logo logo
Articular fibrocartilage-targeted therapy by microtubule stabilization. Science advances The fibrocartilage presented on the joint surface was caused by cartilage injury or degeneration. There is still a lack of effective strategies for fibrocartilage. Here, we hypothesized that the fibrocartilage could be viewed as a raw material for the renewal of hyaline cartilage and proposed a previously unidentified strategy of cartilage regeneration, namely, "fibrocartilage hyalinization." Cytoskeleton remodeling plays a vital role in modifying the cellular phenotype. We identified that microtubule stabilization by docetaxel repressed cartilage fibrosis and increased the hyaline cartilage extracellular matrix. We further designed a fibrocartilage-targeted negatively charged thermosensitive hydrogel for the sustained delivery of docetaxel, which promoted fibrocartilage hyalinization in the cartilage defect model. Moreover, the mechanism of fibrocartilage hyalinization by microtubule stabilization was verified as the inhibition of Sparc (secreted protein acidic and rich in cysteine). Together, our study suggested that articular fibrocartilage-targeted therapy in situ was a promising strategy for hyaline cartilage repair. 10.1126/sciadv.abn8420
Platelet-Rich Plasma and Adipose-Derived Mesenchymal Stem Cells in Association with Arthroscopic Microfracture of Knee Articular Cartilage Defects: A Pilot Randomized Controlled Trial. Advances in orthopedics Background:This study aims to compare the effects of platelet-rich plasma (PRP) alone or in combination with adipose-derived mesenchymal stem cells (AD-MSCs) in patients affected by cartilage defects, undergoing knee arthroscopic microfracture. Methods:Thirty-eight patients diagnosed with a knee monocompartmental cartilage defect (Outerbridge grade IV) on the MRI, underwent an arthroscopic procedure. After the confirmation of the lesion, they all received the same bone marrow stimulation technique (microfracture) and were randomized into two groups: the first one had additional PRP injection (group A), while the second received PRP and AD-MSC injection (group B). Knee assessment and pain score were documented with Knee Injury Osteoarthritis Outcome Score (KOOS), International Knee Documentation Committee (IKDC) score, Short-Form (SF) 12, and Visual Analogue Scale (VAS) before the treatment and at 1, 3, 6, and 12 months of follow-up postoperatively. An additional arthroscopic procedure, performed in four patients for a subsequent meniscal lesion, let us evaluate cartilage evolution by performing a macro/microscopical assessment on cartilage biopsy specimens. Results:At the 12-month follow-up, both groups showed a comparable functional improvement. The scores on the IKDC form, KOOS, pain VAS, and SF-12 significantly improved from baseline ( < 0.05) to 12 months postoperatively in both treatment groups. The four second-look arthroscopies showed a complete repair of the articular defects by smooth solid cartilage layer, with a good chondrocytic population, in both groups. A thick smooth hyaline-like cartilage with a predominantly viable cell population and normal mineralization (a form closely resembling native tissue) was observed in group B. Conclusions:Modern regenerative medicine techniques, such as PRP and AD-MSC, associated with traditional arthroscopic bone marrow stimulating techniques, seem to enhance cartilage restoration ability. The preliminary results of this pilot study encourage the synergic use of these regenerative modulating systems to improve the quality of the regenerated cartilage. 10.1155/2022/6048477
Promoting endogenous articular cartilage regeneration using extracellular matrix scaffolds. Materials today. Bio Articular cartilage defects fail to heal spontaneously, typically progressing to osteoarthritis. Bone marrow stimulation techniques such as microfracture (MFX) are the current surgical standard of care; however MFX typically produces an inferior fibro-cartilaginous tissue which provides only temporary symptomatic relief. Here we implanted solubilised articular cartilage extracellular matrix (ECM) derived scaffolds into critically sized chondral defects in goats, securely anchoring these implants to the joint surface using a 3D-printed fixation device that overcame the need for sutures or glues. these ECM scaffolds were found to be inherently chondro-inductive, while they promoted superior articular cartilage regeneration compared to microfracture. In an attempt to further improve the quality of repair, we loaded these scaffolds with a known chemotactic factor, transforming growth factor (TGF)-β3. such TGF-β3 loaded scaffolds promoted superior articular cartilage regeneration. This study demonstrates that ECM derived biomaterials, either alone and particularly when combined with exogenous growth factors, can successfully treat articular cartilage defects in a clinically relevant large animal model. 10.1016/j.mtbio.2022.100343