logo logo
Atherosclerosis and multi-organ-associated pathologies. Seminars in immunopathology Atherosclerosis is a chronic inflammatory disease of the vascular system that is characterized by the deposition of modified lipoproteins, accumulation of immune cells, and formation of fibrous tissue within the vessel wall. The disease occurs in vessels throughout the body and affects the functions of almost all organs including the lymphoid system, bone marrow, heart, brain, pancreas, adipose tissue, liver, kidneys, and gastrointestinal tract. Atherosclerosis and associated factors influence these tissues via the modulation of local vascular functions, induction of cholesterol-associated pathologies, and regulation of local immune responses. In this review, we discuss how atherosclerosis interferers with functions of different organs via several common pathways and how the disturbance of immunity in atherosclerosis can result in disease-provoking dysfunctions in multiple tissues. Our growing appreciation of the implication of atherosclerosis and associated microenvironmental conditions in the multi-organ pathology promises to influence our understanding of CVD-associated disease pathologies and to provide new therapeutic opportunities. 10.1007/s00281-022-00914-y
Angiopoietin-like proteins in atherosclerosis. Liu Yi-Zhang,Zhang Chi,Jiang Jie-Feng,Cheng Zhe-Bin,Zhou Zheng-Yang,Tang Mu-Yao,Sun Jia-Xiang,Huang Liang Clinica chimica acta; international journal of clinical chemistry Atherosclerosis, as a chronic inflammatory disease within the arterial wall, is a leading cause of morbidity and mortality worldwide due to its role in myocardial infarction, stroke and peripheral artery disease. Additional evidence is emerging that the angiopoietin-like (ANGPTL) family of proteins participate in the pathology of this disease process via endothelial dysfunction, inflammation, dyslipidemia, calcification, foam cell formation and platelet activation. This review summarizes current knowledge on the ANGPTL family of proteins in atherosclerosis related pathological processes. Moreover, the potential value of ANGPTL family proteins as predictive biomarkers in atherosclerosis is discussed. Given the attractive role of ANGPTL3, ANGPTL4, ANGPTL8 in atherosclerotic dyslipidemia via regulation of lipoprotein lipase (LPL), antisense oligonucleotide or/and monoclonal antibody-based inactivation of these proteins represent potential atherosclerotic therapies. 10.1016/j.cca.2021.06.024
Mouse models of atherosclerosis in translational research. Trends in pharmacological sciences Atherosclerotic cardiovascular disease (CVD), the major cause of premature human mortality, is a chronic and progressive metabolic and inflammatory disease in large- and medium-sized arteries. Mouse models are widely used to gain mechanistic insights into the pathogenesis of atherosclerosis and have facilitated the discovery of anti-atherosclerotic drugs. Despite promising preclinical studies, many drug candidates have not translated to clinical use because of the complexity of disease patho-mechanisms including lipid metabolic traits and inflammatory, genetic, and hemodynamic factors. We review the current preclinical utility and translation potential of traditional [apolipoprotein E (APOE)- and low-density lipoprotein (LDL) receptor (LDLR)-deficient mice] and emerging mouse models that include partial carotid ligation and AAV8-Pcsk9-D377Y injection in atherosclerosis research and drug discovery. This article represents an important resource in atherosclerosis research. 10.1016/j.tips.2022.06.009
Annexin A protein family in atherosclerosis. Clinica chimica acta; international journal of clinical chemistry Atherosclerosis, a silent chronic vascular pathology, is the cause of the majority of cardiovascular ischaemic events. Atherosclerosis is characterized by a series of deleterious changes in cellularity, including endothelial dysfunction, transmigration of circulating inflammatory cells into the arterial wall, pro-inflammatory cytokines production, lipid accumulation in the intima, vascular local inflammatory response, atherosclerosis-related cells apoptosis and autophagy. Proteins of Annexin A (AnxA) family, the well-known Ca phospholipid-binding protein, have many functions in regulating inflammation-related enzymes and cell signaling transduction, thus influencing cell adhesion, migration, differentiation, proliferation and apoptosis. There is now accumulating evidence that some members of the AnxA family, such as AnxA1, AnxA2, AnxA5 and AnxA7, play major roles in the development of atherosclerosis. This article discusses the major roles of AnxA1, AnxA2, AnxA5 and AnxA7, and the multifaceted mechanisms of the main biological process in which they are involved in atherosclerosis. Considering these evidences, it has been proposed that AnxA are drivers- and not merely participator- on the road to atherosclerosis, thus the progression of atherosclerosis may be prevented by targeting the expression or function of the AnxA family proteins. 10.1016/j.cca.2022.05.009