logo logo
Notch signaling regulates the FOXP3 promoter through RBP-J- and Hes1-dependent mechanisms. Ou-Yang Hai-Feng,Zhang Hong-Wei,Wu Chang-Gui,Zhang Ping,Zhang Jian,Li Jun-Chang,Hou Li-Hong,He Fei,Ti Xin-Yu,Song Li-Qiang,Zhang Su-Zhen,Feng Lei,Qi Hao-Wen,Han Hua Molecular and cellular biochemistry Evidence has shown that Notch signaling modulates CD4(+)CD25(+) regulatory T-cells (Tregs). As transcription factor Foxp3 acts as a master molecule governing the development and function of Tregs, we investigated whether Notch signaling might directly regulate Foxp3 expression. Here, we provide evidence that Notch signaling can modulate the FOXP3 promoter through RBP-J- and Hes1-dependent mechanisms. A conserved RBP-J-binding site and N-box sites were identified within the FOXP3 promoter. We show that the Notch intracellular domain (NIC), the active form of Notch receptors, activates a reporter driven by the FOXP3 promoter. Dissection of the FOXP3 promoter revealed bipartite effects of the RBP-J-binding site and the N-boxes: the RBP-J-binding site positively, while the N-boxes negatively regulated the FOXP3 promoter activity. Moreover, in freshly isolated Tregs, NIC-RBP-J complex is bound to the FOXP3 promoter in Tregs. Our results suggest that Notch signaling might be involved in the development and function of Tregs through regulating Foxp3 expression. 10.1007/s11010-008-9912-4
Notch signalling via RBP-J promotes myeloid differentiation. Schroeder T,Just U The EMBO journal The expression of Notch receptors on hematopoietic cells and of cognate ligands on bone marrow stromal cells suggests a possible role for Notch signalling in the regulation of hematopoiesis. In order to assess the involvement of Notch1 signalling in myelopoiesis, 32D myeloid progenitor cell lines were engineered to permit the conditional induction of the constitutively active intracellular domain of murine Notch1 (mN1(IC)) by the 4-hydroxytamoxifen-inducible system. The induction of mN1(IC) resulted in accelerated and increased granulocytic differentiation. These effects were observed under growth conditions that support differentiation and, to a lesser degree, under conditions that normally promote self-renewal. Transient transfection of mN1(IC) deletion mutants showed that the differentiation promoting activity correlated with RBP-J transactivation. Furthermore, expression of a transcriptionally active derivative of RBP-J (RBP-J-VP16) increased myeloid differentiation. To test further the role of Notch signalling in a physiological context, 32D cells expressing mNotch1 were cultured on fibroblast layers that either expressed or did not express the Notch ligand Jagged1. Similar to the induction of mN1(IC), Jagged1 accelerated granulocytic differentiation of 32D cells. Taken together, our data suggest that activation of mNotch1 promotes myeloid differentiation via RBP-J transactivation. 10.1093/emboj/19.11.2558
RING1 inhibits transactivation of RBP-J by Notch through interaction with LIM protein KyoT2. Qin Hongyan,Wang Jishu,Liang Yingmin,Taniguchi Yoshihito,Tanigaki Kenji,Han Hua Nucleic acids research The DNA-binding protein recombination signal binding protein-Jkappa (RBP-J) mediates transcriptional activation of the Notch intracellular domain (NIC). In the absence of transcriptional activators, RBP-J suppresses transcription by recruiting co-suppressors. KyoT2 is a LIM domain protein that inhibits the RBP-J-mediated transcriptional activation. Here we provide evidence that the polycomb group protein RING1 interacts with the LIM domains of KyoT2 in yeast and mammalian cells. The interaction between KyoT2 and RING1 was detected both in vitro and in vivo. By using a co-immunoprecipitation assay, we also showed that, though RING1 and RBP-J did not associate directly, the two molecules could be co-precipitated simultaneously by KyoT2, probably through the LIM domains and the RBP-J-binding motif of KyoT2, respectively. These results suggested the formation of a three-molecule complex consisting of RBP-J, KyoT2 and RING1 in cells. Moreover, we found that overexpression of RING1 together with KyoT2 in cells inhibited transactivation of RBP-J by NIC. Suppression of the NIC- mediated transactivation of RBP-J by RING1 was abrogated by overexpression of KBP1, a molecule that competed with RING1 for binding to LIM domains of KyoT2, suggesting that suppression of RBP-J by RING1 was dependent on its associating with KyoT2. Taken together, our data suggested that there might be at least two ways of the KyoT2-mediated suppression of RBP-J, namely competition for binding sites with transactivators, and recruitment of suppressors such as RING1. 10.1093/nar/gkh295
Involvement of RBP-J in biological functions of mouse Notch1 and its derivatives. Kato H,Taniguchi Y,Kurooka H,Minoguchi S,Sakai T,Nomura-Okazaki S,Tamura K,Honjo T Development (Cambridge, England) Notch is involved in the cell fate determination of many cell lineages. The intracellular region (RAMIC) of Notch1 transactivates genes by interaction with a DNA binding protein RBP-J. We have compared the activities of mouse RAMIC and its derivatives in transactivation and differentiation suppression of myogenic precursor cells. RAMIC comprises two separate domains, IC for transactivation and RAM for RBP-J binding. Although the physical interaction of IC with RBP-J was much weaker than with RAM, transactivation activity of IC was shown to involve RBP-J by using an RBP-J null mutant cell line. IC showed differentiation suppression activity that was generally comparable to its transactivation activity. The RBP-J-VP16 fusion protein, which has strong transactivation activity, also suppressed myogenesis of C2C12. The RAM domain, which has no other activities than binding to RBP-J, synergistically stimulated transactivation activity of IC to the level of RAMIC. The RAM domain was proposed to compete with a putative co-repressor for binding to RBP-J because the RAM domain can also stimulate the activity of RBP-J-VP16. These results taken together, indicate that differentiation suppression of myogenic precursor cells by Notch signalling is due to transactivation of genes carrying RBP-J binding motifs. 10.1242/dev.124.20.4133
RBP-Jkappa/SHARP recruits CtIP/CtBP corepressors to silence Notch target genes. Oswald Franz,Winkler Michael,Cao Ying,Astrahantseff Kathy,Bourteele Soizic,Knöchel Walter,Borggrefe Tilman Molecular and cellular biology Notch is a transmembrane receptor that determines cell fates and pattern formation in all animal species. After ligand binding, proteolytic cleavage steps occur and the intracellular part of Notch translocates to the nucleus, where it targets the DNA-binding protein RBP-Jkappa/CBF1. In the absence of Notch, RBP-Jkappa represses Notch target genes through the recruitment of a corepressor complex. We and others have identified SHARP as a component of this complex. Here, we functionally demonstrate that the SHARP repression domain is necessary and sufficient to repress transcription and that the absence of this domain causes a dominant negative Notch-like phenotype. We identify the CtIP and CtBP corepressors as novel components of the human RBP-Jkappa/SHARP-corepressor complex and show that CtIP binds directly to the SHARP repression domain. Functionally, CtIP and CtBP augment SHARP-mediated repression. Transcriptional repression of the Notch target gene Hey1 is abolished in CtBP-deficient cells or after the functional knockout of CtBP. Furthermore, the endogenous Hey1 promoter is derepressed in CtBP-deficient cells. We propose that a corepressor complex containing CtIP/CtBP facilitates RBP-Jkappa/SHARP-mediated repression of Notch target genes. 10.1128/MCB.25.23.10379-10390.2005
JIP1 binding to RBP-Jk mediates cross-talk between the Notch1 and JIP1-JNK signaling pathway. Kim M-Y,Ann E-J,Mo J-S,Dajas-Bailador F,Seo M-S,Hong J-A,Jung J,Choi Y-H,Yoon J-H,Kim S-M,Choi E-J,Hoe H-S,Whitmarsh A J,Park H-S Cell death and differentiation Notch1 signaling has a critical function in maintaining a balance among cell proliferation, differentiation, and apoptosis. Our earlier work showed that the Notch1 intracellular domain interferes with the scaffolding function of c-Jun N-terminal kinase (JNK)-interacting protein-1 (JIP1), yet the effect of JIP1 for Notch1-recombining binding protein suppressor of hairless (RBP-Jk) signaling remains unknown. Here, we show that JIP1 suppresses Notch1 activity. JIP1 was found to physically associate with either intracellular domain of Notch1 or RBP-Jk and interfere with the interaction between them. Furthermore, we ascertained that JIP1 caused the cytoplasmic retention of RBP-Jk through an interaction between the C-terminal region of JIP1 including Src homology 3 domain and the proline-rich domain of RBP-Jk. We also found that RBP-Jk inhibits JIP1-mediated activation of the JNK1 signaling cascade and cell death. Our results suggest that direct protein-protein interactions coordinate cross-talk between the Notch1-RBP-Jk and JIP1-JNK pathways. 10.1038/cdd.2010.50
Notch-RBP-J signaling is required by bone marrow stromal cells for the treatment of acute graft versus host disease. Wang Yao-Chun,Wang Shu-Hong,Wei Ya-Ning,Du De-Wei,Xu Hao,Gao Chun-Chen,Zheng Min-Hua,Xie Juan,Li Jun-Chang,Dong Guang-Ying,Li Li,Xiao Yang,Han Hua Stem cell research Recent evidence has shown that bone marrow stromal cells (BMSCs) may exhibit immuno-suppression activities through soluble mediators and direct cell-cell contact, but how these processes are modulated has been poorly understood. In this study, we show that the Notch signaling pathway participates in the modulation of BMSCs to elicit their immuno-suppressive roles. In a murine lethal acute graft versus host disease (aGvHD) model, BMSCs deficient for RBP-J, the critical transcription factor mediating signaling from all four mammalian Notch receptors, failed to delay the development of the disease. RBP-J deficient BMSCs were not able to inhibit the proliferation and activation of allogenic T-cells. Moreover, RBP-J deficient BMSCs could not down-regulate the expression of MHC II and co-stimulation molecules CD80 and CD86 on dendritic cells (DCs). The antigen presentation capacity of DCs co-cultured with RBP-J deficient BMSCs was not impaired in contrast to wild type BMSCs. Furthermore, we showed that the productions of IL-6 and PGE2, two critical molecules mediating the immuno-suppressive activities of BMSCs, were reduced significantly in RBP-J deficient BMSCs. Both of the two molecules were importantly involved in the regulation of BMSCs by Notch signaling. In conclusion, our data suggests that the immuno-suppressive effects of BMSCs in aGvHD are dependent on Notch-RBP-J signaling, which regulates the productions of IL-6 and PGE2. 10.1016/j.scr.2013.04.009
Structure-function analysis of RBP-J-interacting and tubulin-associated (RITA) reveals regions critical for repression of Notch target genes. Tabaja Nassif,Yuan Zhenyu,Oswald Franz,Kovall Rhett A The Journal of biological chemistry The Notch pathway is a cell-to-cell signaling mechanism that is essential for tissue development and maintenance, and aberrant Notch signaling has been implicated in various cancers, congenital defects, and cardiovascular diseases. Notch signaling activates the expression of target genes, which are regulated by the transcription factor CSL (CBF1/RBP-J, Su(H), Lag-1). CSL interacts with both transcriptional corepressor and coactivator proteins, functioning as both a repressor and activator, respectively. Although Notch activation complexes are relatively well understood at the structural level, less is known about how CSL interacts with corepressors. Recently, a new RBP-J (mammalian CSL ortholog)-interacting protein termed RITA has been identified and shown to export RBP-J out of the nucleus, thereby leading to the down-regulation of Notch target gene expression. However, the molecular details of RBP-J/RITA interactions are unclear. Here, using a combination of biochemical/cellular, structural, and biophysical techniques, we demonstrate that endogenous RBP-J and RITA proteins interact in cells, map the binding regions necessary for RBP-J·RITA complex formation, and determine the X-ray structure of the RBP-J·RITA complex bound to DNA. To validate the structure and glean more insights into function, we tested structure-based RBP-J and RITA mutants with biochemical/cellular assays and isothermal titration calorimetry. Whereas our structural and biophysical studies demonstrate that RITA binds RBP-J similarly to the RAM (RBP-J-associated molecule) domain of Notch, our biochemical and cellular assays suggest that RITA interacts with additional regions in RBP-J. Taken together, these results provide molecular insights into the mechanism of RITA-mediated regulation of Notch signaling, contributing to our understanding of how CSL functions as a transcriptional repressor of Notch target genes. 10.1074/jbc.M117.791707
Notch-RBP-J signaling regulates the transcription factor IRF8 to promote inflammatory macrophage polarization. Xu Haixia,Zhu Jimmy,Smith Sinead,Foldi Julia,Zhao Baohong,Chung Allen Y,Outtz Hasina,Kitajewski Jan,Shi Chao,Weber Silvio,Saftig Paul,Li Yueming,Ozato Keiko,Blobel Carl P,Ivashkiv Lionel B,Hu Xiaoyu Nature immunology Emerging concepts suggest that the functional phenotype of macrophages is regulated by transcription factors that define alternative activation states. We found that RBP-J, the main nuclear transducer of signaling via Notch receptors, augmented Toll-like receptor 4 (TLR4)-induced expression of key mediators of classically activated M1 macrophages and thus of innate immune responses to Listeria monocytogenes. Notch-RBP-J signaling controlled expression of the transcription factor IRF8 that induced downstream M1 macrophage-associated genes. RBP-J promoted the synthesis of IRF8 protein by selectively augmenting kinase IRAK2-dependent signaling via TLR4 to the kinase MNK1 and downstream translation-initiation control through eIF4E. Our results define a signaling network in which signaling via Notch-RBP-J and TLRs is integrated at the level of synthesis of IRF8 protein and identify a mechanism by which heterologous signaling pathways can regulate the TLR-induced inflammatory polarization of macrophages. 10.1038/ni.2304
Akt1-Mediated Phosphorylation of RBP-Jk Controls Notch1 Signaling. Kim M-Y,Park J Y,Park H-S Biochemistry. Biokhimiia The Notch1 signaling pathway plays a crucial role in determining cell fate, including cell growth and differentiation. In this study, we demonstrated that the antagonistic action of RTK (receptor tyrosine kinase) signaling pathway on the Notch1 signaling pathway is mediated via Ras-PI3K-Akt1. The PI3K-Akt1 signaling pathway was shown to inhibit Notch1 signaling via phosphorylation of RBP-Jk. We observed not only reduced association between Notch1 and RBP-Jk, but also suppression of the Notch1 transcriptional activity. Our results demonstrated that Akt1 functions as a natural inhibitor of the Notch1 signaling pathway via phosphorylation of RBP-Jk. 10.1134/S0006297919120137
Two opposing roles of RBP-J in Notch signaling. Tanigaki Kenji,Honjo Tasuku Current topics in developmental biology RBP-J/Su(H)/Lag1, the main transcriptional mediator of Notch signaling, binds DNA with the consensus sequence YRTGDGAD. Notch target genes can be controlled by two opposing activities of RBP-J. The interaction of the Notch intracellular domain with RBP-J induces a weak transcriptional activation and requires an additional tissue-specific transcriptional activator such as bHLH proteins or GATA to mediate strong target gene expression. For example, during Drosophila sensory organ precursor (SOP) cell development, proneural bHLH interacts with Da, a Drosophila orthologue of E2A, to form a tissue-specific activator of Su(H), the Drosophila orthologue of RBP-J. This complex and Su(H) act synergistically to promote the epidermal cell fate. In contrast, a complex of Su(H) with Hairless, a Drosophila functional homologue of MINT, has transcriptional repression activity that promotes SOP differentiation to neurons. Recent conditional loss-of-function studies demonstrated that transcriptional networks involving RBP-J, MINT, and E2A are conserved in mammalian cell differentiation, including multiple steps of lymphocyte development, and probably also in neuronal maturation in adult neurogenesis. During neurogenesis, Notch-RBP-J signaling was thought historically to be involved mainly in the maintenance of undifferentiated neural progenitors. However, the identification of a tissue-specific transcriptional activator of RBP-J-Notch has revealed new roles of RBP-J in the promotion of neuronal maturation. Finally, the Notch-independent function of RBP-J was recently discovered and will be reviewed here. 10.1016/S0070-2153(10)92007-3