共0篇 平均IF=NaN (-)更多分析

    加载中

    logo
    SARS-CoV-2 infects neurons and induces neuroinflammation in a non-human primate model of COVID-19. Cell reports Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the etiologic agent of coronavirus disease 2019 (COVID-19), can induce a plethora of neurological complications in some patients. However, it is still under debate whether SARS-CoV-2 directly infects the brain or whether CNS sequelae result from systemic inflammatory responses triggered in the periphery. By using high-resolution microscopy, we investigated whether SARS-CoV-2 reaches the brain and how viral neurotropism can be modulated by aging in a non-human primate model of COVID-19. Seven days after infection, SARS-CoV-2 was detected in the olfactory cortex and interconnected regions and was accompanied by robust neuroinflammation and neuronal damage exacerbated in aged, diabetic animals. Our study provides an initial framework for identifying the molecular and cellular mechanisms underlying SARS-CoV-2 neurological complications, which will be essential to reducing both the short- and long-term burden of COVID-19. 10.1016/j.celrep.2022.111573
    Expression of ACE2 in Human Neurons Supports the Neuro-Invasive Potential of COVID-19 Virus. Xu Jiaxi,Lazartigues Eric Cellular and molecular neurobiology The recent outbreak of 2019 coronavirus disease (COVID-19), caused by a novel coronavirus, has now spread quickly worldwide. Like the severe acute respiratory syndrome coronavirus (SARS-CoV), this novel type of coronavirus, SARS-CoV-2, has been demonstrated to utilize angiotensin-converting enzyme 2 (ACE2) as an entry point to the cells. There is a growing body of reports indicating that COVID-19 patients, especially those in severe condition, exhibit neurological symptoms, thus supporting the possibility that SARS-CoV-2 could infect and damage neurons within the central nervous system in humans. Using human pluripotent stem cells-derived neurons, here we show the expression of ACE2 in human neurons via immunocytochemistry. From this perspective, we elaborate on the idea that the neuro-invasive potential of SARS-CoV-2 should be considered as a possible contributory factor, as well as a therapeutic target, for the severe respiratory symptoms in critical COVID-19 cases. 10.1007/s10571-020-00915-1