共0篇 平均IF=NaN (-)更多分析

    加载中

    logo
    2021 year in review: Spotlight on eosinophils. The Journal of allergy and clinical immunology This review highlights recent advances in the understanding of eosinophils and eosinophilic diseases, particularly eosinophilic gastrointestinal diseases during the last year. The increasing incidence of diseases marked by eosinophilia has been documented and highlighted the need to understand eosinophil biology and eosinophilic contributions to disease. Significant insight into the nature of eosinophilic diseases has been achieved using next-generation sequencing technologies, proteomic analysis, and machine learning to analyze tissue biopsies. These technologies have elucidated mechanistic underpinnings of eosinophilic inflammation, delineated patient endotypes, and identified patient responses to therapeutic intervention. Importantly, recent clinical studies using mAbs that interfere with type 2 cytokine signaling or deplete eosinophils point to multiple and complex roles of eosinophils in tissues. Several studies identified distinct activation features of eosinophils in different tissues and disease states. The confluence of these studies supports a new paradigm of tissue-resident eosinophils that have pro- and anti-inflammatory immunomodulatory roles in allergic disease. Improved understanding of unique eosinophil activation states is now poised to identify novel therapeutic targets for eosinophilic diseases. 10.1016/j.jaci.2021.11.012
    Eosinophils and eosinophilic immune dysfunction in health and disease. European respiratory review : an official journal of the European Respiratory Society The functions ascribed to eosinophils have classically been limited to host defence against certain parasitic infections and potentially deleterious effects in the setting of specific diseases that are associated with elevated eosinophil counts in blood and/or tissue. The ability to induce eosinophil depletion either experimentally in animal models or through targeted therapies in humans has extended our understanding of the roles played by eosinophils in health and homeostasis as well as in disease pathogenesis. When associated with human disease aetiology, the eosinophil takes on a pathogenic rather than a protective role. This maladaptive response, called "eosinophilic immune dysfunction" herein, appears central to exacerbation pathogenesis and disease control in severe asthma and may be involved in the aetiology of other eosinophil-related conditions ranging from organ-system-limited diseases such as phenotypic subsets of chronic obstructive pulmonary disease and chronic rhinosinusitis with nasal polyposis to more broadly systemic diseases such as eosinophilic granulomatosis with polyangiitis and hypereosinophilic syndrome. In this review, we describe the evidence supporting eosinophilic functions related to health and homeostasis and explore the contribution of eosinophilic immune dysfunction to human disease. 10.1183/16000617.0150-2021
    A new dawn for eosinophils in the tumour microenvironment. Grisaru-Tal Sharon,Itan Michal,Klion Amy D,Munitz Ariel Nature reviews. Cancer Eosinophils are evolutionarily conserved, pleotropic cells that display key effector functions in allergic diseases, such as asthma. Nonetheless, eosinophils infiltrate multiple tumours and are equipped to regulate tumour progression either directly by interacting with tumour cells or indirectly by shaping the tumour microenvironment (TME). Eosinophils can readily respond to diverse stimuli and are capable of synthesizing and secreting a large range of molecules, including unique granule proteins that can potentially kill tumour cells. Alternatively, they can secrete pro-angiogenic and matrix-remodelling soluble mediators that could promote tumour growth. Herein, we aim to comprehensively outline basic eosinophil biology that is directly related to their activity in the TME. We discuss the mechanisms of eosinophil homing to the TME and examine their diverse pro-tumorigenic and antitumorigenic functions. Finally, we present emerging data regarding eosinophils as predictive biomarkers and effector cells in immunotherapy, especially in response to immune checkpoint blockade therapy, and highlight outstanding questions for future basic and clinical cancer research. 10.1038/s41568-020-0283-9