vitro up to 50 population doublings (PD). Growth characteristics were assessed by cell counts, analysis of telomere length, telomerase activity, expression of senescence-associated beta-galactosidase activity and real-time quantitative polymerase chain reaction to analyse the gene expression patterns of sox9 and Notch-1 in chondroprogenitors. RESULTS:Cloned chondroprogenitors exhibited exponential growth for the first 20 PD, then slower linear growth with evidence of replicative senescence at later passages. Mean telomere lengths of exponentially growing chondroprogenitors were significantly longer than dedifferentiated chondrocytes that had undergone a similar number of PD (P<0.05). Chondroprogenitors also had 2.6-fold greater telomerase activity. Chondroprogenitors maintained similar sox9 and lower Notch-1 mRNA levels compared to non-clonal dedifferentiated chondrocytes. Chondroprogenitors were induced to differentiate into cartilage in 3D pellet cultures, immunological investigation of sox9, Notch-1, aggrecan and proliferating cell nuclear antigen (PCNA) expression showed evidence of co-ordinated growth and differentiation within the cartilage pellet. CONCLUSION:Clonal chondroprogenitors from immature articular cartilage provide a useful tool to understand progenitor cell biology from the perspective of cartilage repair. Comparisons with more mature progenitor populations may lead to greater understanding in optimising repair strategies.
10.1016/j.joca.2008.08.002
Molecular phenotyping of the surfaceome of migratory chondroprogenitors and mesenchymal stem cells using biotinylation, glycocapture and quantitative LC-MS/MS proteomic analysis.
Matta Csaba,Boocock David J,Fellows Christopher R,Miosge Nicolai,Dixon James E,Liddell Susan,Smith Julia,Mobasheri Ali
Scientific reports
The complement of cell surface proteins, collectively referred to as the surfaceome, is a useful indicator of normal differentiation processes, and the development of pathologies such as osteoarthritis (OA). We employed biochemical and proteomic tools to explore the surfaceome and to define biomarkers in chondrogenic progenitor cells (CPC) derived from human OA knee articular cartilage. These cells have great therapeutic potential, but their unexplored biology limits their clinical application. We performed biotinylation combined with glycocapture and high throughput shotgun proteomics to define the surface proteome of human bone marrow mesenchymal stem cells (MSCs) and human CPCs. We prepared cell surface protein-enriched fractions from MSCs and CPCs, and then a proteomic approach was used to compare and evaluate protein changes between undifferentiated MSCs and CPCs. 1256 proteins were identified in the study, of which 791 (63%) were plasma membrane, cell surface or extracellular matrix proteins. Proteins constituting the surfaceome were annotated and categorized. Our results provide, for the first time, a repository of quantitative proteomic data on the surfaceome of two closely related cell types relevant to cartilage biology and OA. These results may provide novel insights into the transformation of the surfaceome during chondrogenic differentiation and phenotypic changes during OA development.
10.1038/s41598-019-44957-y
Human chondroprogenitors in alginate-collagen hybrid scaffolds produce stable cartilage in vivo.
Studer Deborah,Cavalli Emma,Formica Florian A,Kuhn Gisela Anne,Salzmann Gian,Mumme Marcus,Steinwachs Matthias R,Laurent-Applegate Lee Ann,Maniura-Weber Katharina,Zenobi-Wong Marcy
Journal of tissue engineering and regenerative medicine
The goal of this study was to evaluate human epiphyseal chondroprogenitor cells (ECPs) as a potential new cell source for cartilage regeneration. ECPs were compared to human bone marrow stromal cells (MSCs) and human adult articular chondrocytes (ACs) for their chondrogenic potential and phenotypic stability in vitro and in vivo. The cells were seeded in Optimaix-3D scaffolds at 5 × 10 cells/mm and gene expression, matrix production and mechanical properties were analysed up to 6 weeks. In vitro, ECPs synthesized consistently high collagen 2 and low collagen 10. AC-seeded constructs exhibited high donor variability in GAG/DNA values as well as in collagen 2 staining, but showed low collagen 10 production. MSCs, on the other hand, expressed high levels of collagen 2 but also of collagens 1 and 10, and were therefore not considered further. In vivo, there was considerable loss of matrix proteins in ECPs compared to in vitro cultured samples. To overcome this, a second implantation study investigated the effect of mixing cells with alginate prior to seeding in the scaffold. ECPs in alginate maintained their cartilage matrix and resisted mineralization and vessel infiltration better 6 weeks after subcutaneous implantation, whereas ACs lost their chondrogenic matrix completely. This study shows the great potential of ECPs as an off-the-shelf, highly chondrogenic cell type that produces stable cartilage in vivo. Copyright © 2016 John Wiley & Sons, Ltd.
10.1002/term.2203
Comparative analysis of fresh chondrocytes, cultured chondrocytes and chondroprogenitors derived from human articular cartilage.
Vinod Elizabeth,Kachroo Upasana,Amirtham Soosai Manickam,Ramasamy Boopalan,Sathishkumar Solomon
Acta histochemica
INTRODUCTION:Interest in chondroprogenitors arose due to their inherent stem cell like properties, and their initial characterization was based on identification of a small percentage of CD49e positive cells in cultured chondrocytes (CC). It was further noted that when fresh chondrocytes (FC; reported to express low CD49e) were subjected to fibronectin adhesion assay, an isolate of chondroprogenitors was obtained, which was highly positive for CD49e, thus making it a distinguishing marker for this cell population. However, this notion was challenged when reports demonstrated high CD49e expression in CC as well. Therefore, our aim was to compare CD49e expression in FC, CC and chondroprogenitors. METHODS:Chondrocytes and chondroprogenitors were isolated from articular cartilage of osteoarthritic joints from three patients. Assessment of classic fibronectin receptor (CD49e, CD29), positive (CD105, CD73, CD90) and negative (CD45, CD34) mesenchymal stem cell marker expression in all groups was performed, as chondroprogenitors fulfill the minimal criteria laid down by International Society for Cellular Therapy. Following this, adipogenic, osteogenic and chondrogenic differentiation was assessed by Oil red O, Alizarin Red and Alcian Blue staining respectively. RESULTS AND CONCLUSION:Our observations indicate that FC show significantly low surface marker expression as compared to CC and chondroprogenitors, whereas no significant difference was seen in values when CC and chondroprogenitors were compared. Moreover, comparable results were exhibited when trilineage differentiation potential was compared across groups. Since CC and chondroprogenitors show similar characteristics, there is a pressing need for a specific differentiating marker to isolate a pure population of chondroprogenitors.
10.1016/j.acthis.2019.151462
Evaluation of CD49e as a distinguishing marker for human articular cartilage derived chondroprogenitors.
Kachroo Upasana,Ramasamy Boopalan,Vinod Elizabeth
The Knee
BACKGROUND:Cell-based therapy in cartilage repair can benefit from the use of chondroprogenitors; a cell type classified as mesenchymal stem cells, demonstrating reduced hypertrophy. Fibronectin, routinely used to isolate chondroprogenitors, classically binds to α5β1 integrins (CD49e + CD29), of which CD49e is said to be highly expressed in progenitors. The aim of our study was to assess the specificity of CD49e as a distinguishing marker for chondroprogenitors; because studies report low expression in fresh chondrocytes (FCs), but recent conflicting data has exhibited incremental expression of CD49e in cultured chondrocytes. METHODS:FCs were isolated from three human osteoarthritic knee joints and CD49e- cells (sorted by flow cytometry) were cultured in adherent and non-adherent conditions and reassessed for CD49e and CD29 at multiple time points. Colony-forming efficiency (CFE) following fibronectin adhesion assay was calculated for FC, CD49e+ and CD49e- cells. RESULTS:A statistically significant increase in CD49e and CD29 expression was seen in both adherent and non-adherent cultures of CD49e- cells (P < 0.01), as early as 24 h. All groups grew clonally and CFE was similar without any significant difference. CD49e- chondrocytes turned positive when cultured, possibly due to an inherent phenotypic drift, seen after release from cartilage and not because of plastic adherence or chondroprogenitor overgrowth, as non-adherent cultures also showed high expression. CONCLUSIONS:As the specificity of CD49e is questionable, there is a pressing need for a specific differentiating marker, to isolate a pure population of chondroprogenitors, as this cell type shows inherent chondrogenesis and reduced hypertrophy, both requisites for cartilage repair.
10.1016/j.knee.2020.04.002
Comparative analysis of gene expression between articular cartilage-derived cells to assess suitability of fibronectin adhesion assay to enrich chondroprogenitors.
Kachroo Upasana,Vinod Elizabeth
The Knee
BACKGROUND:Enhanced chondrogenesis and reduction in hypertrophy are essential pre-requisites for cell-based therapy in regenerative research for cartilage loss. Chondroprogenitors, isolated by fibronectin adhesion assay (FAA), have shown promising results in various preclinical studies due to their inherent characteristics. However, the need for monolayer culture and the effect of expansion on cell phenotype render differentiation between chondroprogenitors and chondrocytes (native cartilage cells) difficult. This is further complicated due to reported de-differentiation of chondrocytes in culture. Thus, the aim of our study was to harvest cells from articular cartilage and compare their gene expression to cells demonstrating adherence and non-adherence to fibronectin. METHOD:Fresh-cells (FC) were isolated from human osteoarthritic knee joints(n = 3) and subjected to FAA. Cells unbound to fibronectin (20 min after plating) were termed as FAA-ve. Attached cells were further cultured for five population doublings and designated FAA+ve. RNA from all three cell groups was assessed for SOX-9, ACAN, COL2A1, COL1A1, RUNX2 and COL10A1. RESULTS:All three groups exhibited moderate to high expression of markers of chondrogenesis and marker of chondrocyte hypertrophy. FAA+ve group exhibited significantly lower levels of hypertrophy markers: RUNX2 (vs FC and FAA-ve, P = 0.018) and COL10A1(vs FAA-ve, P = 0.005). CONCLUSIONS:Our results demonstrated that fibronectin effectively isolated cells distinct from mature chondrocytes in terms of reduced hypertrophic tendency. This is noteworthy as cells isolated by FAA, retaining their inherent progenitor phenotype, with upregulation of chondrogenic markers may be used successfully for cartilage repair in future translational work.
10.1016/j.knee.2020.04.015
A three-dimensional in vitro culture environment of a novel polymer scaffold, yielding chondroprogenitors and mesenchymal stem cells in human chondrocytes derived from osteoarthritis-affected cartilage tissue.
Katoh Shojiro,Yoshioka Hiroshi,Iwasaki Masaru,Senthilkumar Rajappa,Rajmohan Mathaiyan,Karthick Ramalingam,Preethy Senthilkumar,Abraham Samuel Jk
Journal of orthopaedics
Objective:We evaluated the expression of stem/progenitor biomarkers in osteoarthritic tissue derived chondrocytes cultured using a three-dimensional (3D) thermo-reversible gelation polymer (TGP). Methods:The chondrocytes from discarded biopsy tissues obtained from human elderly patients with osteoarthritis were cultured using the 3D-TGP up to six weeks. Results:The chondrocytes grew in a tissue-like manner, without de-differentiation into fibroblasts, and the cells thus tissue-engineered were proven positive for CD49e, OCT4, CD-105 and STRO-1 by immunohistochemistry. Conclusion:This study establishes the efficacy of this 3D-TGP platform for clinically useable tissue-engineered cartilage for improvising the clinical outcome of cell therapy for cartilage repair.
10.1016/j.jor.2021.01.005
In vitro chondrogenic differentiation of human articular cartilage derived chondroprogenitors using pulsed electromagnetic field.
Vinod Elizabeth,Kachroo Upasana,Rebekah Grace,Thomas Sajo,Ramasamy Boopalan
Journal of clinical orthopaedics and trauma
Background:The ability to grow new cartilage remains the standard goal of any treatment strategy directed at cartilage repair. Chondroprogenitors have garnered interest due to their applicability in cell therapy. Pulsed electromagnetic field (PEMF) favors chondrogenesis by possible upregulation of genes belonging to TGFβ superfamily. Since TGFβ is implicated in chondrogenic signalling, the aim of the study was to evaluate the ability of PEMF to induce chondrogenesis via endogenous TGFβ production in chondroprogenitors vs differentiation using chondrogenic medium inclusive of TGFβ. Methods:Chondroprogenitors were harvested from three non-diseased human knee joints via fibronectin assay. Passage 3 pellets were subjected to four different culture conditions: a) negative control contained chondrogenic medium without TGFβ2, b) positive control contained medium with TGFβ2, c) PEMF 1 contained medium of negative control plus single exposure to PEMF and d) PEMF 2 contained medium of negative control plus multiple exposures to PEMF. Following differentiation (day 21), pellets were assessed for gene expression of ACAN, SOX9, COL2A1, TGFβ1, TGFβ2, and TGFβ3. Alcian blue staining to detect glycosaminoglycan deposition was also performed. Medium supernatant was used to detect endogenous latent TGF-β1 levels using ELISA. Results:All study arms exhibited comparable gene expression without any significant difference. Although positive control and PEMF study arms demonstrated notably better staining than negative control, the level of latent TGF-β1 was seen to be significantly high in supernatant from positive control (P < 0.05) when compared to other groups. Conclusion:Our results indicate that PEMF induced chondrogenesis might involve other signalling molecules, which require further evaluation.
10.1016/j.jcot.2020.09.034
Characterization of human articular chondrocytes and chondroprogenitors derived from non-diseased and osteoarthritic knee joints to assess superiority for cell-based therapy.
Vinod Elizabeth,Kachroo Upasana,Rebekah Grace,Yadav Bijesh Kumar,Ramasamy Boopalan
Acta histochemica
PURPOSE:Cell based therapy is constantly underway since regeneration of genuine hyaline cartilage is under par. Much attention has been afforded to chondroprogenitors recently, as an alternative cell substitute for cartilage repair. Although single source derivation of chondrocytes and chondroprogenitors is advantageous, lack of a characteristic differentiating marker obscures clear identification, which is essential to create a biological profile and is also required to assess cell type superiority for cartilage repair. METHODS:Cells obtained from three non-diseased/osteoarthritic human knee joints each, were expanded in culture up to passage 10. Characterization studies were performed using flow cytometry; gene expression was studied using RT-PCR; growth kinetics and tri-lineage differentiation was also studied to construct a better profile of chondroprogenitors as well as chondrocytes. RESULTS AND CONCLUSION:Our results showed that both cell populations exhibited similar cell surface characteristics except for non-diseased chondroprogenitors, which showed markedly low expression of CD34 and high expression of CD166. Trilineage data was suggestive of multilineage potential for both cell types with chondroprogenitors showing notably higher glycosaminoglycan and lower calcified matrix deposition. Data acquired from this study aided in describing cellular behavior of human articular cartilage derived chondroprogenitors in conditions not reported earlier. Our comparative analysis suggests that sorting based on a combination of markers (CD34- and CD166+) would yield a population of cells with minimal contamination by chondrocytes, which may provide translatable results in terms of enhanced chondrogenesis and reduced hypertrophy; both indispensable for the field of cartilage regeneration.
10.1016/j.acthis.2020.151588
Articular chondroprogenitors in platelet rich plasma for treatment of osteoarthritis and osteochondral defects in a rabbit knee model.
Vinod Elizabeth,Amirtham Soosai Manickam,Kachroo Upasana,Goyal Anjali,Ozbey Ozlem,James Jithu Varghese,Sathishkumar Solomon,Ramasamy Boopalan
The Knee
BACKGROUND:Articular chondroprogenitors are a promising contender for cartilage repair due to their inherent nature which stands primed for chondrogenesis and minimal hypertrophic preponderance. Platelet rich plasma (PRP) has been extensively used for treating cartilage defects and osteoarthritis (OA), due to its chondro-inductive properties and abundant pool of growth factors. The aim of this study was to assess the efficacy of chondroprogenitors injected with PRP versus PRP alone in the healing of experimentally created early OA and osteochondral defects (OCD) in a rabbit model. METHODS:Adult New Zealand White male rabbits were used for cell and PRP isolation. Chondroprogenitors were isolated by fibronectin adhesion assay, labelled with iron oxide, characterized for surface markers, differential potential and expanded. PRP was isolated by double spin centrifugation using a TriCell kit. Study groups included (a) Monosodium iodoacetate induced early OA and (b) critical OCD. Following intervention (test arm: PRP+ chondroprogenitors and control arm: PRP), assessment was performed at 6- and 12-weeks which included histopathological examination and scoring (OARSI and Modified Wakitani score), immunohistochemistry analysis (Collagen type II and X) and synovial fluid S100A12 levels. RESULTS AND CONCLUSION:Comparable, evident healing was noticed in both test and control arms when the OA group samples were assessed at both time points. In the OCD group, PRP alone exhibited significantly better results than the test arm, although repair was notable in both interventions. Further evaluation of chondroprogenitors is required to assess their role as a standalone therapy and in combination with PRP to further cartilage regeneration.
10.1016/j.knee.2021.03.010
Prospective Isolation and Characterization of Chondroprogenitors from Human Chondrocytes Based on CD166/CD34/CD146 Surface Markers.
Cartilage
PURPOSE:Chondrocytes, isolated from articular cartilage, are routinely utilized in cell-based therapeutics for the treatment of cartilage pathologies. However, restoration of the biological tissue faces hindrance due to the formation of primarily fibrocartilaginous repair tissue. Chondroprogenitors have been reported to display superiority in terms of their chondrogenic potential and lesser proclivity for hypertrophy. In line with our recent results, comparing chondroprogenitors and chondrocytes, we undertook isolation of progenitors from the general pool of chondrocytes, based on surface marker expression, namely, CD166, CD34, and CD146, to eliminate off-target differentiation and generate cells of stronger chondrogenic potential. This study aimed to compare chondrocytes, chondroprogenitors, CD34-CD166+CD146+ sorted chondrocytes, and CD34-CD166+CD146- sorted chondrocytes. METHODS:Chondrocytes obtained from 3 human osteoarthritic knee joints were subjected to sorting, to isolate CD166+ and CD34- subsets, and then were further sorted to obtain CD146+ and CD146- cells. Chondrocytes and fibronectin adhesion-derived chondroprogenitors served as controls. Assessment parameters included reverse transcriptase polymerase chain reaction for markers of chondrogenesis and hypertrophy, trilineage differentiation, and total GAG/DNA content. RESULTS:Based on gene expression analysis, CD34-CD166+CD146+ sorted chondrocytes and chondroprogenitors displayed comparability and significantly higher chondrogenesis with a lower tendency for hypertrophy when compared to chondrocytes and CD34-CD166+CD146- sorted chondrocytes. The findings were also reiterated in multilineage potential differentiation with the 146+ subset and chondroprogenitors displaying lower calcification and chondroprogenitors displaying higher total GAG/DNA content compared to chondrocytes and 146- cells. CONCLUSION:This unique progenitor-like population based on CD34-CD166+CD146+ sorting from chondrocytes exhibits efficient potential for cartilage repair and merits further evaluation for its therapeutic application.
10.1177/19476035211042412
Comparison of incremental concentrations of micron-sized superparamagnetic iron oxide for labelling articular cartilage derived chondroprogenitors.
Vinod Elizabeth,James Jithu Varghese,Kachroo Upasana,Sathishkumar Solomon,Livingston Abel,Ramasamy Boopalan
Acta histochemica
INTRODUCTION:In vivo tracking of labelled cells can provide valuable information about cellular behavior in the microenvironment, migration and contribution of transplanted cells toward tissue regeneration. Articular cartilage derived chondroprogenitors (CPs) show promise as a candidate for cell-based therapy as they have been classified as mesenchymal stem cells with inherent chondrogenic potential. Iron oxide labelling is known to withstand harsh processing techniques known to be associated with staining of osteochondral specimens. AIM AND METHODS:The aim of our study was to investigate the feasibility of labelling CPs with micron-sized super paramagnetic iron oxide (M-SPIO) particles and to study the effects of this approach on the labelling efficiency, viability, maintenance of phenotype and potential for differentiation. Human CPs were isolated using fibronectin adhesion assay, passage 2 cells were labelled using three concentrations of M-SPIO (12.75 μg/ml, 25.5 μg/ml and 38.25 μg/ml). At sub confluence, cells were assessed for a) iron uptake by Prussian blue stain and colorimetry b) viability using 7-amino actinomycin D, c) MSC marker expression by flow cytometric analysis and d) trilineage differentiation potential. RESULTS AND CONCLUSION:Iron uptake was higher with increase in M-SPIO concentration whereas CD73, CD90 marker expression significantly decreased and chondrogenic potential appreciably reduced with increase in M-SPIO concentration. In conclusion, 12.75 μg/ml M-SPIO can successfully label human articular cartilage derived chondroprogenitors with minimal effect on cellular viability, MSC marker expression and potential for differentiation.
10.1016/j.acthis.2019.07.004
Comparison of Human Platelet Lysate versus Fetal Bovine Serum for Expansion of Human Articular Cartilage-Derived Chondroprogenitors.
Cartilage
PURPOSE:Articular chondroprogenitors, a suitable contender for cell-based therapy in cartilage repair, routinely employ fetal bovine serum (FBS) for expansion and differentiation. The possibility of transplant rejections or zoonoses transmissions raise a need for xeno-free alternatives. Use of human platelet lysate (hPL), a nutrient supplement abundant in growth factors, has not been reported for human chondroprogenitor expansion thus far. Our aim was to compare the biological profile of chondroprogenitors grown in hPL versus FBS. METHODS:Chondroprogenitors were isolated from 3 osteoarthritic knee joints. Following differential fibronectin adhesion assay, passage 0 cells grown in (a) 10% FBS and (b) 10% hPL were considered for assessment of growth kinetics, surface marker expression, gene expression, and trilineage differentiation. Latent transforming growth factor-β1 (TGFβ1) levels were also measured for each culture medium used. RESULTS:Cellular proliferation was significantly higher in cells grown with hPL ( < 0.01). Surface marker expression was comparable except in CD-146 where hPL group had significantly higher values ( = 0.03). Comparison of mRNA expression revealed notably low values of collagen I, collagen X, aggrecan, and collagen II ( < 0.05). Trilineage differentiation was seen in both groups with higher alizarin red uptake noted in hPL. There were also significantly higher levels of latent TGFβ1 in the medium containing hPL as compared to FBS. CONCLUSIONS:This is the first xeno-free study to affirm that hPL can serve as an optimal growth supplement for expansion of articular chondroprogenitors, although an in-depth assessment of resident growth factors and evaluation of different dilutions of hPL is required to assess suitability for use in translational research.
10.1177/1947603520918635
Assessment of the inherent chondrogenic potential of human articular cartilage-derived chondroprogenitors in pellet culture using a novel whole pellet processing approach.
Journal of orthopaedics
Purpose:Cartilage-derived chondroprogenitors have been reported to possess the biological potential for cartilage repair. However, its inherent chondrogenic potential in pellet culture needs evaluation. In-vitro cartilage regeneration models based on pellet cultures have been employed to evaluate the chondrogenic potential of stem cells. Evaluation of the degree of differentiation routinely involves paraffin embedding, sectioning, and immunohistochemical staining of the pellet. However, since chondrogenic differentiation is commonly non-uniform, processing random sections could lead to inaccurate conclusions. The study aimed at assessing the inherent lineage bias of chondroprogenitors with and without chondrogenic induction, using a novel whole pellet processing technique. Methods:Human chondroprogenitors (n=3) were evaluated for MSC markers and processed in pellet cultures either with stromal medium (uninduced) or chondrogenic differentiation medium (induced) for 28 days. The whole pellets and the conventional paraffin-embedded sectioned pellets were subjected to Collagen type II immunostaining and assessed using confocal laser microscopy. The staining intensities of the whole pellet were compared to the paraffin sections and revalidated using qRT-PCR for COL2A1 expression. Results:Uninduced and induced pellets displayed Collagen type II in all the layers with comparable fluorescence intensities. COL2A1 expression in both pellets was comparable to confocal results. The study demonstrated that uninduced chondroprogenitors in pellet culture possess promising inherent chondrogenic potential. Confocal imaging of whole pellets displayed different degrees of chondrogenic differentiation in the entire pellet, thus its probable in-vivo behavior. Conclusion:The novel approach presented in this study could serve as an efficient in-vitro alternative for understanding translational application for cartilage repair.
10.1016/j.jor.2022.03.007
Comparison of the efficiency of laminin versus fibronectin as a differential adhesion assay for isolation of human articular cartilage derived chondroprogenitors.
Vinod Elizabeth,Parameswaran Roshni,Manickam Amirtham Soosai,Livingston Abel,Ramasamy Boopalan,Kachroo Upasana
Connective tissue research
: Cartilage repair following trauma or degeneration is poor, making cell-based therapy an important avenue of treatment. Chondrocytes and mesenchymal stem cells have been extensively studied as potential candidates, although tendency toward hypertrophy and formation of mixed hyaline-fibrocartilage necessitates further optimization. Chondroprogenitors, isolated using fibronectin adhesion assay are reported to show reduced hypertrophy and enhanced chondrogenesis. Laminin, an essential component of extracellular matrix, has been shown to positively modulate chondrocyte proliferation, migration, and survival. The aim of our study was to evaluate the effect of laminin as a differential adhesion assay and obtain an enriched population of chondroprogenitors and assess its efficiency when compared to progenitors obtained via fibronectin.: Chondrocytes were isolated from three osteoarthritic knee joints and subjected to fibronectin and laminin adhesion to obtain chondroprogenitors. After expansion in culture, they were assessed for differences in their biological characteristics based on growth kinetics, surface marker expression, gene expression for assessing markers of chondrogenesis and hypertrophy, and potential for tri-lineage differentiation.: Our results showed that cells isolated by laminin and fibronectin both displayed comparable characteristics except in terms of proliferative potential (higher in laminin), gene expression of COL2A1 (lower in laminin) and trilineage potential where the laminin group showed higher osteogenic and adipogenic differentiation.: This was the first attempt to successfully isolate human articular cartilage derived chondroprogenitor clones using laminin, which retained stem cell like characteristics. Further evaluation to optimize this method will help enhance chondroprogenitor characteristics, for use in cartilage repair.
10.1080/03008207.2020.1761344
An in vitro analysis of the effect of hyperosmolarity on the chondrogenic potential of human articular cartilage derived chondroprogenitors.
Parameswaran Roshni,Kachroo Upasana,Amirtham Soosai Manickam,Rebekah Grace,Vinod Elizabeth
Tissue & cell
PURPOSE:Chondroprogenitors display promise for articular cartilage regeneration. It is imperative to standardize culture conditions, to further enhance chondrogenicity and reduce tendency for hypertrophy. Cartilage matrix provides a unique hyperosmolar microenvironment that enables native cells to resist compressive stress. However, commonly used culture media have osmolarities relatively hypoosmotic when compared to in-vivo conditions. Previous reports involving chondrocytes demonstrated enhanced chondrogenic potential secondary to utilization of hyperosmolar culture conditions. The study aimed to assess the effect of hyperosmolarity (either mimicking normal joint conditions or short-term hyperosmotic stress) on chondroprogenitor phenotype. MATERIALS AND METHODS:Fibronectin adhesion assay derived human articular chondroprogenitors (n = 3) were divided into 3 groups: a) Control: cells grown in standard culture conditions (320 mOsm/L), b) Test A: cells grown in hyperosmolar media mimicking joint conditions (409 mOsm/L) and c) Test B: cells exposed to short-term hyperosmotic stress (504 mOsm/L) for 24 h, prior to assessment. Evaluation parameters included population doubling, cell size, surface marker expression, mRNA expression (markers of chondrogenesis, dedifferentiation and hypertrophy) and multilineage potential. RESULTS:Subjecting these cells to increased osmolarity in culture did not demonstrably favor chondrogenesis (control vs Test A: comparable COL2A1) while hyperosmotic stress further increased the tendency for hypertrophy and terminal differentiation (high COL1A1 and low COL2A1, P = 0.006). Additionally, growth kinetics, surface marker expression and multilineage potential were comparable across groups. CONCLUSION:Chondroprogenitors displayed sensitivity to increase in osmolarity as chondrogenic phenotype did not improve, while hypertrophic propensity was heightened, although further analysis of culture and phenotypic parameters will aid in optimizing chondroprogenitor use in cartilage regeneration.
10.1016/j.tice.2021.101590
Comparative analysis of human bone marrow mesenchymal stem cells, articular cartilage derived chondroprogenitors and chondrocytes to determine cell superiority for cartilage regeneration.
Vinod Elizabeth,Parameswaran Roshni,Amirtham Soosai Manickam,Rebekah Grace,Kachroo Upasana
Acta histochemica
INTRODUCTION:Chondroprogenitors, a promising therapeutic modality in cell-based therapy, are routinely isolated from articular cartilage by fibronectin differential adhesion assay. However, there is paucity of information regarding their biological profile and the lack of a marker that can reliably distinguish them from cultured chondrocytes due to possible dedifferentiation. Since chondroprogenitors have been classified as mesenchymal stem cells(MSCs), the aim of our study was to compare bone marrow-MSCs, chondroprogenitors and chondrocytes, and assess superiority for cartilage repair. An additional objective was to also compare CD49b as a differentiating marker for isolating chondroprogenitors as a recent report demonstrated significantly high expression in the surfaceome of migratory articular chondroprogenitors. METHODS:Bone marrow aspirate and articular cartilage was obtained from three osteoarthritic knee joints. Study arms included a) bone marrow-MSCs, b) chondroprogenitors, c) cultured chondrocytes, d) chondrocytes cultured with additional growth factors and e) CD49b + sorted chondroprogenitors. Assessment parameters included population doubling, surface expression for positive, negative MSC markers and potential markers of chondrogenesis (CD29, CD49e, CD49b, CD166 and CD146), RT-PCR for markers of chondrogenesis and hypertrophy and trilineage differentiation. RESULTS AND CONCLUSION:Chondroprogenitors exhibited efficient chondrogenesis (SOX-9 and COL2A1) and significantly lower tendency for hypertrophy (RUNX2), which was also reflected in trilineage differentiation where progenitors displayed minimal calcified matrix, efficient glycosaminoglycan deposition and high collagen type II uptake. CD49b did not serve as a marker for isolation as sorted chondroprogenitors performed significantly poorer when compared to fibronectin assay derived cells. Emphasis on preclinical studies utilizing progenitors of higher purity is the future direction.
10.1016/j.acthis.2021.151713
Cartilage stem/progenitor cells are activated in osteoarthritis via interleukin-1β/nerve growth factor signaling.
Arthritis research & therapy
INTRODUCTION:Interleukin-1β (IL-1β) and nerve growth factor (NGF) are key regulators in the pathogenesis of inflammatory arthritis; specifically, IL-1β is involved in tissue degeneration and NGF is involved in joint pain. However, the cellular and molecular interactions between IL-1β and NGF in articular cartilage are not known. Cartilage stem/progenitor cells (CSPCs) have recently been identified in osteoarthritic (OA) cartilage on the basis of their migratory properties. Here we hypothesize that IL-1β/NGF signaling is involved in OA cartilage degeneration by targeting CSPCs. METHOD:NGF and NGF receptor (NGFR: TrkA and p75NTR) expression in healthy and OA human articular cartilage and isolated chondrocytes was determined by immunostaining, qRT-PCR, flow cytometry and western blot. Articular cartilage derived stem/progenitor cells were collected and identified by stem/progenitor cell characteristics. 3D-cultured CSPC pellets and cartilage explants were treated with NGF and NGF neutralizing antibody, and extracellular matrix changes were examined by sulfated glycosaminoglycan (GAG) release and MMP expression and activity. RESULTS:Expression of NGF, TrkA and p75NTR was found to be elevated in human OA cartilage. Cellular changes upon IL-1β and/or NGF treatment were then examined. NGF mRNA and NGFR proteins levels were upregulated in cultured chondrocytes exposed to IL-1β. NGF was chemotactic for cells isolated from OA cartilage. Cells isolated on the basis of their chemotactic migration towards NGF demonstrated stem/progenitor cell characteristics, including colony-forming ability, multi-lineage differentiation potential, and stem cell surface markers. The effects of NGF perturbation in cartilage explants and 3D-cultured CSPCs were next analyzed. NGF treatment resulted in extracellular matrix catabolism indicated by increased sGAG release and MMP expression and activity; conversely, treatment with NGF neutralizing antibody inhibited increased MMP levels, and enhanced tissue inhibitor of matrix metalloprotease-1 (TIMP1) expression in OA cartilage explants. NGF blockade with neutralizing antibody also affected cartilage matrix remodeling in 3D-CSPC pellet cultures. CONCLUSION:Our results strongly suggest that NGF signaling is a contributing factor in articular cartilage degeneration in OA, which likely targets a specific subpopulation of progenitor cells, the CSPCs, affecting their migratory and matrix remodeling activities. These findings provide novel cellular/signaling therapeutic targets in osteoarthritic cartilage.
10.1186/s13075-015-0840-x
Origin and function of cartilage stem/progenitor cells in osteoarthritis.
Jiang Yangzi,Tuan Rocky S
Nature reviews. Rheumatology
Articular cartilage is a physiologically non-self-renewing avascular tissue with a singular cell type, the chondrocyte, which functions as the load-bearing surface of the arthrodial joint. Injury to cartilage often progresses spatiotemporally from the articular surface to the subchondral bone, leading to development of degenerative joint diseases such as osteoarthritis (OA). Although lacking intrinsic reparative ability, articular cartilage has been shown to contain a population of stem cells or progenitor cells, similar to those found in many other adult tissues, that are thought to be involved in the maintenance of tissue homeostasis. These so-called cartilage-derived stem/progenitor cells (CSPCs) have been observed in human, equine and bovine articular cartilage, and have been identified, isolated and characterized on the basis of expression of stem-cell-related surface markers, clonogenicity and multilineage differentiation ability. However, the origin and functions of CSPCs are incompletely understood. We review here the current status of CSPC research and discuss the possible origin of these cells, what role they might have in cartilage repair, and their therapeutic potential in OA.
10.1038/nrrheum.2014.200
Roles of Cartilage-Resident Stem/Progenitor Cells in Cartilage Physiology, Development, Repair and Osteoarthritis.
Cells
Osteoarthritis (OA) is a degenerative disease that causes irreversible destruction of articular cartilage for which there is no effective treatment at present. Although articular cartilage lacks intrinsic reparative capacity, numerous studies have confirmed the existence of cartilage-resident stem/progenitor cells (CSPCs) in the superficial zone (SFZ) of articular cartilage. CSPCs are characterized by the expression of mesenchymal stromal cell (MSC)-related surface markers, multilineage differentiation ability, colony formation ability, and migration ability in response to injury. In contrast to MSCs and chondrocytes, CSPCs exhibit extensive proliferative and chondrogenic potential with no signs of hypertrophic differentiation, highlighting them as suitable cell sources for cartilage repair. In this review, we focus on the organizational distribution, markers, cytological features and roles of CSPCs in cartilage development, homeostasis and repair, and the application potential of CSPCs in cartilage repair and OA therapies.
10.3390/cells11152305
Human Cartilage-Derived Progenitor Cells From Committed Chondrocytes for Efficient Cartilage Repair and Regeneration.
Jiang Yangzi,Cai Youzhi,Zhang Wei,Yin Zi,Hu Changchang,Tong Tong,Lu Ping,Zhang Shufang,Neculai Dante,Tuan Rocky S,Ouyang Hong Wei
Stem cells translational medicine
UNLABELLED:Articular cartilage is not a physiologically self-renewing tissue. Injury of cartilage often progresses from the articular surface to the subchondral bone, leading to pathogenesis of tissue degenerative diseases, such as osteoarthritis. Therapies to treat cartilage defects using autologous chondrocyte-based tissue engineering have been developed and used for more than 20 years; however, the challenge of chondrocyte expansion in vitro remains. A promising cell source, cartilage stem/progenitor cells (CSPCs), has attracted recent attention. Because their origin and identity are still unclear, the application potential of CSPCs is under active investigation. Here we have captured the emergence of a group of stem/progenitor cells derived from adult human chondrocytes, highlighted by dynamic changes in expression of the mature chondrocyte marker, COL2, and mesenchymal stromal/stem cell (MSC) marker, CD146. These cells are termed chondrocyte-derived progenitor cells (CDPCs). The stem cell-like potency and differentiation status of CDPCs were determined by physical and biochemical cues during culture. A low-density, low-glucose 2-dimensional culture condition (2DLL) was critical for the emergence and proliferation enhancement of CDPCs. CDPCs showed similar phenotype as bone marrow mesenchymal stromal/stem cells but exhibited greater chondrogenic potential. Moreover, the 2DLL-cultured CDPCs proved efficient in cartilage formation both in vitro and in vivo and in repairing large knee cartilage defects (6-13 cm(2)) in 15 patients. These findings suggest a phenotype conversion between chondrocytes and CDPCs and provide conditions that promote the conversion. These insights expand our understanding of cartilage biology and may enhance the success of chondrocyte-based therapies. SIGNIFICANCE:Injury of cartilage, a non-self-repairing tissue, often progresses to pathogenesis of degenerative joint diseases, such as osteoarthritis. Although tissue-derived stem cells have been shown to contribute to tissue renewal and homeostasis, the derivation, biological function, and application potential of stem/progenitor cells found in adult human articular cartilage are incompletely understood. This study reports the derivation of a population of cartilage stem/progenitor cells from fully differentiated chondrocytes under specific culture conditions, which have the potential to reassume their chondrocytic phenotype for efficient cartilage regeneration. These findings support the possibility of using in vitro amplified chondrocyte-derived progenitor cells for joint cartilage repair.
10.5966/sctm.2015-0192
Isolation and characterisation of nasoseptal cartilage stem/progenitor cells and their role in the chondrogenic niche.
Jessop Zita M,Al-Sabah Ayesha,Simoes Irina N,Burnell Stephanie E A,Pieper Ina Laura,Thornton Catherine A,Whitaker Iain S
Stem cell research & therapy
BACKGROUND:Since cartilage-derived stem/progenitor cells (CSPCs) were first identified in articular cartilage using differential adhesion to fibronectin, their self-renewal capacity and niche-specific lineage preference for chondrogenesis have propelled their application for cartilage tissue engineering. In many adult tissues, stem/progenitor cells are recognised to be involved in tissue homeostasis. However, the role of nasoseptal CSPCs has not yet been elucidated. Our aim was to isolate and characterise nasoseptal CSPCs alongside nasoseptal chondrocyte populations and determine chondrogenic capacity. METHODS:Here, we isolated nasoseptal CSPCs using differential adhesion to fibronectin and assessed their colony forming efficiency, proliferation kinetics, karyotype and trilineage potential. CSPCs were characterised alongside non-fibronectin-adherent nasoseptal chondrocytes (DNCs) and cartilage-derived cells (CDCs, a heterogenous combination of DNCs and CSPCs) by assessing differences in gene expression profiles using PCR Stem Cell Array, immunophenotype using flow cytometry and chondrogencity using RT-PCR and histology. RESULTS:CSPCs were clonogenic with increased gene expression of the neuroectodermal markers NCAM1 and N-Cadherin, as well as Cyclins D1 and D2, compared to DNCs. All three cell populations expressed recognised mesenchymal stem cell surface markers (CD29, CD44, CD73, CD90), yet only CSPCs and CDCs showed multilineage differentiation potential. CDC populations expressed significantly higher levels of type 2 collagen and bone morphogenetic protein 2 genes, with greater cartilage extracellular matrix secretion. When DNCs were cultured in isolation, there was reduced chondrogenicity and higher expression of type 1 collagen, stromal cell-derived factor 1 (SDF-1), CD73 and CD90, recognised markers of a fibroblast-like phenotype. CONCLUSIONS:Fibronectin-adherent CSPCs demonstrate a unique gene expression profile compared to non-fibronectin-adherent DNCs. DNCs cultured in isolation, without CSPCs, express fibroblastic phenotype with reduced chondrogenicity. Mixed populations of stem/progenitor cells and chondrocytes were required for optimal chondrogenesis, suggesting that CSPCs may be required to retain phenotypic stability and chondrogenic potential of DNCs. Crosstalk between DNCs and CSPCs is proposed based on SDF-1 signalling.
10.1186/s13287-020-01663-1
Identification and clonal characterisation of a progenitor cell sub-population in normal human articular cartilage.
Williams Rebecca,Khan Ilyas M,Richardson Kirsty,Nelson Larissa,McCarthy Helen E,Analbelsi Talal,Singhrao Sim K,Dowthwaite Gary P,Jones Rhiannon E,Baird Duncan M,Lewis Holly,Roberts Selwyn,Shaw Hannah M,Dudhia Jayesh,Fairclough John,Briggs Timothy,Archer Charles W
PloS one
BACKGROUND:Articular cartilage displays a poor repair capacity. The aim of cell-based therapies for cartilage defects is to repair damaged joint surfaces with a functional replacement tissue. Currently, chondrocytes removed from a healthy region of the cartilage are used but they are unable to retain their phenotype in expanded culture. The resulting repair tissue is fibrocartilaginous rather than hyaline, potentially compromising long-term repair. Mesenchymal stem cells, particularly bone marrow stromal cells (BMSC), are of interest for cartilage repair due to their inherent replicative potential. However, chondrocyte differentiated BMSCs display an endochondral phenotype, that is, can terminally differentiate and form a calcified matrix, leading to failure in long-term defect repair. Here, we investigate the isolation and characterisation of a human cartilage progenitor population that is resident within permanent adult articular cartilage. METHODS AND FINDINGS:Human articular cartilage samples were digested and clonal populations isolated using a differential adhesion assay to fibronectin. Clonal cell lines were expanded in growth media to high population doublings and karyotype analysis performed. We present data to show that this cell population demonstrates a restricted differential potential during chondrogenic induction in a 3D pellet culture system. Furthermore, evidence of high telomerase activity and maintenance of telomere length, characteristic of a mesenchymal stem cell population, were observed in this clonal cell population. Lastly, as proof of principle, we carried out a pilot repair study in a goat in vivo model demonstrating the ability of goat cartilage progenitors to form a cartilage-like repair tissue in a chondral defect. CONCLUSIONS:In conclusion, we propose that we have identified and characterised a novel cartilage progenitor population resident in human articular cartilage which will greatly benefit future cell-based cartilage repair therapies due to its ability to maintain chondrogenicity upon extensive expansion unlike full-depth chondrocytes that lose this ability at only seven population doublings.
10.1371/journal.pone.0013246
Progenitor cells from cartilage--no osteoarthritis-grade-specific differences in stem cell marker expression.
Bernstein Peter,Sperling Ines,Corbeil Denis,Hempel Ute,Fickert Stefan
Biotechnology progress
Tissue engineering efforts for the fabrication of cartilage substitutes head toward applicability in osteoarthritis (OA). Progenitor cells can be harvested from the osteoarthritic joint itself, resembling multipotent mesenchymal stromal cells (MSC). Our objective was to analyze MSC characteristics of those cells in respect to the OA-related damage of their harvest site. OA cartilage was obtained from six patients during alloarthroplastic knee surgery, sample grading was done according to Outerbridge's classification. Upon enzymatic dissociation, primary chondrocytes were expanded in two-dimensional monolayer culture. At distinct cell passages, the process of dedifferentiation was phenotypically monitored; cell surface expression of classical MSC markers was analyzed by flow cytometry. Cells were subjected to chondrogenesis and osteogenesis after their fourth passage. At third passage, 95% of cells became positive for cluster of differentiation (CD)105 and further subclassification revealed that the majority of them were positive for both CD73 and CD90. CD105(+) CD73(+) CD90(+) phenotype meets thus the minimal surface antigen criteria for MSC definition. More than one-third of dedifferentiated chondrocytes displayed a coexpression of CD9(+) CD166(+) CD90(+) and to a lesser extent CD105(+) CD73(+) CD44(+) , irrespective of the stage of the original cartilage degradation. Finally, we could successfully demonstrate a redifferentiation of these progenitors into sulfated glycosaminoglycan producing cells. The basic level of alkaline phosphatase activity could not be enhanced upon osteogenic differentiation. In conclusion, chondrogenic progenitors derived from OA cartilages with low or high Outerbridge's grade can be seen as a potential cellular source for cartilage replacement.
10.1002/btpr.1668
Single cell sorting identifies progenitor cell population from full thickness bovine articular cartilage.
Yu Y,Zheng H,Buckwalter J A,Martin J A
Osteoarthritis and cartilage
OBJECTIVE:To date, no approved clinical intervention successfully prevents the progressive degradation of injured articular cartilage that leads to osteoarthritis (OA). Stem/progenitor cell populations within tissues of diarthrodial joint have shown their therapeutic potential in treating OA. However, this potential has not been fully realized due in part to the heterogeneity of these subpopulations. Characterization of clonal populations derived from a single cell may help identify more homogenous stem/progenitor populations within articular cartilage. Moreover, chondrogenic potential of clonal populations from different zones could be further examined to elucidate their differential roles in maintaining articular cartilage homeostasis. METHOD:We combined Fluorescence-activated cell sorting (FACS) and clonogenicity screening to identify stem/progenitor cells cloned from single cells. High-efficiency colony-forming cells (HCCs) were isolated, and evaluated for stem/progenitor cell characteristics. HCCs were also isolated from different zones of articular cartilage. Their function was compared by lineage-specific gene expression, and differentiation potential. RESULTS:A difference in colony-forming efficiency was observed in terms of colony sizes. HCCs were highly clonogenic and multipotent, and overexpressed stem/progenitor cell markers. Also, proliferation and migration associated genes were over-expressed in HCCs. HCCs showed zonal differences with deep HCCs more chondrogenic and osteogenic than superficial HCCs. CONCLUSION:Our approach is a simple yet practical way to identify homogeneous stem/progenitor cell populations with clonal origin. The discovery of progenitor cells demonstrates the intrinsic self-repairing potential of articular cartilage. Differences in differentiation potential may represent the distinct roles of superficial and deep zone stem/progenitor cells in the maintenance of articular cartilage homeostasis.
10.1016/j.joca.2014.07.002
Progenitor Cells from Cartilage: Grade Specific Differences in Stem Cell Marker Expression.
Mazor Marija,Cesaro Annabelle,Ali Mazen,Best Thomas M,Lespessaille Eric,Toumi Hechmi
International journal of molecular sciences
Recent research has confirmed the presence of Mesenchymal stem cell (MSC)-like progenitors (MPC) in both normal and osteoarthritic cartilage. However, there is only limited information concerning how MPC markers are expressed with osteoarthritis (OA) progression. The purpose of this study was to compare the prevalence of various MPC markers in different OA grades. Human osteoarthritic tibial plateaus were obtained from ten patients undergoing total knee replacement. Each sample had been classified into a mild or severe group according to OARSI scoring. Tissue was taken from each specimen and mRNA expression levels of CD105, CD166, Notch 1, Sox9, Acan and Col II A1 were measured at day 0 and day 14 (2 weeks in vitro). Furthermore, MSC markers: Nucleostemin, CD90, CD73, CD166, CD105 and Notch 1 were studied by immunofluorescence. mRNA levels of MSC markers did not differ between mild and severe OA at day 0. At day 14, protein analysis showed that proliferated cells from both sources expressed all 6 MSC markers. Only cells from the mild OA subjects resulted in a significant increase of mRNA CD105 and CD166 after in vitro expansion. Moreover, cells from the mild OA subjects showed significantly higher levels of CD105, Sox9 and Acan compared with those from severe OA specimens. Results confirmed the presence of MSC markers in mild and severe OA tissue at both mRNA and protein levels. We found significant differences between cells obtained from mild compared to severe OA specimens suggests that mild OA derived cells may have a greater MSC potential.
10.3390/ijms18081759
Characterization of a migrative subpopulation of adult human nasoseptal chondrocytes with progenitor cell features and their potential for in vivo cartilage regeneration strategies.
Elsaesser A F,Schwarz S,Joos H,Koerber L,Brenner R E,Rotter N
Cell & bioscience
BACKGROUND:Progenitor cells display interesting features for tissue repair and reconstruction. In the last years, such cells have been identified in different cartilage types. In this study, we isolated a migrative subpopulation of adult human nasoseptal chondrocytes with progenitor cell features by outgrowth from human nasal septum cartilage. These putative progenitor cells were comparatively characterized with mesenchymal stem cells (MSC) and human nasal septum chondrocytes with respect to their cellular characteristics as well as surface marker profile using flow cytometric analyses. Differentiation capacity was evaluated on protein and gene expression levels. RESULTS:The migrative subpopulation differentiated into osteogenic and chondrogenic lineages with distinct differences to chondrocytes and MSC. Cells of the migrative subpopulation showed an intermediate surface marker profile positioned between MSC and chondrocytes. Significant differences were found for CD9, CD29, CD44, CD90, CD105 and CD106. The cells possessed a high migratory ability in a Boyden chamber assay and responded to chemotactic stimulation. To evaluate their potential use in tissue engineering applications, a decellularized septal cartilage matrix was either seeded with cells from the migrative subpopulation or chondrocytes. Matrix production was demonstrated immunohistochemically and verified on gene expression level. Along with secretion of matrix metalloproteinases, cells of the migrative subpopulation migrated faster into the collagen matrix than chondrocytes, while synthesis of cartilage specific matrix was comparable. CONCLUSIONS:Cells of the migrative subpopulation, due to their migratory characteristics, are a potential cell source for in vivo regeneration of nasal cartilage. The in vivo mobilization of nasal cartilage progenitor cells is envisioned to be the basis for in situ tissue engineering procedures, aiming at the use of unseeded biomaterials which are able to recruit local progenitor cells for cartilage regeneration.
10.1186/s13578-016-0078-6
Identification of a Prg4-expressing articular cartilage progenitor cell population in mice.
Kozhemyakina Elena,Zhang Minjie,Ionescu Andreia,Ayturk Ugur M,Ono Noriaki,Kobayashi Akio,Kronenberg Henry,Warman Matthew L,Lassar Andrew B
Arthritis & rheumatology (Hoboken, N.J.)
OBJECTIVE:To generate knockin mice that express a tamoxifen-inducible Cre recombinase from the Prg4 locus (Prg4(GFPCreERt2) mice) and to use these animals to fate-map the progeny of Prg4-positive articular cartilage cells at various ages. METHODS:We crossed Prg4(GFPCreERt2) mice with Rosa26(floxlacZ) or Rosa26(mTmG) reporter strains, admin-istered tamoxifen to the double heterozygous offspring at different ages, and assayed Cre-mediated recom-bination by histochemistry and/or fluorescence microscopy. RESULTS:In 1-month-old mice, the expression of the Prg4(GFPCreERt2) allele mirrored the expression of endogenous Prg4 and, when tamoxifen was admin-istered for 10 days, caused Cre-mediated recombination in ∼70% of the superficial-most chondrocytes. Prg4(GFPCreERt2)-expressing cells were mostly confined to the top 3 cell layers of the articular cartilage in 1-month-old mice, but descendants of these cells were located in deeper regions of the articular cartilage in aged mice. On embryonic day 17.5, Prg4(GFPCreERt2)-expressing cells were largely restricted to the superficial-most cell layer of the forming joint, yet at ∼1 year, the progeny of these cells spanned the depth of the articular cartilage. CONCLUSION:Our results suggest that Prg4-expressing cells located at the joint surface in the embryo serve as a progenitor population for all deeper layers of the mature articular cartilage. Also, our findings indicate that Prg4(GFPCreERt2) is expressed by superficial chondrocytes in young mice, but expands into deeper regions of the articular cartilage as the animals age. The Prg4(GFPCreERt2) allele should be a useful tool for inducing efficient Cre-mediated recombination of loxP-flanked alleles at sites of Prg4 expression.
10.1002/art.39030
Adhesive barrier/directional controlled release for cartilage repair by endogenous progenitor cell recruitment.
Lee Jong Min,Ryu Ji Hyun,Kim Eun Ah,Jo Seongyeon,Kim Byung-Soo,Lee Haeshin,Im Gun-Il
Biomaterials
A new design concept in controlled release chemistry is reported in this study. Unlike current depots that release drugs in all direction by an isotropic way, we demonstrate that directional release only to a clinically beneficial direction results in improved disease treatment. To achieve the directional drug release, catecholamine adhesion chemistry was used to establish robust interfacial adhesion. For this purpose, water-resistant catechol-conjugated chitosan (CHI-C) adhesive gel patch was used. We chose a cartilage repair model to test our hypothesis. The adhesive barrier exhibited directional release of platelet-derived growth factor-AA (PDGF-AA) only toward the marrow cavity defect areas. This directional PDGF-AA release greatly promoted effective recruitment of human mesenchymal stem cell (hMSCs). Moreover, the adhesive barrier prevented further migration and dispersion of the hMSCs that otherwise were not properly located to the disease site. In vivo imaging and macroscopic histological assessments demonstrated significant improvement of cartilage tissue, suggesting directional controlled release can be a general concept for improvement of tissue regeneration. This CHI-C barrier is expected to make a significant contribution in cartilage tissue engineering without cell transplantation as well as application for other tissue engineering.
10.1016/j.biomaterials.2014.11.006
Treatment of Focal Cartilage Defects in Minipigs with Zonal Chondrocyte/Mesenchymal Progenitor Cell Constructs.
Bothe Friederike,Deubel Anne-Kathrin,Hesse Eliane,Lotz Benedict,Groll Jürgen,Werner Carsten,Richter Wiltrud,Hagmann Sebastien
International journal of molecular sciences
Despite advances in cartilage repair strategies, treatment of focal chondral lesions remains an important challenge to prevent osteoarthritis. Articular cartilage is organized into several layers and lack of zonal organization of current grafts is held responsible for insufficient biomechanical and biochemical quality of repair-tissue. The aim was to develop a zonal approach for cartilage regeneration to determine whether the outcome can be improved compared to a non-zonal strategy. Hydrogel-filled polycaprolactone (PCL)-constructs with a chondrocyte-seeded upper-layer deemed to induce hyaline cartilage and a mesenchymal stromal cell (MSC)-containing bottom-layer deemed to induce calcified cartilage were compared to chondrocyte-based non-zonal grafts in a minipig model. Grafts showed comparable hardness at implantation and did not cause visible signs of inflammation. After 6 months, X-ray microtomography (µCT)-analysis revealed significant bone-loss in both treatment groups compared to empty controls. PCL-enforcement and some hydrogel-remnants were retained in all defects, but most implants were pressed into the subchondral bone. Despite important heterogeneities, both treatments reached a significantly lower modified O'Driscoll-score compared to empty controls. Thus, PCL may have induced bone-erosion during joint loading and misplacement of grafts in vivo precluding adequate permanent orientation of zones compared to surrounding native cartilage.
10.3390/ijms20030653
Native-Osteoarthritic Joint Resident Stem and Progenitor Cells for Cartilage Cell-Based Therapies: A Quantitative Comparison With Respect to Concentration and Biological Performance.
Mantripragada Venkata P,Bova Wes A,Piuzzi Nicolas S,Boehm Cynthia,Obuchowski Nancy A,Midura Ronald J,Muschler George F
The American journal of sports medicine
BACKGROUND:Cell-based therapy for cartilage repair is a promising approach and is becoming an established technique. Yet, there is no consensus on the optimal cell source. PURPOSE:To provide a donor-matched quantitative comparison of the connective tissue progenitors (CTPs) derived from cartilage (Outerbridge grade 1-3 [G1-2-3]), bone marrow aspirate concentrate (BMC), infrapatellar fat pad (IPFP), synovium, and periosteum with respect to (1) cell concentration ([Cell], cells/mL), (2) CTP prevalence (P, colonies per million cells), and (3) biological performance based on in vitro proliferation potential (cells per colony) colony density, and differentiation potential (expression of negatively charged extracellular matrix: glycosaminoglycan-rich extra cellular matrix [GAG-ECM]). STUDY DESIGN:Descriptive laboratory study. METHODS:Tissues were obtained from 10 patients undergoing total knee arthroplasty (mean age, 59 years; women, n = 6). Automated quantitative colony-forming unit analysis was used to compare [Cell], P, and CTP biological performance across tissue sources. RESULTS:[Cell] was highest in grade 3 cartilage ( = .002) and BMC ( = .001). Median P was highest in IPFP ( = .001), synovium ( = .003), and G1-2 cartilage ( = .02). Proliferation was highest in synovium-derived CTPs ( < .001). Median colony density was highest in G1-2-3 ( < .001). Median GAG-ECM was highest in G1-2-3 ( < .001). Within each patient, CTPs derived from all tissues were highly heterogeneous in biological performance as determined by cells per colony, density, and GAG-ECM. CONCLUSION:Tissue sources differ in [Cell], P, and biological attributes. The data presented in this study suggest that cartilage (G1-2-3) is the preferred tissue source for cartilage repair based on P and GAG-ECM, followed by synovium, IPFP, BMC, and periosteum. However, due to the heterogeneous mixture of CTPs within each tissue source, there exists a subset of CTPs with biological performance similar to G1-2-3 cartilage, particularly in synovium and IPFP. Performance-based clonal selection and expansion of preferred CTPs and their progeny will potentially lead to improved cell population with predictive future. CLINICAL RELEVANCE:Optimal tissue regeneration strategies will require informed decisions regarding which of the available tissue sources to use. Optimizing cell sourcing in any tissue may require separation of CTPs with preferred attributes from those with less desirable attributes. The heterogeneity manifest in the early stage of colony formation represents an opportunity for performance-based clone selection for clinical cell processing and manufacturing.
10.1177/0363546519880905
Adult ovine chondrocytes in expansion culture adopt progenitor cell properties that are favorable for cartilage tissue engineering.
Kisiday John D,Liebig Bethany E,Goodrich Laurie R
Journal of orthopaedic research : official publication of the Orthopaedic Research Society
Human chondrocytes in expansion culture can become progenitor-like in their ability to proliferate extensively and secrete neocartilage in chondrogenic culture. Sheep are used as a large animal model for cartilage tissue engineering, although for testing progenitor-like chondrocytes it is important that ovine chondrocytes resemble human in the ability to adopt progenitor properties. Here, we investigate whether ovine chondrocytes can adopt progenitor properties as indicated by rapid proliferation in a colony-forming fashion, and high levels of neocartilage secretion in chondrogenic culture. In conditions known to promote expansion of mesenchymal stromal cells, ovine chondrocytes proliferated through approximately 12 population doublings in 10 days. Time-lapse imaging indicated rapid proliferation in a colony-forming pattern. Expanded ovine chondrocytes that were seeded into agarose and cultured in chondrogenic medium accumulated neocartilage over 2 weeks, to a greater extent than primary chondrocytes. These data confirm that ovine chondrocytes resemble human chondrocytes in their ability to acquire progenitor properties that are important for cartilage tissue engineering. Given the broad interest in using progenitor cells to heal connective tissues, next we compared proliferation and trilineage differentiation of ovine chondrocytes, meniscus cells, and tenocytes. Meniscus cells and tenocytes experienced more than 13 population doublings in 10 days. In chondrogenic culture, cartilage matrix accumulation, and gene expression were largely similar among the cell types. All cell types resisted osteogenesis, while expanded tenocytes and meniscal cells were capable of adipogenesis. While ovine connective tissue cells demonstrated limited lineage plasticity, these data support the potential to promote certain progenitor properties with expansion.
10.1002/jor.24671
Restoring Osteochondral Defects through the Differentiation Potential of Cartilage Stem/Progenitor Cells Cultivated on Porous Scaffolds.
Wang Hsueh-Chun,Lin Tzu-Hsiang,Hsu Che-Chia,Yeh Ming-Long
Cells
Cartilage stem/progenitor cells (CSPCs) are cartilage-specific, multipotent progenitor cells residing in articular cartilage. In this study, we investigated the characteristics and potential of human CSPCs combined with poly(lactic-co-glycolic acid) (PLGA) scaffolds to induce osteochondral regeneration in rabbit knees. We isolated CSPCs from human adult articular cartilage undergoing total knee replacement (TKR) surgery. We characterized CSPCs and compared them with infrapatellar fat pad-derived stem cells (IFPs) in a colony formation assay and by multilineage differentiation analysis in vitro. We further evaluated the osteochondral regeneration of the CSPC-loaded PLGA scaffold during osteochondral defect repair in rabbits. The characteristics of CSPCs were similar to those of mesenchymal stem cells (MSCs) and exhibited chondrogenic and osteogenic phenotypes without chemical induction. For in vivo analysis, CSPC-loaded PLGA scaffolds produced a hyaline-like cartilaginous tissue, which showed good integration with the host tissue and subchondral bone. Furthermore, CSPCs migrated in response to injury to promote subchondral bone regeneration. Overall, we demonstrated that CSPCs can promote osteochondral regeneration. A monophasic approach of using diseased CSPCs combined with a PLGA scaffold may be beneficial for repairing complex tissues, such as osteochondral tissue.
10.3390/cells10123536
Effects of Cartilage Progenitor Cells, Bone Marrow Mesenchymal Stem Cells and Chondrocytes on Cartilage Repair as Seed Cells: An in vitro Study.
Drug design, development and therapy
Purpose:To determine the effects of cartilage progenitor cells, bone marrow mesenchymal stem cells and chondrocytes on cartilage repair as seed cells. Methods:Porcine cartilage progenitor cells (CPCs), bone marrow mesenchymal stem cells (BMSCs) and chondrocytes (CCs) were obtained from the femoropatellar joints of young pigs, and seeded in agarose gel as a graft. During the 28-day culture, proliferation ability was measured by MTT assay, and gene expression of Collagen I, Collagen II, Aggrecan and SOX 9 were measured by qPCR. Qualitative and quantitative analysis of collagen, glycosaminoglycan and DNA were appraised by immunohistochemical staining and biochemical assay, and integration strength was analyzed by push-out tests. Results:After 28-day culture, proliferation ability of CPCs and BMSCs was higher than CCs. Collagen, glycosaminoglycan, DNA content and chondrocyte-related genes expression in the cartilage progenitor cells seeded gel were significantly higher than the other two gels. Integration strength in the cartilage progenitor cells seeded gel was also higher compared with the other two gels. Conclusion:Compared with CCs and BMSCs, CPCs in vitro have dominance in the ability of cell proliferation and differentiation as seed cells in tissue engineering.
10.2147/DDDT.S356936
Immunophenotyping of progenitor cells from articular cartilage of New Zealand Rabbits (Oryctolagus cuniculus).
Hayashi Rafael Gonçalves,Borghesi Jéssica,Mario Lara Carolina,Rabelo Ana Carolina Silveira,de Almeida da Anunciação Adriana Raquel,Lima Mariana Ferreira,Miglino Maria Angélica,de Oliveira Favaron Phelipe,Carreira Ana Claudia Oliveira
Tissue & cell
Mesenchymal stem cell (MSC) have immunomodulatory and anti-inflammatory effects, allowing its application in the therapy of different diseases, including articular cartilage injuries, which induce the establishment of a pro-regenerative microenvironment in the injured tissue. Therefore, our objective was to isolate, characterize and differentiate cartilage cells from different joints of New Zealand rabbit (Oryctolagus cuniculus), in order to verify their potential as MSC for future clinical use. For this, cartilage fragments were isolated from the humerus-radio-ulnar joints, humeral scapula, femoro-tibio-patellar, and lame femoris from rabbits. The results showed that the cells were rounded in the center of the plate and fibroblastoids in the periphery. After thawing, the cells did not change their growth time in culture, nor their morphology. The cells showed labeling for mesenchymal stem cell, cytoskeleton, pluripotency and cell proliferation, but not for hematopoiesis markers (CD105+ and CD34-). We also observed that, when induced, they were able to differentiate into osteogenic, adipogenic, and chondrogenic cells. After application of these cells in nude mice, no tumor growth was observed in spleen, kidney, liver, lung and heart. Therefore, we conclude that cells isolated from the articular cartilage of rabbits present characteristics of MSC with potential for future clinical applications.
10.1016/j.tice.2022.101742
JAK-STAT signaling mediates the senescence of cartilage-derived stem/progenitor cells.
Journal of molecular histology
Aging is a major risk factor for degenerative joint diseases, such as osteoarthritis (OA). Previous studies have confirmed the link between senescent mesenchymal stem cells (MSCs) and OA. Cartilage-derived stem/progenitor cells (CSPCs) with MSCs properties have been extracted from a variety of species. We inferred that the senescence of CSPCs may promote the development of osteoarthritis. However, the cellular and molecular mechanisms of CSPCs senescence remains unknown. In this study, we investigated the role of JAK-STAT signaling pathway in a replicative senescence model of CSPCs. We showed that the late CSPCs (> 15th passage) exhibited distinct senescent phenotypes, including increased proportion of β-gal positive senescent cells and F-actin content, as well as cell cycle arrest. In late CSPCs, the activity of JAK-STAT signaling pathway was significantly increased. Activation of JAK-STAT signaling pathway promoted cell senescence in early CSPCs (< 6th passage). Conversely, pharmacological inhibition or genetic knockdown of JAK-STAT signaling pathway attenuated cell senescence in late CSPCs. In conclusion, our results demonstrated the critical role of JAK-STAT signaling pathway in CSPCs senescence.
10.1007/s10735-022-10086-6
Human adult, pediatric and microtia auricular cartilage harbor fibronectin-adhering progenitor cells with regenerative ear reconstruction potential.
iScience
Remaining challenges in auricular cartilage tissue engineering include acquiring sufficient amounts of regeneration-competent cells and subsequent production of high-quality neocartilage. Progenitor cells are a resident subpopulation of native cartilage, displaying a high proliferative and cartilage-forming capacity, yet their potential for regenerative medicine is vastly understudied. In this study, human auricular cartilage progenitor cells were newly identified in healthy cartilage and, importantly, in microtia-impaired chondral remnants. Their cartilage repair potential was assessed via 3D culture upon encapsulation in a gelatin-based hydrogel, and subsequent biochemical, mechanical, and histological analyses. Auricular cartilage progenitor cells demonstrate a potent ability to proliferate without losing their multipotent differentiation ability and to produce cartilage-like matrix in 3D culture. As these cells can be easily obtained through a non-deforming biopsy of the healthy ear or from the otherwise redundant microtia remnant, they can provide an important solution for long-existing challenges in auricular cartilage tissue engineering.
10.1016/j.isci.2022.104979
The Role of Cartilage Stem/Progenitor Cells in Cartilage Repair in Osteoarthritis.
Current stem cell research & therapy
Osteoarthritis (OA) is a degenerative joint disease characterized by the loss of cartilage, which seriously affects the quality of patient's life and may even cause permanent sequelae. The treatment of OA is diversified, mostly limited to relieving clinical symptoms. Less invasive treatments that can cure OA are still lacking. With the rise of tissue-cell engineering, stem cell therapy has gradually aroused great interest in treating OA. Cartilage stem/progenitor cells (CSPCs), a type of stem cell found on the surface of articular cartilage, have many similarities with mesenchymal stem cells (MSCs). These cells can be isolated and cultured from animals and humans and exist in articular cartilage over the body, such as the knee joint, patellofemoral joint, and temporomandibular joint. Due to their strong proliferative and chondrogenic differentiation abilities, CSPCs may contribute a lot to cartilage regeneration and repair in OA. We will provide an overview of the biological characteristics of CSPCs and their role in OA in combination with the research progress. Despite some existing limitations, CSPCs still offer an innovative idea for OA treatment with great advantages.
10.2174/1574888X17666221006113739
[Effects of cartilage progenitor cells and microRNA-140 on repair of osteoarthritic cartilage injury].
Zhongguo xiu fu chong jian wai ke za zhi = Zhongguo xiufu chongjian waike zazhi = Chinese journal of reparative and reconstructive surgery
OBJECTIVE:To summarize the effect of cartilage progenitor cells (CPCs) and microRNA-140 (miR-140) on the repair of osteoarthritic cartilage injury, and analyze their clinical prospects. METHODS:The recent researches regarding the CPCs, miR-140, and repair of cartilage in osteoarthritis (OA) disease were extensively reviewed and summarized. RESULTS:CPCs possess the characteristics of self-proliferation, expression of stem cell markers, and multi-lineage differentiation potential, and their chondrogenic ability is superior to other tissues-derived mesenchymal stem cells. CPCs are closely related to the development of OA, but the autonomic activation and chondrogenic ability of CPCs around the osteoarthritic cartilage lesion cannot meet the requirements of complete cartilage repair. miR-140 specifically express in cartilage, and has the potential to activate CPCs by inhibiting key molecules of Notch signaling pathway and enhance its chondrogenic ability, thus promoting the repair of osteoarthritic cartilage injury. Intra-articular delivery of drugs is one of the main methods of OA treatment, although intra-articular injection of miR-140 has a significant inhibitory effect on cartilage degeneration in rats, it also exhibit some limitations such as non-targeted aggregation, low bioavailability, and rapid clearance. So it is a good application prospect to construct a carrier with good safety, cartilage targeting, and high-efficiency for miR-140 based on articular cartilage characteristics. In addition, CPCs are mainly dispersed in the cartilage surface, while OA cartilage injury also begins from this layer, it is therefore essential to emphasize early intervention of OA. CONCLUSION:miR-140 has the potential to activate CPCs and promote the repair of cartilage injury in early OA, and it is of great clinical significance to further explore the role of miR-140 in OA etiology and to develop new OA treatment strategies based on miR-140.
10.7507/1002-1892.201806060
Transcriptome-based screening of ion channels and transporters in a migratory chondroprogenitor cell line isolated from late-stage osteoarthritic cartilage.
Matta Csaba,Lewis Rebecca,Fellows Christopher,Diszhazi Gyula,Almassy Janos,Miosge Nicolai,Dixon James,Uribe Marcos C,May Sean,Poliska Szilard,Barrett-Jolley Richard,Fodor Janos,Szentesi Peter,Hajdú Tibor,Keller-Pinter Aniko,Henslee Erin,Labeed Fatima H,Hughes Michael P,Mobasheri Ali
Journal of cellular physiology
Chondrogenic progenitor cells (CPCs) may be used as an alternative source of cells with potentially superior chondrogenic potential compared to mesenchymal stem cells (MSCs), and could be exploited for future regenerative therapies targeting articular cartilage in degenerative diseases such as osteoarthritis (OA). In this study, we hypothesised that CPCs derived from OA cartilage may be characterised by a distinct channelome. First, a global transcriptomic analysis using Affymetrix microarrays was performed. We studied the profiles of those ion channels and transporter families that may be relevant to chondroprogenitor cell physiology. Following validation of the microarray data with quantitative reverse transcription-polymerase chain reaction, we examined the role of calcium-dependent potassium channels in CPCs and observed functional large-conductance calcium-activated potassium (BK) channels involved in the maintenance of the chondroprogenitor phenotype. In line with our very recent results, we found that the KCNMA1 gene was upregulated in CPCs and observed currents that could be attributed to the BK channel. The BK channel inhibitor paxilline significantly inhibited proliferation, increased the expression of the osteogenic transcription factor RUNX2, enhanced the migration parameters, and completely abolished spontaneous Ca events in CPCs. Through characterisation of their channelome we demonstrate that CPCs are a distinct cell population but are highly similar to MSCs in many respects. This study adds key mechanistic data to the in-depth characterisation of CPCs and their phenotype in the context of cartilage regeneration.
10.1002/jcp.30413
Intra-articular delivery of extracellular vesicles secreted by chondrogenic progenitor cells from MRL/MpJ superhealer mice enhances articular cartilage repair in a mouse injury model.
Wang Rikang,Jiang Wei,Zhang Lang,Xie Saisai,Zhang Shuai,Yuan Shun,Jin Yi,Zhou Guangqian
Stem cell research & therapy
BACKGROUND:Chondrogenic progenitor cells (CPCs) have high self-renewal capacity and chondrogenic potential. Intra-articular delivery of purified mesenchymal stem cells (MSCs) from MRL/MpJ "superhealer" mice increased bone volume during repair and prevents post-traumatic arthritis. Recently, although extracellular vesicles released from MSCs have been used widely for treating OA, the application of extracellular vesicles secreted by CPCs from MRL/MpJ mice in OA therapy has never been reported. In this study, we evaluated the effects of extracellular vesicles secreted by CPCs from control CBA (CBA-EVs) and MRL/MpJ mice (MRL-EVs) on proliferation and migration of murine chondrocytes. We also determined here if weekly intra-articular injections of CBA-EVs and MRL-EVs would repair and regenerate surgically induced model in mice. METHODS:CPC surface markers were detected by flow cytometry. CBA-EVs and MRL-EVs were isolated using an ultrafiltration method. Nanoparticle tracking analysis, transmission electron microscopy, and western blots were used to identify extracellular vesicles. CBA-EVs and MRL-EVs were injected intra-articularly in a mouse model of surgical destabilization of the medial meniscus (DMM)-induced OA, and histological and immunohistochemistry analyses were used to assess the efficacy of exosome injections. We used miRNA-seq analysis to analyze the expression profiles of exosomal miRNAs derived from CBA-EVs as well as MRL-EVs. Cell-counting and scratch assays were used to evaluate the effects of CBA-EVs and MRL-EVs on proliferation and migration of murine chondrocytes, respectively. Meanwhile, a specific RNA inhibitor assesses the roles of the candidate miRNAs in CPC-EV-induced regulation of function of chondrocytes. RESULTS:Both CBA-EVs and MRL-EVs stimulated chondrocyte proliferation and migration, but MRL-EVs exerted a stronger effect than CBA-EVs. The similar result was also observed in in vivo study, which indicated that injecting either CBA-EVs or MRL-EVs attenuated OA, but MRL-EVs showed a superior therapeutic effect in comparison with CBA-EVs. The results of bioinformatics analyses revealed that the differentially expressed exosomal miRNAs participated in multiple biological processes. We identified 80 significantly upregulated and 100 downregulated miRNAs. Moreover, we found that the top 20 differentially expressed exosomal miRNAs connected OA repair to processes such as AMPK signaling, regulation of autophagy, and insulin signaling. Notably, miRNA 221-3p were highly enriched in MRL-Exos and treatment with miR 221-3p inhibitor markedly decreased chondrocyte proliferation and migration induced by CBA-EVs or MRL-EVs in vitro. CONCLUSIONS:This is the first study to demonstrate MRL-EVs had a greater therapeutic effect on the treatment of OA than CBA-EVs. This study will hopefully provide new insight into the pathogenesis, prevention, and treatment of OA.
10.1186/s13287-020-01594-x
Chondrogenic Progenitor Cells Exhibit Superiority Over Mesenchymal Stem Cells and Chondrocytes in Platelet-Rich Plasma Scaffold-Based Cartilage Regeneration.
Wang Ketao,Li Ji,Li Zhongli,Wang Bin,Qin Yuanyuan,Zhang Ning,Zhang Hao,Su Xiangzheng,Wang Yuxing,Zhu Heng
The American journal of sports medicine
BACKGROUND:Platelet-rich plasma (PRP) has been considered a promising tool for cartilage regeneration. However, increasing evidence has demonstrated the controversial effects of PRP on tissue regeneration, partially due to the unsatisfactory cell source. Chondrogenic progenitor cells (CPCs) have gained increasing attention as a potential cell source due to their self-renewal and multipotency, especially toward the chondrogenic lineage, and, thus, may be an appropriate alternative for cartilage engineering. PURPOSE:To compare the effects of PRP on CPC, mesenchymal stem cell (MSC), and chondrocyte proliferation, chondrogenesis, and cartilage regeneration. STUDY DESIGN:Controlled laboratory study. METHODS:Whole blood samples were obtained from 5 human donors to create PRPs (0, 1000 × 10, and 2000 × 10 platelets per liter). The proliferation and chondrogenesis of CPCs, bone marrow-derived MSCs (BMSCs), and chondrocytes were evaluated via growth kinetic and CCK-8 assays. Immunofluorescence, cytochemical staining, and gene expression analyses were performed to assess chondrogenic differentiation and cartilaginous matrix formation. The in vivo effects of CPCs, BMSCs, and chondrocytes on cartilage regeneration after PRP treatment were measured by use of histopathological, biochemical, and biomechanical techniques in a cartilage defect model involving mature male New Zealand White rabbits (critical size, 5 mm). RESULTS:The CPCs possessed migration abilities and proliferative capacities superior to those of the chondrocytes, while exhibiting a chondrogenic predisposition stronger than that of the BMSCs. The growth kinetic, CCK-8, cytochemical staining, and biochemical analyses revealed that the CPCs simultaneously displayed a higher cell density than the chondrocytes and stronger chondrogenesis than the BMSCs after PRP stimulation. In addition, the in vivo study demonstrated that the PRP+CPC construct yielded better histological (International Cartilage Repair Society [ICRS] score, mean ± SEM, 1197.2 ± 163.2) and biomechanical (tensile modulus, 1.523 ± 0.194) results than the PRP+BMSC (701.1 ± 104.9, < .05; 0.791 ± 0.151, < .05) and PRP+chondrocyte (541.6 ± 98.3, < .01; 0.587 ± 0.142, < .01) constructs at 12 weeks after implantation. CONCLUSION:CPCs exhibit superiority over MSCs and chondrocytes in PRP scaffold-based cartilage regeneration, and PRP+CPC treatment may be a favorable strategy for cartilage repair. CLINICAL RELEVANCE:These findings provide evidence highlighting the preferable role of CPCs as a cell source in PRP-mediated cartilage regeneration and may help researchers address the problem of unsatisfactory cell sources in cartilage engineering.
10.1177/0363546519854219
The Influence of TGF-β3, EGF, and BGN on SOX9 and RUNX2 Expression in Human Chondrogenic Progenitor Cells.
Janssen Jerome Nicolas,Batschkus Sarah,Schimmel Stefan,Bode Christa,Schminke Boris,Miosge Nicolai
The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society
Osteoarthritis (OA) is the most common chronic joint disease and leads to the degradation of the extracellular matrix by an imbalance between anabolic and catabolic processes. TGF-β3 (transforming growth factor beta-3) and epidermal growth factor (EGF) influence the osteochondrogenic potential of chondrocytes. In this study, we compared the expression of mediators and receptors in the TGF-β3 and EGF pathways, as well as biglycan (BGN), in healthy and diseased chondrocytes. Furthermore, we used chondrogenic progenitor cells (CPCs) for in vitro stimulation and knockdown experiments to elucidate the effects of TGF-β3 and EGF on the chondrogenic potential. Our results demonstrate that the expression of TGF-beta receptor type-1 (TGFBRI) and epidermal growth factor receptor (EGFR) is altered in diseased chondrocytes as well as in CPCs. Moreover, TGF-β3 and EGF stimulation influenced the expression levels of BGN, SRY (sex determining region Y)-box 9 (SOX9), and Runt-related transcription factor 2 (RUNX2) in CPCs. Therefore, changes in TGFBRI and EGFR expression likely contribute to the degenerative and regenerative effects seen in late stages of OA.
10.1369/0022155418811645
Purinergic signalling is required for calcium oscillations in migratory chondrogenic progenitor cells.
Matta Csaba,Fodor János,Miosge Nicolai,Takács Roland,Juhász Tamás,Rybaltovszki Henrik,Tóth Adrienn,Csernoch László,Zákány Róza
Pflugers Archiv : European journal of physiology
Osteoarthritis (OA) is the most common form of chronic musculoskeletal disorders. A migratory stem cell population termed chondrogenic progenitor cells (CPC) with in vitro chondrogenic potential was previously isolated from OA cartilage. Since intracellular Ca(2+) signalling is an important regulator of chondrogenesis, we aimed to provide a detailed understanding of the Ca(2+) homeostasis of CPCs. In this work, CPCs immortalised by lentiviral administration of the human telomerase reverse transcriptase (hTERT) and grown in monolayer cultures were studied. Expressions of all three IP3Rs were confirmed, but no RyR subtypes were detected. Ca(2+) oscillations observed in CPCs were predominantly dependent on Ca(2+) release and store replenishment via store-operated Ca(2+) entry; CPCs express both STIM1 and Orai1 proteins. Expressions of adenosine receptor mRNAs were verified, and adenosine elicited Ca(2+) transients. Various P2 receptor subtypes were identified; P2Y1 can bind ADP; P2Y4 is targeted by UTP; and ATP may evoke Ca(2+) transients via detected P2X subtypes, as well as P2Y1 and P2Y2. Enzymatic breakdown of extracellular nucleotides by apyrase completely abrogated Ca(2+) oscillations, suggesting that an autocrine/paracrine purinergic mechanism may drive Ca(2+) oscillations in these cells. As CPCs possess a broad spectrum of functional molecular elements of Ca(2+) signalling, Ca(2+)-dependent regulatory mechanisms can be supposed to influence their differentiation potential.
10.1007/s00424-014-1529-8
Intermittent hydrostatic pressure maintains and enhances the chondrogenic differentiation of cartilage progenitor cells cultivated in alginate beads.
Li Yang,Zhou Jianxin,Yang Xiaofei,Jiang Yiqiu,Gui Jianchao
Development, growth & differentiation
The objective of this study was to explore the effects of intermittent hydrostatic pressure (IHP) on the chondrogenic differentiation of cartilage progenitor cells (CPCs) cultivated in alginate beads. CPCs were isolated from the knee joint cartilage of rabbits, and infrapatellar fat pad-derived stem cells (FPSCs) and chondrocytes (CCs) were included as the control cell types. Cells embedded in alginate beads were treated with IHP at 5 Mpa and 0.5 Hz for 4 h/day for 1, 2, or 4 weeks. The cells' migratory and proliferative capacities were evaluated using the scratch and Live/Dead assays, respectively. Hematoxylin and eosin staining, safranin O staining, and immunohistochemical staining were performed to determine the effects of IHP on the synthesis of extracellular matrix (ECM) proteins. Real-time polymerase chain reaction analysis was performed to measure the expression of genes related to chondrogenesis. The scratch and Live/Dead assays revealed that IHP significantly promoted the migration and proliferation of FPSCs and CPCs to different extents. The staining experiments showed greater production of cartilage ECM components (glycosaminoglycans and collagen II) by cells exposed to IHP, and the gene expression analysis demonstrated that IHP stimulated the expression of chondrocyte-related genes. Importantly, these effects of IHP were more prominent in CPCs than in FPSCs and CCs. Considering all of our experimental results combined, we conclude that CPCs demonstrated a stronger chondrogenic differentiation capacity than the FPSCs and CCs under stimulation with IHP. Thus, the use of CPCs, combined with mechanical stimulation, may represent a valuable strategy for cartilage tissue engineering.
10.1111/dgd.12261
Leptin changes differentiation fate and induces senescence in chondrogenic progenitor cells.
Zhao X,Dong Y,Zhang J,Li D,Hu G,Yao J,Li Y,Huang P,Zhang M,Zhang J,Huang Z,Zhang Y,Miao Y,Xu Q,Li H
Cell death & disease
Body weight is a component of the mechanical theory of OA (osteoarthritis) pathogenesis. Obesity was also found to be a risk factor for digital OA involving non-weight-bearing joints, which suggested that metabolism influences the occurrence and progression of OA. The metabolic origin of OA has been partially attributed to the involvement of adipokines, such as leptin, the levels of which are significantly and positively correlated with cartilage degeneration in OA patients. However, the mechanisms by which leptin-induced cartilage degeneration occurs are poorly understood. The discovery of chondrogenic progenitor cells (CPCs) opened up new opportunities for investigation. Investigating the effects of leptin on differentiation and proliferation in CPCs would increase our understanding of the roles played by leptin in the aetiology and development of OA. Here, CPCs were harvested using single-cell sorting from rat cartilage tissues to obtain mesenchymal stem-like cells, which possess clonogenicity, proliferation and stemness. High doses of leptin decreased the ability of the CPCs to migrate, inhibited their chondrogenic potential and increased their osteogenic potential, suggesting that leptin changes differentiation fates in CPCs. High doses of leptin induced cell cycle arrest and senescence in CPCs by activating the p53/p21 pathway and inhibiting the Sirt1 pathway. Inhibiting the Sirt1 pathway accelerated cartilage senescence in knockout (KO) mice. Activating the leptin pathway induced higher Ob-Rb expression and was significantly correlated with cartilage degeneration (lower levels of Coll-2) and tissue senescence (higher levels of p53/p21 and lower levels of Sirt1) in OA patients, suggesting that leptin-induced CPCs senescence contributes to the development of OA. Taken together, our results reveal new links between obesity and cartilage damage that are induced by leptin-mediated effects on cell behaviour and senescence.
10.1038/cddis.2016.68
Enhanced phagocytic capacity endows chondrogenic progenitor cells with a novel scavenger function within injured cartilage.
Zhou C,Zheng H,Buckwalter J A,Martin J A
Osteoarthritis and cartilage
OBJECTIVE:Articular cartilage harbors chondrogenic progenitor cells (CPCs), a population that responds chemotactically to cell death. Because this behavior is reminiscent of macrophages, we hypothesized that CPCs have macrophage-like capabilities for scavenging cell and tissue debris through phagocytosis. DESIGN:CPCs, chondrocytes, synoviocytes, and macrophages were cultured with fluorophore-labeled chondrocyte debris for 3, 6, 12, or 24 h. Debris internalization was quantified by confocal microscopy and flow cytometry. Confocal microscopy was also used to test CPCs and chondrocytes for uptake of fluorophore-labeled fibronectin fragments (Fn-fs), a form of extracellular matrix debris. Lysosome activity and mass in CPCs and chondrocytes were measured using fluorescent probes. The relative expression of phagocytosis-related genes and proteins was evaluated by polymerase chain reaction (PCR) and immunoblotting, respectively. Pulse-chase experiments were performed to determine if the debris internalized by CPCs and chondrocytes was cleared, and if clearance was affected by a cathepsin B inhibitor. RESULTS:More macrophages, synoviocytes, and CPCs internalized cell debris than chondrocytes at all time points. While uptake remained flat in chondrocytes at ∼10%, in the other cell types it peaked at more than 60% after 12-24 h. Relative to chondrocytes, CPCs showed significantly higher rates of Fn-fs engulfment, greater lysosome activity and mass, and over-expressed phagocytosis-related genes and proteins. Pulse-chase experiments revealed time- and cathepsin B-dependent clearance of cell debris in CPCs, but not in chondrocytes. CONCLUSIONS:CPCs phagocytized cell and matrix debris much more efficiently than chondrocytes, supporting the hypothesis that they play a macrophage-like role in injured cartilage.
10.1016/j.joca.2016.04.016
Chondrogenic progenitor cells promote vascular endothelial growth factor expression through stromal-derived factor-1.
Wang S,Zhou C,Zheng H,Zhang Z,Mei Y,Martin J A
Osteoarthritis and cartilage
OBJECTIVE:Vascular endothelial growth factor (VEGF) is elevated in joint fluids from patients diagnosed with osteoarthritis (OA). VEGF is known to contribute to vascular tidemark invasion and osteophyte formation, which are classic features of advanced OA. Among the factors that may drive VEGF accumulation in diseased joints, stromal cell-derived factor-1α (SDF-1α) is a likely culprit, as it is enriched in synovial fluids from osteoarthritic joints and is a potent inducer of VEGF expression. Chondrogenic progenitor cells (CPCs) that overexpress SDF-1α are abundant in osteoarthritic cartilage, implicating them in elevating synovial SDF-1α levels. Here we conducted a series of experiments to determine the potential for CPCs to stimulate VEGF expression via autocrine and paracrine mechanisms. DESIGN:Immunohistochemistry, immunoblotting, and PCR were used to evaluate the effects of SDF-1α on VEGF expression in CPCs and chondrocytes, and the effects of CPC-conditioned medium on chondrocytes. An SDF-1α receptor antagonist and inhibitors of mitogen-activated protein kinases (MAPKs) were used to probe the pathway linking SDF-1 with VEGF expression in CPCs. RESULTS:SDF-1α and CPC-conditioned medium stimulated VEGF expression in chondrocytes. In both chondrocytes and CPCs, SDF-1α stimulated increased VEGF expression via C-X-C chemokine receptor type 4 (CXCR4), a cell-surface SDF-1α receptor. This response in CPCs is dependent on p38 MAPK activation, but not on ERK or c-Jun N-terminal kinase (JNK) activation. CONCLUSIONS:By secreting SDF-1α, CPCs stimulate VEGF expression in nearby cells. The co-expression of SDF-1 and its receptor by CPCs indicates they are capable of self-sustained VEGF expression via an autocrine mechanism.
10.1016/j.joca.2016.10.017
Mapping the secretome of human chondrogenic progenitor cells with mass spectrometry.
Batschkus Sarah,Atanassov Ilian,Lenz Christof,Meyer-Marcotty Philipp,Cingöz Gökhan,Kirschneck Christian,Urlaub Henning,Miosge Nicolai
Annals of anatomy = Anatomischer Anzeiger : official organ of the Anatomische Gesellschaft
Tissue engineering offers promising perspectives in the therapy of osteoarthritis. In the context of cell-based therapy, chondrogenic progenitor cells (CPCs) may be used to regenerate defects in cartilage tissue. An in-depth characterization of the secretome of CPCs is a prerequisite to this approach. In this study, a method was developed for the qualitative and quantitative analysis of the secretome of undifferentiated and differentiated CPCs. Secreted proteins from cells grown in two-dimensional as well as three-dimensional alginate cultures were extracted and analyzed by liquid chromatography/tandem mass spectrometry (LC-MS/MS). Quantitation was achieved by internal standardization using stable isotope-labeled amino acids in cell culture (SILAC). Qualitative analysis of CPC secretomes revealed ECM-components, signal proteins and growth factors most of which were also found in healthy cartilage. A quantitative comparison revealed significantly upregulated proteins with regenerative potential during differentiation, while proteins involved in catabolic metabolism were significantly downregulated. The development of methods for qualitative and quantitative analysis of the secretome of CPCs by mass spectrometry provides a foundation for the investigation of progenitor or stem cells from other sources.
10.1016/j.aanat.2017.03.003
The functional role of chondrogenic stem/progenitor cells: novel evidence for immunomodulatory properties and regenerative potential after cartilage injury.
Riegger J,Palm H G,Brenner R E
European cells & materials
Considering the poor intrinsic healing potential of articular cartilage, resident chondrogenic stem/progenitor cells (CSPCs) have gained attention in recent years. Although, CSPCs are attracted by a cartilage injury, knowledge about the post-traumatic behaviour and functional role of this cell population is fairly basic. The present study, not only elaborated on the regenerative capacities of CSPCs, but also illuminated potential immunomodulatory properties after cartilage trauma. Estimation of the CSPC population size within previously impacted cartilage explants by flow-cytometry revealed an increased percentage of CSPC-marker positive cells as compared to unimpacted tissue. In line with this, proliferation, chemotactic migration and in vitro wound healing activity of isolated CSPCs was similarly enhanced after stimulation with trauma-conditioned (TC) medium. Further, a significant increase in pro- and anti-inflammatory gene expression, as well as IL-6 secretion due to TC-medium-stimulation was measured. In this context, antioxidative or chondroanabolic therapeutic intervention alleviated the post-traumatic response of TC-medium-activated CSPCs and substantially influenced CSPC chondrogenic differentiation in different ways. Overall, this study provided novel insights concerning the functional role of CSPCs after cartilage trauma and the effects of a therapeutic intervention in order to improve regenerative processes and prevent cartilage degeneration following trauma.
10.22203/eCM.v036a09
Isolation and chondrogenic differentiation of porcine perichondrial progenitor cells for the purpose of cartilage tissue engineering.
Derks Mareike,Sturm Theresa,Haverich Axel,Hilfiker Andres
Cells, tissues, organs
In vivo, cartilage has a limited regenerative capacity. Clinical replacement strategies require a suitable cell source to provide a stable chondrocyte phenotype without hypertrophic cartilage development, while being broadly available, and harboring a high proliferative potential. Thus, the aim of this study was to analyze the proliferation and chondrogenic differentiation capacity of porcine perichondrial progenitor cells (PPC) isolated from auricular (ePPC) and tracheal cartilage (tPPC) as an alternative cell source to mesenchymal stem cells (MSC). The proliferative potential of these cell types was analyzed by means of doubling times. Cell pellets were cultured in chondrogenic differentiation medium for 4 weeks. Potential chondrogenic differentiation was investigated by histology and immunohistology in addition to gene expression analysis of the cartilage markers collagen II, aggrecan, cartilage oligomeric matrix protein (COMP), the precartilage marker collagen I, and the hypertrophic cartilage marker collagen X. PPC showed a proliferative behavior comparable to that of MSC. Chondrogenic stimulation resulted in a higher expression of collagen II, aggrecan, and COMP in ePPC as compared to tPPC and MSC, whereas the expression of collagen I was comparable in all cell types independently of differentiation stimulation. Collagen type X, however, could not be detected. The production of cartilage-like extracellular matrix components in PPC pellets was confirmed by histological and immunohistological stains. Elastin, a component of auricular cartilage, however, was not detected in ePPC-derived pellets. Thus, PPC present a promising cell source for tissue engineering of cartilage. Furthermore, ePPC may be more convenient than tPPC due to their higher chondrogenic potential and better accessibility.
10.1159/000354897
Interleukin-1 beta and tumor necrosis factor alpha inhibit migration activity of chondrogenic progenitor cells from non-fibrillated osteoarthritic cartilage.
Joos Helga,Wildner Anja,Hogrefe Cathrin,Reichel Heiko,Brenner Rolf E
Arthritis research & therapy
INTRODUCTION:The repair capability of traumatized articular cartilage is highly limited so that joint injuries often lead to osteoarthritis. Migratory chondrogenic progenitor cells (CPC) might represent a target cell population for in situ regeneration. This study aims to clarify, whether 1) CPC are present in regions of macroscopically intact cartilage from human osteoarthritic joints, 2) CPC migration is stimulated by single growth factors and the cocktail of factors released from traumatized cartilage and 3) CPC migration is influenced by cytokines present in traumatized joints. METHODS:We characterized the cells growing out from macroscopically intact human osteoarthritic cartilage using a panel of positive and negative surface markers and analyzed their differentiation capacity. The migratory response to platelet-derived growth factor (PDGF)-BB, insulin-like growth factor 1 (IGF-1), supernatants obtained from in vitro traumatized cartilage and interleukin-1 beta (IL-1β) as well as tumor necrosis factor alpha (TNF-α) were tested with a modified Boyden chamber assay. The influence of IL-1β and TNF-α was additionally examined by scratch assays and outgrowth experiments. RESULTS:A comparison of 25 quadruplicate marker combinations in CPC and bone-marrow derived mesenchymal stromal cells showed a similar expression profile. CPC cultures had the potential for adipogenic, osteogenic and chondrogenic differentiation. PDGF-BB and IGF-1, such as the supernatant from traumatized cartilage, induced a significant site-directed migratory response. IL-1β and TNF-α significantly reduced basal cell migration and abrogated the stimulative effect of the growth factors and the trauma supernatant. Both cytokines also inhibited cell migration in the scratch assay and primary outgrowth of CPC from cartilage tissue. In contrast, the cytokine IL-6, which is present in trauma supernatant, did not affect growth factor induced migration of CPC. CONCLUSION:These results indicate that traumatized cartilage releases chemoattractive factors for CPC but IL-1β and TNF-α inhibit their migratory activity which might contribute to the low regenerative potential of cartilage in vivo.
10.1186/ar4299
Hypertrophic differentiation during chondrogenic differentiation of progenitor cells is stimulated by BMP-2 but suppressed by BMP-7.
Caron M M J,Emans P J,Cremers A,Surtel D A M,Coolsen M M E,van Rhijn L W,Welting T J M
Osteoarthritis and cartilage
OBJECTIVE:Bone morphogenic protein (BMP)-2 and BMP-7 are clinically approved and their recombinant proteins are used for bone tissue regenerative purposes and widely evaluated for cartilage regeneration. Previous comparison of the in vitro chondrogenic characteristics of BMP-2 vs BMP-7 did not address hypertrophic differentiation and characterizing their chondrogenic properties with a focus in on chondrocyte hypertrophy was topic of investigation in this study. DESIGN:Equimolar concentrations of BMP-2 or BMP-7 were added to chondrogenic differentiating ATDC5, human bone marrow stem cells or rabbit periosteal explants. Expression of Col2a1, Sox9, Acan, Col10a1, Runx2, ALP, Mmp13, Mef2c and Bapx1/Nkx3.2 was determined by reverse transcription-quantitative PCR (RT-qPCR) and immunoblotting. Glycosaminoglycan content, cell proliferation capacity and ALP activity were analysed by colourimetric analyses. Expression of Bapx1/Nkx3.2 and Sox9 was targeted by transfection of target specific siRNA duplexes. RESULTS:BMP-2 dose-dependently increased chondrocyte hypertrophy during chondrogenic differentiation of progenitor cells, whereas BMP-7 acted hypertrophy-suppressive and chondro-promotive. Both BMPs did not influence cell proliferation, but they did increase total glycosaminoglycan content. In a candidate approach Bapx1/Nkx3.2 was found to be involved in the BMP-7 mediated suppression of chondrocyte hypertrophy in ATDC5 cells. CONCLUSIONS:BMP-2 and BMP-7 display opposing actions on the chondrogenic outcome of differentiating progenitor cells: BMP-2 acts a specific inducer of chondrocyte hypertrophy, while BMP-7 appears to increase or maintain chondrogenic potential and prevent chondrocyte hypertrophy. Our results pave the way for an application-dependent differential use of BMP-2 or BMP-7.
10.1016/j.joca.2013.01.009
Migratory chondrogenic progenitor cells from repair tissue during the later stages of human osteoarthritis.
Koelling Sebastian,Kruegel Jenny,Irmer Malte,Path Jan Ragnar,Sadowski Boguslawa,Miro Xavier,Miosge Nicolai
Cell stem cell
The regeneration of diseased hyaline cartilage continues to be a great challenge, mainly because degeneration--caused either by major injury or by age-related processes--can overextend the tissue's self-renewal capacity. We show that repair tissue from human articular cartilage during the late stages of osteoarthritis harbors a unique progenitor cell population, termed chondrogenic progenitor cells (CPCs). These exhibit stem cell characteristics such as clonogenicity, multipotency, and migratory activity. The isolated CPCs, which exhibit a high chondrogenic potential, were shown to populate diseased tissue ex vivo. Moreover, downregulation of the osteogenic transcription factor runx-2 enhanced the expression of the chondrogenic transcription factor sox-9. This, in turn, increased the matrix synthesis potential of the CPCs without altering their migratory capacity. Our results offer new insights into the biology of progenitor cells in the context of diseased cartilage tissue. Our work may be relevant in the development of novel therapeutics for the later stages of osteoarthritis.
10.1016/j.stem.2009.01.015
Chondrogenic differentiation of human subchondral progenitor cells is impaired by rheumatoid arthritis synovial fluid.
Krüger Jan Philipp,Endres Michaela,Neumann Katja,Häupl Thomas,Erggelet Christoph,Kaps Christian
Journal of orthopaedic research : official publication of the Orthopaedic Research Society
In microfracture, subchondral progenitors enter the cartilage defect and form cartilage repair tissue. We hypothesize that synovial fluid (SF) from rheumatoid arthritis (RA) donors affects chondrogenesis of human subchondral progenitors stimulated with transforming growth factor-beta3 (TGFB3), whereas SF from normal and osteoarthritis (OA) donors do not. Human progenitors from subchondral cortico-spongious bone (pool of n = 4) were cultured in micromasses under serum-free conditions and were stimulated with 10 ng/mL TGFB3 and with 5% SF from normal, OA, and RA donors (pool of n = 7, each). Histological staining of proteoglycan and immunostaining of type II collagen showed that progenitors stimulated with SF from RA donors show significantly reduced cartilage matrix formation compared to progenitors treated with TGFB3 or with SF from normal and OA donors (n = 3, each). Gene expression analysis of typical chondrocyte marker genes and genes encoding matrix modifying enzymes showed that SF from OA and RA donors influence the onset of TGFB3-mediated chondrogenesis (pool of 20 micromasses), but had no effect on the gene expression profile after prolonged culture in micromasses. These results suggest that SF from RA patients may impair the chondrogenic development of mesenchymal progenitors in microfracture, whereas osteoarthritic SF may has no negative effect on the cartilage matrix formation.
10.1002/jor.21058
Emergence of chondrogenic progenitor stem cells in transplantation biology-prospects and drawbacks.
Mathur Deepali,Pereira Winston Costa,Anand Akshay
Journal of cellular biochemistry
Avascular tissues such as a cartilage contains a unique type of cell called as the chondrocyte. We, however, have not understood the origin of the chondrocyte population and how this population is maintained in the normal tissue. In spite of being considered to be a simple tissue, scientist had always faced difficulties to engineer this tissue. This is because different structural regions of the articular cartilage were never understood. In addition to this, the limited self-repair potential of cartilage tissue and lack of effective therapeutic options for the treatment of damaged cartilage has remained an unsolved problem. Mesenchymal stem cell based therapy may provide a solution for cartilage regeneration. This is due to their ability to differentiate into chondrogenic lineage when appropriate conditions are provided. An ideal cell source, a three-dimensional cell culture, a suitable scaffold material that accomplishes all the necessary properties and bioactive factors in specific amounts are required to induce chondrocyte differentiation and proliferation. Cartilage tissue engineering is a promising and rapidly expanding area of research that assures cartilage regeneration. However, many unsolved questions concerning the mechanism of engraftment of chondrocytes following transplantation in vivo, biological safety after transplantation and the retention of these cells for lifetime remain to be addressed that is possible only through years of extensive research. Further studies are therefore required to estimate the long-term sustainability of these cells in the native tissue, to identify well suited delivery materials and to have a thorough understanding of the mechanism of interaction between the chondrocytes and extracellular matrix and time is not far when this cell based therapy will provide a comprehensive cure to cartilage disease.
10.1002/jcb.23367
Identification and characterization of chondrogenic progenitor cells in the fascia of postnatal skeletal muscle.
Li Guangheng,Zheng Bo,Meszaros Laura B,Vella Joseph B,Usas Arvydas,Matsumoto Tomoyuki,Huard Johnny
Journal of molecular cell biology
Intramuscular injection of bone morphogenetic proteins (BMPs) has been shown to induce ectopic bone formation. A chondrogenic phase is typically observed in this process, which suggests that there may exist a chondrogenic subpopulation of cells residing in skeletal muscle. Two prospective cell populations were isolated from rat skeletal muscle: fascia-derived cells (FDCs), extracted from gluteus maximus muscle fascia (epimysium) and muscle-derived cells (MDCs) isolated from the muscle body. Both populations were investigated for their cell surface marker profiles (flowcytometry analysis), proliferation rates as well as their myogenic and chondrogenic potentials. The majority of FDCs expressed mesenchymal stromal cell markers but not endothelial cell markers. FDCs underwent chondrogenic differentiation after BMP4 treatment in vitro, but not myogenic differentiation. Although MDCs showed chondrogenic potential, they expressed the myogenic cell marker desmin and readily underwent myogenic differentiation in vitro; however, the chondrogenic potential of the MDCs is confounded by the presence of FDC-like cells residing in the muscle perimysium and endomysium. To clarify the role of the muscle-derived myogenic cells in chondrogenesis, mixed pellets with varying ratios of FDCs and L6 myoblasts were formed and studied for chondrogenic potential. Our results indicated that the chondrogenic potential of the mixed pellets decreased with the increased ratio of myogenic cells to FDCs supporting the role of FDCs in chondrogenesis. Taken together, our results suggest that non-myogenic cells residing in the fascia of skeletal muscle have a strong chondrogenic potential and may represent a novel donor cell source for cartilage regeneration and repair.
10.1093/jmcb/mjr014
Progenitor Cells in Healthy and Osteoarthritic Human Cartilage Have Extensive Culture Expansion Capacity while Retaining Chondrogenic Properties.
Cartilage
OBJECTIVE:Articular cartilage-derived progenitor cells (ACPCs) are a potential new cell source for cartilage repair. This study aims to characterize endogenous ACPCs from healthy and osteoarthritic (OA) cartilage, evaluate their potential for cartilage regeneration, and compare this to cartilage formation by chondrocytes. DESIGN:ACPCs were isolated from full-thickness healthy and OA human cartilage and separated from the total cell population by clonal growth after differential adhesion to fibronectin. ACPCs were characterized by growth kinetics, multilineage differentiation, and surface marker expression. Chondrogenic redifferentiation of ACPCs was compared with chondrocytes in pellet cultures. Pellets were assessed for cartilage-like matrix production by (immuno)histochemistry, quantitative analyses for glycosaminoglycans and DNA content, and expression of chondrogenic and hypertrophic genes. RESULTS:Healthy and OA ACPCs were successfully differentiated toward the adipogenic and chondrogenic lineage, but failed to produce calcified matrix when exposed to osteogenic induction media. Both ACPC populations met the criteria for cell surface marker expression of mesenchymal stromal cells (MSCs). Healthy ACPCs cultured in pellets deposited extracellular matrix containing proteoglycans and type II collagen, devoid of type I collagen. Gene expression of hypertrophic marker type X collagen was lower in healthy ACPC pellets compared with OA pellets. CONCLUSIONS:This study provides further insight into the ACPC population in healthy and OA human articular cartilage. ACPCs show similarities to MSCs, yet do not produce calcified matrix under well-established osteogenic culture conditions. Due to extensive proliferative potential and chondrogenic capacity, ACPCs show potential for cartilage regeneration and possibly for clinical application, as a promising alternative to MSCs or chondrocytes.
10.1177/19476035211059600
Senescent chondrogenic progenitor cells derived from articular cartilage of knee osteoarthritis patients contributes to senescence-associated secretory phenotype via release of IL-6 and IL-8.
Acta histochemica
OBJECTIVES:Despite the presence of chondrogenic progenitor cells (CPCs) in knee osteoarthritis patients they are unable to repair the damaged cartilage. This study aimed to evaluate the oxidative stress, cellular senescence, and senescence-associated secretory phenotype (SASP) in the CPCs derived from osteoarthritic cartilage and compare with the CPCs of healthy articular cartilage. METHODS:Isolated CPCs were characterized based on phenotypic expression of stem cell markers, clonogenicity, and tri-lineage differentiation assay. Production of ROS was measured using DCFDA assay. Cellular senescence in CPCs was assessed by senescence-associated beta-galactosidase assay and expression of senescence markers at the gene level using real-time PCR. Morphological features associated with senescent OA-CPCs were studied using scanning electron microscopy. To study SASP, the production of inflammatory cytokines was assessed in the culture supernatant using a flow-cytometer based cytometric bead array. RESULTS:OA-CPCs exhibited elevated ROS levels along with a relatively high percentage of senescent cells compared to non-OA CPCs, and a positive correlation exists between ROS production and senescence. The morphological assessment of senescent CPCs revealed increased cell size and multiple nuclei in senescent OA-CPCs. These results were further validated by elevated expression of senescence genes p16, p21, and p53. Additionally, culture supernatant of senescent OA-CPCs expressed IL-6 and IL-8 cytokines indicative of SASP. CONCLUSIONS:Despite exhibiting similar expression of stem cell markers and clonogenicity, CPCs undergo oxidative stress in diseased knee joint leading to increased production of intracellular ROS in chondrogenic progenitor cells that support cellular senescence. Further, senescence in OA-CPCs is mediated via the release of pro-inflammatory cytokines, IL-6 and IL-8.
10.1016/j.acthis.2022.151867
Use of recombinant human stromal cell-derived factor 1α-loaded fibrin/hyaluronic acid hydrogel networks to achieve functional repair of full-thickness bovine articular cartilage via homing of chondrogenic progenitor cells.
Arthritis & rheumatology (Hoboken, N.J.)
OBJECTIVE:Articular cartilage damage after joint trauma seldom heals and often leads to osteoarthritis. We previously identified a migratory chondrogenic progenitor cell (CPC) population that responds chemotactically to cell death and rapidly repopulates the injured cartilage matrix, which suggests a potential approach for articular cartilage repair. This study was undertaken to determine whether recombinant human stromal cell-derived factor 1α (rhSDF-1α), a potent CPC chemoattractant, would improve the quality of cartilage regeneration, hypothesizing that increased recruitment of CPCs by rhSDF-1α would promote the formation of cartilage matrix upon chondrogenic induction. METHODS:Full-thickness bovine chondral defects were filled with hydrogel, composed of fibrin and hyaluronic acid and containing rhSDF-1α. Cell migration was monitored, followed by chondrogenic induction. Regenerated tissue was evaluated by histology, immunohistochemistry, and scanning electron microscopy. Push-out tests and unconfined compression tests were performed to assess the strength of tissue integration and the mechanical properties of the regenerated cartilage. RESULTS:Use of rhSDF-1α dramatically improved CPC recruitment to the chondral defects at 12 days. After 6 weeks under chondrogenic conditions, cell morphology, proteoglycan density, and the ultrastructure of the repair tissue were all similar to that found in native cartilage. Compared with empty controls, neocartilage generated in rhSDF-1α-containing defects showed significantly greater interfacial strength, and acquired mechanical properties comparable to those of native cartilage. CONCLUSION:This study showed that stimulating local CPC recruitment prior to treatment with chondrogenic factors significantly improves the biochemical and mechanical properties of the cartilage tissue formed in chondral defects. This simple approach may be implemented in vivo as a one-step procedure by staging the release of chemokine and chondrogenic factors from within the hydrogel, which can be achieved using smart drug-delivery systems.
10.1002/art.39049
Evaluation and comparison of the in vitro characteristics and chondrogenic capacity of four adult stem/progenitor cells for cartilage cell-based repair.
Shafiee Abbas,Kabiri Mahboubeh,Langroudi Lida,Soleimani Masoud,Ai Jafar
Journal of biomedical materials research. Part A
Cell-based therapy is being considered as a promising approach to regenerate damaged cartilage. Though, autologous chondrocyte implantation is the most effective strategy currently in use, but is hampered by some drawbacks seeking comprehensive research to surmount existing limitations or introducing alternative cell sources. In this study, we aimed to evaluate and compare the in vitro characteristics and chondrogenic capacity of some easily available adult cell sources for use in cartilage repair which includes: bone marrow-derived mesenchymal stem cells (MSC), adipose tissue-derived MSC, articular chondrocyte progenitors, and nasal septum-derived progenitors. Human stem/progenitor cells were isolated and expanded. Cell's immunophenotype, biosafety, and cell cycle status were evaluated. Also, cells were seeded onto aligned electrospun poly (l-lactic acid)/poly (ε-caprolactone) nanofibrous scaffolds and their proliferation rate as well as chondrogenic potential were assessed. Cells were almost phenotypically alike as they showed similar cell surface marker expression pattern. The aligned nanofibrous hybrid scaffolds could support the proliferation and chondrogenic differentiation of all cell types. However, nasal cartilage progenitors showed a higher proliferation potential and a higher chondrogenic capacity. Though, mostly similar in the majority of the studied features, nasal septum progenitors demonstrated a higher chondrogenic potential that in combination with their higher proliferation rate and easier access to the source tissue, introduces it as a promising cell source for cartilage tissue engineering and regenerative medicine. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 600-610, 2016.
10.1002/jbm.a.35603