
Antimicrobial Resistance Threats in the emerging COVID-19 pandemic: Where do we stand?
Journal of infection and public health
Antimicrobial resistance (AMR) continues to exert a substantial toll on the global health and world economy and is now expected to be hidden by COVID-19 for a while. The wrong consumption of antibiotics during the COVID-19 pandemic will raise disastrous effects on AMR management and antibiotic stewardship programs. This is related to the concerns extrapolated due to an increase in mortality rates in patients with bacterial coinfections. Importantly, the immune system of COVID-19 patients in regions with high AMR may be fighting on two fronts altogether, the virus and MDR bacteria. Current control policies to manage AMR and prioritization of antibiotic stewardship plans are mandatory during this pandemic. This review aims to discuss the rising concerns of the excess use of antibiotics in COVID-19 patients highlighting the role of bacterial coinfections in these patients. Types of prescribed antibiotics and the development of antibiotic resistance is addressed as well.
10.1016/j.jiph.2021.02.011
Antibiotics and antimicrobial resistance in the COVID-19 era: Perspective from resource-limited settings.
Lucien Mentor Ali Ber,Canarie Michael F,Kilgore Paul E,Jean-Denis Gladzdin,Fénélon Natael,Pierre Manise,Cerpa Mauricio,Joseph Gerard A,Maki Gina,Zervos Marcus J,Dely Patrick,Boncy Jacques,Sati Hatim,Rio Ana Del,Ramon-Pardo Pilar
International journal of infectious diseases : IJID : official publication of the International Society for Infectious Diseases
The dissemination of COVID-19 around the globe has been followed by an increased consumption of antibiotics. This is related to the concern for bacterial superinfection in COVID-19 patients. The identification of bacterial pathogens is challenging in low and middle income countries (LMIC), as there are no readily-available and cost-effective clinical or biological markers that can effectively discriminate between bacterial and viral infections. Fortunately, faced with the threat of COVID-19 spread, there has been a growing awareness of the importance of antimicrobial stewardship programs, as well as infection prevention and control measures that could help reduce the microbial load and hence circulation of pathogens, with a reduction in dissemination of antimicrobial resistance. These measures should be improved particularly in developing countries. Studies need to be conducted to evaluate the worldwide evolution of antimicrobial resistance during the COVID-19 pandemic, because pathogens do not respect borders. This issue takes on even greater importance in developing countries, where data on resistance patterns are scarce, conditions for infectious pathogen transmission are optimal, and treatment resources are suboptimal.
10.1016/j.ijid.2020.12.087
Bacterial and Fungal Coinfection in Individuals With Coronavirus: A Rapid Review To Support COVID-19 Antimicrobial Prescribing.
Rawson Timothy M,Moore Luke S P,Zhu Nina,Ranganathan Nishanthy,Skolimowska Keira,Gilchrist Mark,Satta Giovanni,Cooke Graham,Holmes Alison
Clinical infectious diseases : an official publication of the Infectious Diseases Society of America
BACKGROUND:To explore and describe the current literature surrounding bacterial/fungal coinfection in patients with coronavirus infection. METHODS:MEDLINE, EMBASE, and Web of Science were searched using broad-based search criteria relating to coronavirus and bacterial coinfection. Articles presenting clinical data for patients with coronavirus infection (defined as SARS-1, MERS, SARS-CoV-2, and other coronavirus) and bacterial/fungal coinfection reported in English, Mandarin, or Italian were included. Data describing bacterial/fungal coinfections, treatments, and outcomes were extracted. Secondary analysis of studies reporting antimicrobial prescribing in SARS-CoV-2 even in absence of coinfection was performed. RESULTS:1007 abstracts were identified. Eighteen full texts reporting bacterial/fungal coinfection were included. Most studies did not identify or report bacterial/fungal coinfection (85/140; 61%). Nine of 18 (50%) studies reported on COVID-19, 5/18 (28%) on SARS-1, 1/18 (6%) on MERS, and 3/18 (17%) on other coronaviruses. For COVID-19, 62/806 (8%) patients were reported as experiencing bacterial/fungal coinfection during hospital admission. Secondary analysis demonstrated wide use of broad-spectrum antibacterials, despite a paucity of evidence for bacterial coinfection. On secondary analysis, 1450/2010 (72%) of patients reported received antimicrobial therapy. No antimicrobial stewardship interventions were described. For non-COVID-19 cases, bacterial/fungal coinfection was reported in 89/815 (11%) of patients. Broad-spectrum antibiotic use was reported. CONCLUSIONS:Despite frequent prescription of broad-spectrum empirical antimicrobials in patients with coronavirus-associated respiratory infections, there is a paucity of data to support the association with respiratory bacterial/fungal coinfection. Generation of prospective evidence to support development of antimicrobial policy and appropriate stewardship interventions specific for the COVID-19 pandemic is urgently required.
10.1093/cid/ciaa530
Antimicrobial resistance (AMR) in COVID-19 patients: a systematic review and meta-analysis (November 2019-June 2021).
Kariyawasam Ruwandi M,Julien Danielle A,Jelinski Dana C,Larose Samantha L,Rennert-May Elissa,Conly John M,Dingle Tanis C,Chen Justin Z,Tyrrell Gregory J,Ronksley Paul E,Barkema Herman W
Antimicrobial resistance and infection control
BACKGROUND:Pneumonia from SARS-CoV-2 is difficult to distinguish from other viral and bacterial etiologies. Broad-spectrum antimicrobials are frequently prescribed to patients hospitalized with COVID-19 which potentially acts as a catalyst for the development of antimicrobial resistance (AMR). OBJECTIVES:We conducted a systematic review and meta-analysis during the first 18 months of the pandemic to quantify the prevalence and types of resistant co-infecting organisms in patients with COVID-19 and explore differences across hospital and geographic settings. METHODS:We searched MEDLINE, Embase, Web of Science (BioSIS), and Scopus from November 1, 2019 to May 28, 2021 to identify relevant articles pertaining to resistant co-infections in patients with laboratory confirmed SARS-CoV-2. Patient- and study-level analyses were conducted. We calculated pooled prevalence estimates of co-infection with resistant bacterial or fungal organisms using random effects models. Stratified meta-analysis by hospital and geographic setting was also performed to elucidate any differences. RESULTS:Of 1331 articles identified, 38 met inclusion criteria. A total of 1959 unique isolates were identified with 29% (569) resistant organisms identified. Co-infection with resistant bacterial or fungal organisms ranged from 0.2 to 100% among included studies. Pooled prevalence of co-infection with resistant bacterial and fungal organisms was 24% (95% CI 8-40%; n = 25 studies: I = 99%) and 0.3% (95% CI 0.1-0.6%; n = 8 studies: I = 78%), respectively. Among multi-drug resistant organisms, methicillin-resistant Staphylococcus aureus, carbapenem-resistant Acinetobacter baumannii, Klebsiella pneumoniae, Pseudomonas aeruginosa and multi-drug resistant Candida auris were most commonly reported. Stratified analyses found higher proportions of AMR outside of Europe and in ICU settings, though these results were not statistically significant. Patient-level analysis demonstrated > 50% (n = 58) mortality, whereby all but 6 patients were infected with a resistant organism. CONCLUSIONS:During the first 18 months of the pandemic, AMR prevalence was high in COVID-19 patients and varied by hospital and geography although there was substantial heterogeneity. Given the variation in patient populations within these studies, clinical settings, practice patterns, and definitions of AMR, further research is warranted to quantify AMR in COVID-19 patients to improve surveillance programs, infection prevention and control practices and antimicrobial stewardship programs globally.
10.1186/s13756-022-01085-z
The interrelationships between antimicrobial resistance, COVID-19, past, and future pandemics.
Ukuhor Hyacinth O
Journal of infection and public health
The COVID-19 pandemic caused by severe acute respiratory syndrome coronavirus 2 was first reported in Wuhan, China in December 2019 and is associated with high levels of morbidity and mortality. Various types of bacterial and fungal infections occur in patients with COVID-19 with some resistant to antimicrobials that are associated with significantly worse outcomes and deaths. Besides, antimicrobial-resistant (AMR) co-infections are responsible for clinically significant mortality in past pandemics. There is evidence to suggest that factors such as the proliferation of adulterated antimicrobials in some developing countries, international travels, issues with healthcare financing, use/misuse by humans, and in agricultural production and climate change are determinants of AMR at various levels of society. These complex interrelated determinants intersect with AMR in current and past pandemics and could amplify the potential of a future antimicrobial resistance pandemic. Therefore, global concerted interventions targeted at all levels of society to reduce the use/misuse of antimicrobials and disrupt these multifaceted, interrelated, and interdependent factors are urgently needed. This paper leverages prior research to describe complex major determinants of antimicrobial resistance and provides fresh insights into possible intervention strategies to tackle antimicrobial resistance including in the current and future pandemics.
10.1016/j.jiph.2020.10.018
COVID-19 and antimicrobial resistance: A cross-study.
The Science of the total environment
Antimicrobial resistance (AMR) is emerging as a severe concern due to the escalating instances of resistant human pathogens encountered by health workers. Consequently, there is a shortage of antibiotics to treat Multidrug Resistance (MDR) and Extensively Drug Resistance (XDR) patients. The primary cause of AMR is the vast array of anthropogenic disturbances in natural microfauna brought about by the extensive use of antibiotics. Coronavirus Disease of 2019 (COVID-19) has crashed antibiotic stewardship and single-handedly increased the global usage of antibiotics, Personal Protective Equipment (PPE), and biocide, causing a ripple effect in the existing global AMR problem. This surge in antibiotic usage has escalated the residual antibiotics reaching Wastewater Treatment Plants (WWTPs) from pharmaceutical companies, health care centers, and domestic settings. Ultimately the natural water bodies receiving their effluents will have higher concentrations of emerging contaminants as the WWTPs cannot remove the Pharmaceuticals and Personal Care Products (PPCPs) completely. Furthermore, increased biocides usage will increase AMR by co-resistance, and increasing plastics will turn into microplastics and get converted to plastisphere, which will further enhance its propagation. Therefore, it is crucial to curb antibiotic usage, implement antibiotic stewardship dynamically; and, ameliorate the present condition of WWTPs to remove residual PPCPs efficiently. The need of the hour is to address the grave threat of AMR, which is loitering silently; if not the mankind will endure more affliction hereafter.
10.1016/j.scitotenv.2021.150873
Increased antimicrobial resistance during the COVID-19 pandemic.
Lai Chih-Cheng,Chen Shey-Ying,Ko Wen-Chien,Hsueh Po-Ren
International journal of antimicrobial agents
In addition to SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) infection itself, an increase in the incidence of antimicrobial resistance poses collateral damage to the current status of the COVID-19 (coronavirus disease 2019) pandemic. There has been a rapid increase in multidrug-resistant organisms (MDROs), including extended-spectrum β-lactamase (ESBL)-producing Klebsiella pneumoniae, carbapenem-resistant New Delhi metallo-β-lactamase (NDM)-producing Enterobacterales, Acinetobacter baumannii, methicillin-resistant Staphylococcus aureus (MRSA), pan-echinocandin-resistant Candida glabrata and multi-triazole-resistant Aspergillus fumigatus. The cause is multifactorial and is particularly related to high rates of antimicrobial agent utilisation in COVID-19 patients with a relatively low rate of co- or secondary infection. Appropriate prescription and optimised use of antimicrobials according to the principles of antimicrobial stewardship as well as quality diagnosis and aggressive infection control measures may help prevent the occurrence of MDROs during this pandemic.
10.1016/j.ijantimicag.2021.106324