
The MYB transcription factor superfamily of Arabidopsis: expression analysis and phylogenetic comparison with the rice MYB family.
Yanhui Chen,Xiaoyuan Yang,Kun He,Meihua Liu,Jigang Li,Zhaofeng Gao,Zhiqiang Lin,Yunfei Zhang,Xiaoxiao Wang,Xiaoming Qiu,Yunping Shen,Li Zhang,Xiaohui Deng,Jingchu Luo,Xing-Wang Deng,Zhangliang Chen,Hongya Gu,Li-Jia Qu
Plant molecular biology
MYB proteins are a superfamily of transcription factors that play regulatory roles in developmental processes and defense responses in plants. We identified 198 genes in the MYB superfamily from an analysis of the complete Arabidopsis genome sequence, among them, 126 are R2R3-MYB, 5 are R1R2R3-MYB, 64 are MYB-related, and 3 atypical MYB genes. Here we report the expression profiles of 163 genes in the Arabidopsis MYB superfamily whose full-length open reading frames have been isolated. This analysis indicated that the expression for most of the Arabidopsis MYB genes were responsive to one or multiple types of hormone and stress treatments. A phylogenetic comparison of the members of this superfamily in Arabidopsis and rice suggested that the Arabidopsis MYB superfamily underwent a rapid expansion after its divergence from monocots but before its divergence from other dicots. It is likely that the MYB-related family was more ancient than the R2R3-MYB gene family, or had evolved more rapidly. Therefore, the MYB gene superfamily represents an excellent system for investigating the evolution of large and complex gene families in higher plants. Our comprehensive analysis of this largest transcription factor superfamily of Arabidopsis and rice may help elucidate the possible biological roles of the MYB genes in various aspects of flowering plants.
10.1007/s11103-005-2910-y
Genome-wide identification and characterization of R2R3MYB family in Solanum lycopersicum.
Zhao Panpan,Li Qiang,Li Jing,Wang Lina,Ren Zhonghai
Molecular genetics and genomics : MGG
The R2R3MYB proteins comprise one of the largest families of transcription factors and play regulatory roles in developmental processes and defense responses in plants. However, there has been relatively little effort to systematically carry out comprehensive genomic and functional analyses of these genes in tomato (Solanum lycopersicum L.), a reference species for Solanaceae plants, and the model plant for fruit development. In this study, a total of 121 R2R3MYB genes were identified in the tomato genome released recently and further classified into 29 subgroups based on the phylogenetic analysis of the complete protein sequences. Phylogenetic comparison of the members of this superfamily among tomato, Arabidopsis, grape, rice, poplar, soybean, cucumber and apple revealed that the putative functions of some tomato R2R3MYB proteins were clustered into the Arabidopsis functional clades. The chromosome distribution pattern revealed that tomato R2R3MYB genes were enriched on several chromosomes and 52 % of the family members were tandemly duplicated genes. Tissue specificity or different expression levels of SlR2R3MYBs in different tissues suggested differential regulation of tissue development as well as metabolic regulation. The transcript abundance level analysis during abiotic conditions identified a group of R2R3MYB genes that responded to one or more treatments suggesting that the SlR2R3MYBs played major roles in the plant response to abiotic conditions and involved in signal transduction pathways. This study not only provides a solid foundation for further functional dissection of tomato R2R3MYB family genes, but may also be profitable for, in the future, the improvement of tomato stress tolerance and fruit quality.
10.1007/s00438-014-0879-4
Genome-wide identification and characterization of R2R3MYB family in Cucumis sativus.
Li Qiang,Zhang Cunjia,Li Jing,Wang Lina,Ren Zhonghai
PloS one
BACKGROUND:The R2R3MYB proteins comprise one of the largest families of transcription factors in plants. Although genome-wide analysis of this family has been carried out in some species, little is known about R2R3MYB genes in cucumber (Cucumis sativus L.). PRINCIPAL FINDINGS:This study has identified 55 R2R3MYB genes in the latest cucumber genome and the CsR2R3MYB family contained the smallest number of identified genes compared to other species that have been studied due to the absence of recent gene duplication events. These results were also supported by genome distribution and gene duplication analysis. Phylogenetic analysis showed that they could be classified into 11 subgroups. The evolutionary relationships and the intron-exon organizations that showed similarities with Arabidopsis, Vitis and Glycine R2R3MYB proteins were also analyzed and suggested strong gene conservation but also the expansions of particular functional genes during the evolution of the plant species. In addition, we found that 8 out of 55 (∼14.54%) cucumber R2R3MYB genes underwent alternative splicing events, producing a variety of transcripts from a single gene, which illustrated the extremely high complexity of transcriptome regulation. Tissue-specific expression profiles showed that 50 cucumber R2R3MYB genes were expressed in at least one of the tissues and the other 5 genes showed very low expression in all tissues tested, which suggested that cucumber R2R3MYB genes took part in many cellular processes. The transcript abundance level analysis during abiotic conditions (NaCl, ABA and low temperature treatments) identified a group of R2R3MYB genes that responded to one or more treatments. CONCLUSIONS:This study has produced a comparative genomics analysis of the cucumber R2R3MYB gene family and has provided the first steps towards the selection of CsR2R3MYB genes for cloning and functional dissection that can be used in further studies to uncover their roles in cucumber growth and development.
10.1371/journal.pone.0047576
MYB Gene Family in Potato ( L.): Genome-Wide Identification of Hormone-Responsive Reveals Their Potential Functions in Growth and Development.
Sun Wenjun,Ma Zhaotang,Chen Hui,Liu Moyang
International journal of molecular sciences
As an important nongrain crop, the growth and yield of potato ( L.) is often affected by an unfavorable external environment in the process of cultivation. The MYB family is one of the largest and most important gene families, participating in the regulation of plant growth and development and response to abiotic stresses. Several genes in potato that regulate anthocyanin synthesis and participate in abiotic stress responses have been identified. To identify all L. () genes involved in hormone or stress responses to potentially regulate potato growth and development, we identified the MYB gene family at the genome-wide level. In this work, 158 genes were found in the potato genome. According to the amino acid sequence of the MYB domain and gene structure, the genes were divided into R2R3-MYB and R1R2R3-MYB families, and the R2R3-MYB family was divided into 20 subgroups (SGs). The expression of 21 genes from different SGs in roots, stems, leaves, flowers, shoots, stolons, young tubers, and mature tubers was determined by quantitative real-time polymerase chain reaction (qRT-PCR). The expression patterns of genes in potatoes treated with abscisic acid (ABA), indole-3-acetic acid (IAA), gibberellin acid 3 (GA3), NaCl, mannitol, and heat were also measured. We have identified several potential candidate genes that regulate the synthesis of potato flavonoids or participate in hormone or stress responses. This work provides a comprehensive understanding of the MYB family in potato and will lay a foundation for the future investigation of the potential functions of genes in the growth and development of potato.
10.3390/ijms20194847