Overlapping memory trace indispensable for linking, but not recalling, individual memories.
Yokose Jun,Okubo-Suzuki Reiko,Nomoto Masanori,Ohkawa Noriaki,Nishizono Hirofumi,Suzuki Akinobu,Matsuo Mina,Tsujimura Shuhei,Takahashi Yukari,Nagase Masashi,Watabe Ayako M,Sasahara Masakiyo,Kato Fusao,Inokuchi Kaoru
Science (New York, N.Y.)
Memories are not stored in isolation from other memories but are integrated into associative networks. However, the mechanisms underlying memory association remain elusive. Using two amygdala-dependent behavioral paradigms-conditioned taste aversion (CTA) and auditory-cued fear conditioning (AFC)-in mice, we found that presenting the conditioned stimulus used for the CTA task triggered the conditioned response of the AFC task after natural coreactivation of the memories. This was accompanied through an increase in the overlapping neuronal ensemble in the basolateral amygdala. Silencing of the overlapping ensemble suppressed CTA retrieval-induced freezing. However, retrieval of the original CTA or AFC memory was not affected. A small population of coshared neurons thus mediates the link between memories. They are not necessary for recalling individual memories.
10.1126/science.aal2690
Reactivation of neural ensembles during the retrieval of recent and remote memory.
Tayler Kaycie K,Tanaka Kazumasa Z,Reijmers Leon G,Wiltgen Brian J
Current biology : CB
BACKGROUND:Episodic memories are encoded within hippocampal and neocortical circuits. Retrieving these memories is assumed to involve reactivation of neural ensembles that were established during learning. Although it has been possible to follow the activity of individual neurons shortly after learning, it has not been possible to examine their activity weeks later during retrieval. We addressed this issue by using a stable form of GFP (H2B-GFP) to permanently tag neurons that are active during contextual fear conditioning. RESULTS:H2B-GFP expression in transgenic mice was increased by learning and could be regulated by doxycycline (DOX). Using this system, we found a large network of neurons in the hippocampus, amygdala, and neocortex that were active during context fear conditioning and subsequent memory retrieval 2 days later. Reactivation was contingent on memory retrieval and was not observed when animals were trained and tested in different environments. When memory was retrieved several weeks after learning, reactivation was altered in the hippocampus and amygdala but remained unchanged in the cortex. CONCLUSIONS:Retrieving a recently formed context fear memory reactivates neurons in the hippocampus, amygdala, and cortex. Several weeks after learning, the degree of reactivation is altered in hippocampal and amygdala networks but remains stable in the cortex.
10.1016/j.cub.2012.11.019
Heroes of the Engram.
Josselyn Sheena A,Köhler Stefan,Frankland Paul W
The Journal of neuroscience : the official journal of the Society for Neuroscience
In 1904, Richard Semon introduced the term "engram" to describe the neural substrate responsible for (or at least important in) storing and recalling memories (i.e., a memory trace). The recent introduction of a vast array of powerful new tools to probe and manipulate memory function at the cell and neuronal circuit level has spurred an explosion of interest in studying the engram. However, the present "engram renaissance" was not borne in isolation but rather builds on a long tradition of memory research. We believe it is important to acknowledge the debts our current generation of scientists owes to those scientists who have offered key ideas, persevered through failed experiments and made important discoveries before us. Examining the past can also offer a fresh perspective on the present state and future promise of the field. Given the large amount of empirical advances made in recent years, it seems particularly timely to look back and review the scientists who introduced the seminal terminology, concepts, methodological approaches, and initial data pertaining to engrams. Rather than simply list their many accomplishments, here we color in some details of the lives and milestone contributions of our seven personal heroes of the engram (Richard Semon, Karl Lashley, Donald Hebb, Wilder Penfield, Brenda Milner, James McConnell, and Richard Thompson). In reviewing their historic role, we also illustrate how their work remains relevant to today's studies.
10.1523/JNEUROSCI.0056-17.2017
New vistas on synaptic plasticity: the receptor mosaic hypothesis of the engram.
Agnati L F,Fuxe K,Zoli M,Rondanini C,Ogren S O
Medical biology
The concepts of coexistence of transmitters and of receptor-receptor interactions have increased our understanding of the integrative processes regulating synaptic homeostasis and synaptic plasticity. Depending upon the ionotropic or metabotropic characteristics of the cotransmitter, it may be mainly involved in synaptic homeostasis or synaptic plasticity, respectively. A chemical trace of the postsynaptic activity can be obtained because of the plasticity of the receptor molecules. Thus, the heuristic hypothesis is introduced that islands of receptors located on postsynaptic membranes of local circuits can be formed by means of receptor-receptor interactions favouring ordered electrotonic sequences in the local circuits. This hypothesis has been named the receptor mosaic hypothesis of the engram. The islands or clusters of receptors can then store specific and complex information and when activated by the transmitters they may induce unique changes in ion permeability and cell metabolism which, at the local circuit level, can mimic exactly a previous electrotonic sequence. They can therefore represent at least part of the engram. This hypothesis is introduced against the background of the possible existence of different types of encodings of memory.
Memory development and neurophysiology: accomplishments and limitations.
Goodman G S,Haith M M
Child development
The review of Teyler and Fountain offers developmental psychologists an update on the status of neurophysiological theorizing and findings related to memory and learning. Recent findings of LTP and of localization of different types of memory in different brain areas have potential for enriching our understanding of memory development. However, we note several limitations in Teyler and Fountain's presentation in that they do not: distinguish between learning and memory, nor between storage and retrieval; address the role of knowledge-based or top-down influences in memory and learning; employ concepts that can accommodate such developmental phenomena as stages in the hierarchical reorganization of memory. We conclude that even when the age-old search for the "engram" is accomplished, these issues will remain, and that different levels of neural modeling will be required to accommodate them. It is important for developmental psychologists and neuroscientists to maintain communication for the purpose of mutual refinement of models as their knowledge bases continue to grow.
Learning, memory and the brain.
Horn G
Indian journal of physiology and pharmacology
Human and non-human animals acquire information about the world through the process of learning, and store that information as memory. Yet central as the storage process is to adaptive behaviour, progress in understanding its neural bases has been slow and only recently efforts have shown clear signs of being successful. The knowledge that comes from this progress strongly suggests that different kinds of learning involve different neural circuits and accordingly involve different memory systems. Indeed, it is becoming increasingly clear that multiple memory systems may be a fundamental part of the design of the vertebrate brain. It has long been supposed that learning leads to the formation, or to the strengthening of particular pathways in the brain. Once formed, or strengthened in this way a pathway was viewed as a 'trace' or 'engram' 'representing' the particular experience or relationship which had been learned. There is substantial evidence that neural pathways, especially synaptic connectivity, can be modified by experience-as by rearing rats in an 'enriched' environment with other rats rather than rearing them in isolation--as well as by modifying the diet or by depriving young rats of their thyroid gland. This evidence demonstrates that the central nervous system is plastic, but provides no hint that such plasticity is involved in learning. The evidence that synaptic plasticity is indeed involved in learning and memory is relatively recent.
Transient changes in excitability of rabbit CA3 neurons with a time course appropriate to support memory consolidation.
Thompson L T,Moyer J R,Disterhoft J F
Journal of neurophysiology
1. The excitability of CA3 pyramidal neurons was assessed with intracellular recordings in hippocampal slices from behaviorally naive rabbits. CA3 pyramidal neurons had large (-13.1 +/- 0.3 mV; mean +/- SE) postburst afterhyperpolarization (AHPs) and exhibited robust spike-frequency adaptation (accommodation) to prolonged (800-ms) depolarizing current injection at resting potentials of -68 mV. AHP and accommodation measures differed in scale but not in kind from those obtained in stable recordings from CA1 pyramidal neurons in the same slices or from the same rabbits, with CA3 neurons having larger longer AHPs but fewer spikes during accommodation. 2. Groups of rabbits were trained in a simple, associative-learning task, trace eye-blink conditioning, which required an intact hippocampus for successful acquisition. Memory consolidation in this task also involves the hippocampus, whereas long-term retention of the learned response does not. The time course and magnitude of learning-specific changes in excitability were assessed in 201 CA3 pyramidal neurons. 3. Learning increased the excitability of CA3 pyramidal neurons soon after acquisition (within 1-24 h). The mean postburst AHP was reduced to approximately half (-6.4 +/- 0.3 mV) the basal amplitude of the AHP observed in naive controls. The area and duration of the postburst AHP similarly were reduced. Approximately half of all pyramidal neurons tested soon after learning exhibited significantly reduced AHPs, whereas none exhibited enhanced AHPs. 4. Trace conditioning also reduced accommodation of CA3 pyramidal neurons 1-24 h after learning. Neurons from successfully trained rabbits fired significantly more action potentials (5.6 +/- 1.5) in response to prolonged depolarization than did neurons from naive controls (4.1 +/- 0.2). The magnitude of the learning-specific change in accommodation was less than that for the AHP. Approximately 45% of neurons tested exhibited significantly reduced accommodation soon after learning. 5. Both learning-specific changes in CA3 increased neuronal excitability. Both changes were highly time dependent. AHPs were reduced maximally 1-24 h after learning, then increased, returning to basal (naive) levels within 7 days and remaining basal thereafter. The decay rate of accommodation to basal levels preceded that of the AHP by several days. 6. Other membrane properties, including action potential characteristics, resting potential, and input resistance, were unchanged by learning. The restriction of the observed changes to two interrelated measures of excitability concurs with earlier reports that learning-specific changes in the mammalian hippocampus are linked to changes in a limited number of membrane conductances. 7. Learning, not long-term memory or performance of the learned behavior, was linked to the excitability changes. Neurons from rabbits that failed to acquire the task after considerable training exhibited no excitability changes. Neurons from pseudoconditioned rabbits were indistinguishable from neurons of behaviorally naive controls. Finally, neurons from rabbits that explicitly demonstrated long-term retention of the conditioned response were indistinguishable from those of naive controls. 8. Behavioral changes persisted for extremely long periods, but the observed changes in hippocampal excitability were transient and greatest soon after learning. Excitability was enhanced for a period of a few days, a period demonstrated in other eyeblink studies to be required for memory consolidation. Because hippocampal excitability then returned to basal levels but memory of the learned task persisted, postconsolidation memory traces (the "engram") must be extrahippocampal.
10.1152/jn.1996.76.3.1836
Mechanisms of Pavlovian fear conditioning: has the engram been located?
Paré Denis
Trends in neurosciences
Uncertainty persists as to whether the amygdala is a crucial site of plasticity for classically conditioned fear or merely a sensory relay to structures generating fear responses. A recent Nature study suggests that associative synaptic changes take place in neurons of the amygdala during fear conditioning, and that these changes require dopamine-mediated modulation. Nevertheless, these findings do not prove that the amygdala is a sufficient site of plasticity for fear memory.
CREB and the discovery of cognitive enhancers.
Scott Roderick,Bourtchuladze Rusiko,Gossweiler Scott,Dubnau Josh,Tully Tim
Journal of molecular neuroscience : MN
In the past few years, a series of molecular-genetic, biochemical, cellular and behavioral studies in fruit flies, sea slugs and mice have confirmed a long-standing notion that long-term memory formation depends on the synthesis of new proteins. Experiments focused on the cAMP-responsive transcription factor, CREB, have established that neural activity-induced regulation of gene transcription promotes a synaptic growth process that strengthens the connections among active neurons. This process constitutes a physical basis for the engram--and CREB is a "molecular switch" to produce the engram. Helicon Therapeutics has been formed to identify drug compounds that enhance memory formation via augmentation of CREB biochemistry. Candidate compounds have been identified from a high throughput cell-based screen and are being evaluated in animal models of memory formation. A gene discovery program also seeks to identify new genes, which function downstream of CREB during memory formation, as a source for new drug discoveries in the future. Together, these drug and gene discovery efforts promise new class of pharmaceutical therapies for the treatment of various forms of cognitive dysfunction.
10.1007/s12031-002-0029-z
The neurobiology of consolidations, or, how stable is the engram?
Dudai Yadin
Annual review of psychology
Consolidation is the progressive postacquisition stabilization of long-term memory. The term is commonly used to refer to two types of processes: synaptic consolidation, which is accomplished within the first minutes to hours after learning and occurs in all memory systems studied so far; and system consolidation, which takes much longer, and in which memories that are initially dependent upon the hippocampus undergo reorganization and may become hippocampal-independent. The textbook account of consolidation is that for any item in memory, consolidation starts and ends just once. Recently, a heated debate has been revitalized on whether this is indeed the case, or, alternatively, whether memories become labile and must undergo some form of renewed consolidation every time they are activated. This debate focuses attention on fundamental issues concerning the nature of the memory trace, its maturation, persistence, retrievability, and modifiability.
10.1146/annurev.psych.55.090902.142050
Rites of passage of the engram: reconsolidation and the lingering consolidation hypothesis.
Dudai Yadin,Eisenberg Mark
Neuron
Memory consolidation refers to the progressive stabilization of items in long-term memory as well as to the memory phase(s) during which this stabilization takes place. The textbook account is that, for each item in memory, consolidation starts and ends just once. In recent years, however, the notion that memories reconsolidate upon their reactivation and hence regain sensitivity to amnestic agents has been revitalized. This issue is of marked theoretical and clinical interest. Here we review the recent literature on reconsolidation and infer, on the basis of the majority of the data, that blockade of reconsolidation does not induce permanent amnesia. Further, in several systems, reconsolidation occurs only in relatively fresh memories. We propose a framework model, which interprets reconsolidation as a manifestation of lingering consolidation, rather than recapitulation of a process that had already come to a closure. This model reflects on the nature of consolidation in general and makes predictions that could guide further research.
10.1016/j.neuron.2004.09.003
Tracking the fear engram: the lateral amygdala is an essential locus of fear memory storage.
Schafe Glenn E,Doyère Valérie,LeDoux Joseph E
The Journal of neuroscience : the official journal of the Society for Neuroscience
Although it is believed that different types of memories are localized in discreet regions of the brain, concrete experimental evidence of the existence of such engrams is often elusive. Despite being one of the best characterized memory systems of the brain, the question of where fear memories are localized in the brain remains a hotly debated issue. Here, we combine site-specific behavioral pharmacology with multisite electrophysiological recording techniques to show that the lateral nucleus of the amygdala, long thought to be critical for the acquisition of fear memories, is also an essential locus of fear memory storage.
10.1523/JNEUROSCI.3307-05.2005
Pavlovian fear conditioning activates a common pattern of neurons in the lateral amygdala of individual brains.
Bergstrom Hadley C,McDonald Craig G,Johnson Luke R
PloS one
Understanding the physical encoding of a memory (the engram) is a fundamental question in neuroscience. Although it has been established that the lateral amygdala is a key site for encoding associative fear memory, it is currently unclear whether the spatial distribution of neurons encoding a given memory is random or stable. Here we used spatial principal components analysis to quantify the topography of activated neurons, in a select region of the lateral amygdala, from rat brains encoding a Pavlovian conditioned fear memory. Our results demonstrate a stable, spatially patterned organization of amygdala neurons are activated during the formation of a Pavlovian conditioned fear memory. We suggest that this stable neuronal assembly constitutes a spatial dimension of the engram.
10.1371/journal.pone.0015698
The role of reconsolidation and the dynamic process of long-term memory formation and storage.
Alberini Cristina M
Frontiers in behavioral neuroscience
It is becoming increasingly clear that the processes of memory formation and storage are exquisitely dynamic. Elucidating the nature and temporal evolution of the biological changes that accompany encoding, storage, and retrieval is key to understand memory formation. For explicit or medial temporal lobe-dependent memories that form after a discrete event and are stored for a long time, the physical changes underlying the encoding and processing of the information (memory trace or engram) remain in a fragile state for some time. However, over time, the new memory becomes increasingly resistant to disruption until it is consolidated. Retrieval or reactivation of an apparently consolidated memory can render the memory labile again, and reconsolidation is the process that occurs to mediate its restabilization. Reconsolidation also evolves with the age of the memory: Young memories are sensitive to post-reactivation disruption, but older memories are more resistant. Why does a memory become labile again if it is retrieved or reactivated? Here I suggest that the main function of reconsolidation is to contribute to the lingering consolidation process and mediate memory strengthening. I also discuss the literature and results regarding the influence of the passage of time on the reconsolidation of memory. These points have important implications for the use of reconsolidation in therapeutic settings.
10.3389/fnbeh.2011.00012
Optogenetic stimulation of a hippocampal engram activates fear memory recall.
Liu Xu,Ramirez Steve,Pang Petti T,Puryear Corey B,Govindarajan Arvind,Deisseroth Karl,Tonegawa Susumu
Nature
A specific memory is thought to be encoded by a sparse population of neurons. These neurons can be tagged during learning for subsequent identification and manipulation. Moreover, their ablation or inactivation results in reduced memory expression, suggesting their necessity in mnemonic processes. However, the question of sufficiency remains: it is unclear whether it is possible to elicit the behavioural output of a specific memory by directly activating a population of neurons that was active during learning. Here we show in mice that optogenetic reactivation of hippocampal neurons activated during fear conditioning is sufficient to induce freezing behaviour. We labelled a population of hippocampal dentate gyrus neurons activated during fear learning with channelrhodopsin-2 (ChR2) and later optically reactivated these neurons in a different context. The mice showed increased freezing only upon light stimulation, indicating light-induced fear memory recall. This freezing was not detected in non-fear-conditioned mice expressing ChR2 in a similar proportion of cells, nor in fear-conditioned mice with cells labelled by enhanced yellow fluorescent protein instead of ChR2. Finally, activation of cells labelled in a context not associated with fear did not evoke freezing in mice that were previously fear conditioned in a different context, suggesting that light-induced fear memory recall is context specific. Together, our findings indicate that activating a sparse but specific ensemble of hippocampal neurons that contribute to a memory engram is sufficient for the recall of that memory. Moreover, our experimental approach offers a general method of mapping cellular populations bearing memory engrams.
10.1038/nature11028
The restless engram: consolidations never end.
Dudai Yadin
Annual review of neuroscience
Memory consolidation is the hypothetical process in which an item in memory is transformed into a long-term form. It is commonly addressed at two complementary levels of description and analysis: the cellular/synaptic level (synaptic consolidation) and the brain systems level (systems consolidation). This article focuses on selected recent advances in consolidation research, including the reconsolidation of long-term memory items, the brain mechanisms of transformation of the content and of cue-dependency of memory items over time, as well as the role of rest and sleep in consolidating and shaping memories. Taken together, the picture that emerges is of dynamic engrams that are formed, modified, and remodified over time at the systems level by using synaptic consolidation mechanisms as subroutines. This implies that, contrary to interpretations that have dominated neuroscience for a while, but similar to long-standing cognitive concepts, consolidation of at least some items in long-term memory may never really come to an end.
10.1146/annurev-neuro-062111-150500
Creating a false memory in the hippocampus.
Ramirez Steve,Liu Xu,Lin Pei-Ann,Suh Junghyup,Pignatelli Michele,Redondo Roger L,Ryan Tomás J,Tonegawa Susumu
Science (New York, N.Y.)
Memories can be unreliable. We created a false memory in mice by optogenetically manipulating memory engram-bearing cells in the hippocampus. Dentate gyrus (DG) or CA1 neurons activated by exposure to a particular context were labeled with channelrhodopsin-2. These neurons were later optically reactivated during fear conditioning in a different context. The DG experimental group showed increased freezing in the original context, in which a foot shock was never delivered. The recall of this false memory was context-specific, activated similar downstream regions engaged during natural fear memory recall, and was also capable of driving an active fear response. Our data demonstrate that it is possible to generate an internally represented and behaviorally expressed fear memory via artificial means.
10.1126/science.1239073
The search for a hippocampal engram.
Mayford Mark
Philosophical transactions of the Royal Society of London. Series B, Biological sciences
Understanding the molecular and cellular changes that underlie memory, the engram, requires the identification, isolation and manipulation of the neurons involved. This presents a major difficulty for complex forms of memory, for example hippocampus-dependent declarative memory, where the participating neurons are likely to be sparse, anatomically distributed and unique to each individual brain and learning event. In this paper, I discuss several new approaches to this problem. In vivo calcium imaging techniques provide a means of assessing the activity patterns of large numbers of neurons over long periods of time with precise anatomical identification. This provides important insight into how the brain represents complex information and how this is altered with learning. The development of techniques for the genetic modification of neural ensembles based on their natural, sensory-evoked, activity along with optogenetics allows direct tests of the coding function of these ensembles. These approaches provide a new methodological framework in which to examine the mechanisms of complex forms of learning at the level of the neurons involved in a specific memory.
10.1098/rstb.2013.0161
The synaptic plasticity and memory hypothesis: encoding, storage and persistence.
Takeuchi Tomonori,Duszkiewicz Adrian J,Morris Richard G M
Philosophical transactions of the Royal Society of London. Series B, Biological sciences
The synaptic plasticity and memory hypothesis asserts that activity-dependent synaptic plasticity is induced at appropriate synapses during memory formation and is both necessary and sufficient for the encoding and trace storage of the type of memory mediated by the brain area in which it is observed. Criteria for establishing the necessity and sufficiency of such plasticity in mediating trace storage have been identified and are here reviewed in relation to new work using some of the diverse techniques of contemporary neuroscience. Evidence derived using optical imaging, molecular-genetic and optogenetic techniques in conjunction with appropriate behavioural analyses continues to offer support for the idea that changing the strength of connections between neurons is one of the major mechanisms by which engrams are stored in the brain.
10.1098/rstb.2013.0288
Identification and optogenetic manipulation of memory engrams in the hippocampus.
Ramirez Steve,Tonegawa Susumu,Liu Xu
Frontiers in behavioral neuroscience
With the accumulation of our knowledge about how memories are formed, consolidated, retrieved, and updated, neuroscience is now reaching a point where discrete memories can be identified and manipulated at rapid timescales. Here, we start with historical studies that lead to the modern memory engram theory. Then, we will review recent advances in memory engram research that combine transgenic and optogenetic approaches to reveal the underlying neuronal substrates sufficient for activating mnemonic processes. We will focus on three concepts: (1) isolating memory engrams at the level of single cells to tag them for subsequent manipulation; (2) testing the sufficiency of these engrams for memory recall by artificially activating them; and (3) presenting new stimuli during the artificial activation of these engrams to induce an association between the two to form a false memory. We propose that hippocampal cells that show activity-dependent changes during learning construct a cellular basis for contextual memory engrams.
10.3389/fnbeh.2013.00226
Synaptic plasticity associated with a memory engram in the basolateral amygdala.
Nonaka Ayako,Toyoda Takeshi,Miura Yuki,Hitora-Imamura Natsuko,Naka Masamitsu,Eguchi Megumi,Yamaguchi Shun,Ikegaya Yuji,Matsuki Norio,Nomura Hiroshi
The Journal of neuroscience : the official journal of the Society for Neuroscience
Synaptic plasticity is a cellular mechanism putatively underlying learning and memory. However, it is unclear whether learning induces synaptic modification globally or only in a subset of neurons in associated brain regions. In this study, we genetically identified neurons activated during contextual fear learning and separately recorded synaptic efficacy from recruited and nonrecruited neurons in the mouse basolateral amygdala (BLA). We found that the fear learning induces presynaptic potentiation, which was reflected by an increase in the miniature EPSC frequency and by a decrease in the paired-pulse ratio. Changes occurred only in the cortical synapses targeting the BLA neurons that were recruited into the fear memory trace. Furthermore, we found that fear learning reorganizes the neuronal ensemble responsive to the conditioning context in conjunction with the synaptic plasticity. In particular, the neuronal activity during learning was associated with the neuronal recruitment into the context-responsive ensemble. These findings suggest that synaptic plasticity in a subset of BLA neurons contributes to fear memory expression through ensemble reorganization.
10.1523/JNEUROSCI.4233-13.2014
In search of a recognition memory engram.
Brown M W,Banks P J
Neuroscience and biobehavioral reviews
A large body of data from human and animal studies using psychological, recording, imaging, and lesion techniques indicates that recognition memory involves at least two separable processes: familiarity discrimination and recollection. Familiarity discrimination for individual visual stimuli seems to be effected by a system centred on the perirhinal cortex of the temporal lobe. The fundamental change that encodes prior occurrence within the perirhinal cortex is a reduction in the responses of neurones when a stimulus is repeated. Neuronal network modelling indicates that a system based on such a change in responsiveness is potentially highly efficient in information theoretic terms. A review is given of findings indicating that perirhinal cortex acts as a storage site for recognition memory of objects and that such storage depends upon processes producing synaptic weakening.
10.1016/j.neubiorev.2014.09.016
Identification and Manipulation of Memory Engram Cells.
Liu Xu,Ramirez Steve,Redondo Roger L,Tonegawa Susumu
Cold Spring Harbor symposia on quantitative biology
How memories are formed and stored in the brain remains a fascinating question in neuroscience. Here we discuss the memory engram theory, our recent attempt to identify and manipulate memory engram cells in the brain with optogenetics, and how these methods are used to address questions such as how false memory is formed and how the valence of a memory can be changed in the brain.
10.1101/sqb.2014.79.024901
Is the place cell a "supple" engram?
Routtenberg Aryeh
Hippocampus
This short note, which honors Nobelists O'Keefe and the Mosers, asks how the patterning of inputs to a single place cell regulates its firing. Because the combination of inputs to a single CA1 place cell is very large, the generally accepted view is rejected that inputs to a place cell are relatively restricted, near identical repetition upon re-presentation of the environment. The alternative proposed here is that when any 100 excitatory inputs are fired activating a subset combination, which is a large number, selected from the 30,000 synapses, this leads to CA1 cell firing. The selection of the combination of inputs is a very large number it nonetheless leads to the conclusion that even though the same cell dutifully fires when the animal is in an identical location, the inputs that fire the place cell are nonetheless obligatorily non-identical. This CA1 input combinatorial proposal may help us understand the physiological underpinnings of the memory mechanism arising from supple synapses (Routtenberg (2013), Hippocampus 23:202-206).
10.1002/hipo.22446
[Memory engram of brain circuit].
Kojima Hiroto,Sakaguchi Tetsuya,Ikegaya Yuji
Brain and nerve = Shinkei kenkyu no shinpo
How are memories stored in the brain and retrieved on demand? This is a frequently asked question. Indeed, we acquire new memories daily and remember old ones. However, how we can memorize one-time experiences is yet to be investigated. Here, we review possible mechanisms by which memories are maintained in neural networks.
10.11477/mf.1416200187
Memory engram storage and retrieval.
Tonegawa Susumu,Pignatelli Michele,Roy Dheeraj S,Ryan Tomás J
Current opinion in neurobiology
A great deal of experimental investment is directed towards questions regarding the mechanisms of memory storage. Such studies have traditionally been restricted to investigation of the anatomical structures, physiological processes, and molecular pathways necessary for the capacity of memory storage, and have avoided the question of how individual memories are stored in the brain. Memory engram technology allows the labeling and subsequent manipulation of components of specific memory engrams in particular brain regions, and it has been established that cell ensembles labeled by this method are both sufficient and necessary for memory recall. Recent research has employed this technology to probe fundamental questions of memory consolidation, differentiating between mechanisms of memory retrieval from the true neurobiology of memory storage.
10.1016/j.conb.2015.07.009
Finding the engram.
Josselyn Sheena A,Köhler Stefan,Frankland Paul W
Nature reviews. Neuroscience
Many attempts have been made to localize the physical trace of a memory, or engram, in the brain. However, until recently, engrams have remained largely elusive. In this Review, we develop four defining criteria that enable us to critically assess the recent progress that has been made towards finding the engram. Recent 'capture' studies use novel approaches to tag populations of neurons that are active during memory encoding, thereby allowing these engram-associated neurons to be manipulated at later times. We propose that findings from these capture studies represent considerable progress in allowing us to observe, erase and express the engram.
10.1038/nrn4000
Memory reconsolidation may be disrupted by a distractor stimulus presented during reactivation.
Crestani Ana Paula,Zacouteguy Boos Flávia,Haubrich Josué,Ordoñez Sierra Rodrigo,Santana Fabiana,Molina Johanna Marcela Duran,Cassini Lindsey de Freitas,Alvares Lucas de Oliveira,Quillfeldt Jorge Alberto
Scientific reports
Memories can be destabilized by the reexposure to the training context, and may reconsolidate into a modified engram. Reconsolidation relies on some particular molecular mechanisms involving LVGCCs and GluN2B-containing NMDARs. In this study we investigate the interference caused by the presence of a distractor - a brief, unanticipated stimulus that impair a fear memory expression - during the reactivation session, and tested the hypothesis that this disruptive effect relies on a reconsolidation process. Rats previously trained in the contextual fear conditioning (CFC) were reactivated in the presence or absence of a distractor stimulus. In the test, groups reactivated in the original context with distractor displayed a reduction of the freezing response lasting up to 20 days. To check for the involvement of destabilization / reconsolidation mechanisms, we studied the effect of systemic nimodipine (a L-VGCC blocker) or intra-CA1 ifenprodil (a selective GluN2B/NMDAR antagonist) infused right before the reactivation session. Both treatments were able to prevent the disruptive effect of distraction. Ifenprodil results also bolstered the case for hippocampus as the putative brain structure hosting this phenomenon. Our results provide some evidence in support of a behavioral, non-invasive procedure that was able to disrupt an aversive memory in a long-lasting way.
10.1038/srep13633
Still searching for the engram.
Eichenbaum Howard
Learning & behavior
For nearly a century, neurobiologists have searched for the engram-the neural representation of a memory. Early studies showed that the engram is widely distributed both within and across brain areas and is supported by interactions among large networks of neurons. Subsequent research has identified engrams that support memory within dedicated functional systems for habit learning and emotional memory, but the engram for declarative memories has been elusive. Nevertheless, recent years have brought progress from molecular biological approaches that identify neurons and networks that are necessary and sufficient to support memory, and from recording approaches and population analyses that characterize the information coded by large neural networks. These new directions offer the promise of revealing the engrams for episodic and semantic memories.
10.3758/s13420-016-0218-1
What is memory? The present state of the engram.
Poo Mu-Ming,Pignatelli Michele,Ryan Tomás J,Tonegawa Susumu,Bonhoeffer Tobias,Martin Kelsey C,Rudenko Andrii,Tsai Li-Huei,Tsien Richard W,Fishell Gord,Mullins Caitlin,Gonçalves J Tiago,Shtrahman Matthew,Johnston Stephen T,Gage Fred H,Dan Yang,Long John,Buzsáki György,Stevens Charles
BMC biology
The mechanism of memory remains one of the great unsolved problems of biology. Grappling with the question more than a hundred years ago, the German zoologist Richard Semon formulated the concept of the engram, lasting connections in the brain that result from simultaneous "excitations", whose precise physical nature and consequences were out of reach of the biology of his day. Neuroscientists now have the knowledge and tools to tackle this question, however, and this Forum brings together leading contemporary views on the mechanisms of memory and what the engram means today.
10.1186/s12915-016-0261-6
Parvalbumin interneurons constrain the size of the lateral amygdala engram.
Morrison Dano J,Rashid Asim J,Yiu Adelaide P,Yan Chen,Frankland Paul W,Josselyn Sheena A
Neurobiology of learning and memory
Memories are thought to be represented by discrete physiological changes in the brain, collectively referred to as an engram, that allow patterns of activity present during learning to be reactivated in the future. During the formation of a conditioned fear memory, a subset of principal (excitatory) neurons in the lateral amygdala (LA) are allocated to a neuronal ensemble that encodes an association between an initially neutral stimulus and a threatening aversive stimulus. Previous experimental and computational work suggests that this subset consists of only a small proportion of all LA neurons, and that this proportion remains constant across different memories. Here we examine the mechanisms that contribute to the stability of the size of the LA component of an engram supporting a fear memory. Visualizing expression of the activity-dependent gene Arc following memory retrieval to identify neurons allocated to an engram, we first show that the overall size of the LA engram remains constant across conditions of different memory strength. That is, the strength of a memory was not correlated with the number of LA neurons allocated to the engram supporting that memory. We then examine potential mechanisms constraining the size of the LA engram by expressing inhibitory DREADDS (designer receptors exclusively activated by designer drugs) in parvalbumin-positive (PV) interneurons of the amygdala. We find that silencing PV neurons during conditioning increases the size of the engram, especially in the dorsal subnucleus of the LA. These results confirm predictions from modeling studies regarding the role of inhibition in shaping the size of neuronal memory ensembles and provide additional support for the idea that neurons in the LA are sparsely allocated to the engram based on relative neuronal excitability.
10.1016/j.nlm.2016.07.007
Competition between engrams influences fear memory formation and recall.
Rashid Asim J,Yan Chen,Mercaldo Valentina,Hsiang Hwa-Lin Liz,Park Sungmo,Cole Christina J,De Cristofaro Antonietta,Yu Julia,Ramakrishnan Charu,Lee Soo Yeun,Deisseroth Karl,Frankland Paul W,Josselyn Sheena A
Science (New York, N.Y.)
Collections of cells called engrams are thought to represent memories. Although there has been progress in identifying and manipulating single engrams, little is known about how multiple engrams interact to influence memory. In lateral amygdala (LA), neurons with increased excitability during training outcompete their neighbors for allocation to an engram. We examined whether competition based on neuronal excitability also governs the interaction between engrams. Mice received two distinct fear conditioning events separated by different intervals. LA neuron excitability was optogenetically manipulated and revealed a transient competitive process that integrates memories for events occurring closely in time (coallocating overlapping populations of neurons to both engrams) and separates memories for events occurring at distal times (disallocating nonoverlapping populations to each engram).
10.1126/science.aaf0594
The neurocircuitry of remote cued fear memory.
Bergstrom Hadley C
Neuroscience and biobehavioral reviews
Memories of threatening, fear-evoking events can persist even over a lifetime. While fear memory is widely considered to be a highly persistent and durable form of memory, its circuits are not. This article reviews the dynamic temporal representation of remote fear memory in the brain, at the level of local circuits and distributed networks. Data from the study of Pavlovian cued fear conditioning suggests memory retrieval remains amygdala-dependent, even over protracted time scales, all the while interconnected cortical and subcortical circuits are newly recruited and progressively reorganized. A deeper understanding into how the neurocircuitry of cued fear memory reorganizes with the passage of time will advance our ongoing search for the elusive physical changes representing fear memories in the brain. Considering that persistent, pathological fear memories are a hallmark feature of post-traumatic stress disorder (PTSD), the behavioral and circuit-level study of remote cued fear memory retrieval adds a key element towards a systems understanding of PTSD.
10.1016/j.neubiorev.2016.09.028
Distinct memory engrams in the infralimbic cortex of rats control opposing environmental actions on a learned behavior.
Suto Nobuyoshi,Laque Amanda,De Ness Genna L,Wagner Grant E,Watry Debbie,Kerr Tony,Koya Eisuke,Mayford Mark R,Hope Bruce T,Weiss Friedbert
eLife
Conflicting evidence exists regarding the role of infralimbic cortex (IL) in the environmental control of appetitive behavior. Inhibition of IL, irrespective of its intrinsic neural activity, attenuates not only the ability of environmental cues predictive of reward availability to promote reward seeking, but also the ability of environmental cues predictive of reward omission to suppress this behavior. Here we report that such bidirectional behavioral modulation in rats is mediated by functionally distinct units of neurons (neural ensembles) that are concurrently localized within the same IL brain area but selectively reactive to different environmental cues. Ensemble-specific neural activity is thought to function as a memory engram representing a learned association between environment and behavior. Our findings establish the causal evidence for the concurrent existence of two distinct engrams within a single brain site, each mediating opposing environmental actions on a learned behavior.
10.7554/eLife.21920
Engrams and circuits crucial for systems consolidation of a memory.
Science (New York, N.Y.)
Episodic memories initially require rapid synaptic plasticity within the hippocampus for their formation and are gradually consolidated in neocortical networks for permanent storage. However, the engrams and circuits that support neocortical memory consolidation have thus far been unknown. We found that neocortical prefrontal memory engram cells, which are critical for remote contextual fear memory, were rapidly generated during initial learning through inputs from both the hippocampal-entorhinal cortex network and the basolateral amygdala. After their generation, the prefrontal engram cells, with support from hippocampal memory engram cells, became functionally mature with time. Whereas hippocampal engram cells gradually became silent with time, engram cells in the basolateral amygdala, which were necessary for fear memory, were maintained. Our data provide new insights into the functional reorganization of engrams and circuits underlying systems consolidation of memory.
10.1126/science.aam6808
Synaptic Plasticity, Engrams, and Network Oscillations in Amygdala Circuits for Storage and Retrieval of Emotional Memories.
Bocchio Marco,Nabavi Sadegh,Capogna Marco
Neuron
The neuronal circuits of the basolateral amygdala (BLA) are crucial for acquisition, consolidation, retrieval, and extinction of associative emotional memories. Synaptic plasticity in BLA neurons is essential for associative emotional learning and is a candidate mechanism through which subsets of BLA neurons (commonly termed "engram") are recruited during learning and reactivated during memory retrieval. In parallel, synchronous oscillations in the theta and gamma bands between the BLA and interconnected structures have been shown to occur during consolidation and retrieval of emotional memories. Understanding how these cellular and network phenomena interact is vital to decipher the roles of emotional memory formation and storage in the healthy and pathological brain. Here, we review data on synaptic plasticity, engrams, and network oscillations in the rodent BLA. We explore mechanisms through which synaptic plasticity, engrams, and long-range synchrony might be interconnected.
10.1016/j.neuron.2017.03.022
On the research of time past: the hunt for the substrate of memory.
Annals of the New York Academy of Sciences
The search for memory is one of the oldest quests in written human history. For at least two millennia, we have tried to understand how we learn and remember. We have gradually converged on the brain and looked inside it to find the basis of knowledge, the trace of memory. The search for memory has been conducted on multiple levels, from the organ to the cell to the synapse, and has been distributed across disciplines with less chronological or intellectual overlap than one might hope. Frequently, the study of the mind and its memories has been severely restricted by technological or philosophical limitations. However, in the last few years, certain technologies have emerged, offering new routes of inquiry into the basis of memory. The 2016 Kavli Futures Symposium was devoted to the past and future of memory studies. At the workshop, participants evaluated the logic and data underlying the existing and emerging theories of memory. In this paper, written in the spirit of the workshop, we briefly review the history of the hunt for memory, summarizing some of the key debates at each level of spatial resolution. We then discuss the exciting new opportunities to unravel the mystery of memory.
10.1111/nyas.13348
Toward a Neurocentric View of Learning.
Neuron
Synaptic plasticity (e.g., long-term potentiation [LTP]) is considered the cellular correlate of learning. Recent optogenetic studies on memory engram formation assign a critical role in learning to suprathreshold activation of neurons and their integration into active engrams ("engram cells"). Here we review evidence that ensemble integration may result from LTP but also from cell-autonomous changes in membrane excitability. We propose that synaptic plasticity determines synaptic connectivity maps, whereas intrinsic plasticity-possibly separated in time-amplifies neuronal responsiveness and acutely drives engram integration. Our proposal marks a move away from an exclusively synaptocentric toward a non-exclusive, neurocentric view of learning.
10.1016/j.neuron.2017.05.021
Memory Allocation: Mechanisms and Function.
Annual review of neuroscience
Memories for events are thought to be represented in sparse, distributed neuronal ensembles (or engrams). In this article, we review how neurons are chosen to become part of a particular engram, via a process of neuronal allocation. Experiments in rodents indicate that eligible neurons compete for allocation to a given engram, with more excitable neurons winning this competition. Moreover, fluctuations in neuronal excitability determine how engrams interact, promoting either memory integration (via coallocation to overlapping engrams) or separation (via disallocation to nonoverlapping engrams). In parallel with rodent studies, recent findings in humans verify the importance of this memory integration process for linking memories that occur close in time or share related content. A deeper understanding of allocation promises to provide insights into the logic underlying how knowledge is normally organized in the brain and the disorders in which this process has gone awry.
10.1146/annurev-neuro-080317-061956
The role of engram cells in the systems consolidation of memory.
Tonegawa Susumu,Morrissey Mark D,Kitamura Takashi
Nature reviews. Neuroscience
What happens to memories as days, weeks and years go by has long been a fundamental question in neuroscience and psychology. For decades, researchers have attempted to identify the brain regions in which memory is formed and to follow its changes across time. The theory of systems consolidation of memory (SCM) suggests that changes in circuitry and brain networks are required for the maintenance of a memory with time. Various mechanisms by which such changes may take place have been hypothesized. Recently, several studies have provided insight into the brain networks driving SCM through the characterization of memory engram cells, their biochemical and physiological changes and the circuits in which they operate. In this Review, we place these findings in the context of the field and describe how they have led to a revamped understanding of SCM in the brain.
10.1038/s41583-018-0031-2
Long-Term Memory Engram Cells Are Established by c-Fos/CREB Transcriptional Cycling.
Miyashita Tomoyuki,Kikuchi Emi,Horiuchi Junjiro,Saitoe Minoru
Cell reports
Training-dependent increases in c-fos have been used to identify engram cells encoding long-term memories (LTMs). However, the interaction between transcription factors required for LTM, including CREB and c-Fos, and activating kinases such as phosphorylated ERK (pERK) in the establishment of memory engrams has been unclear. Formation of LTM of an aversive olfactory association in flies requires repeated training trials with rest intervals between trainings. Here, we find that prolonged rest interval-dependent increases in pERK induce transcriptional cycling between c-Fos and CREB in a subset of KCs in the mushroom bodies, where olfactory associations are made and stored. Preexisting CREB is required for initial c-fos induction, while c-Fos is required later to increase CREB expression. Blocking or activating c-fos-positive engram neurons inhibits memory recall or induces memory-associated behaviors. Our results suggest that c-Fos/CREB cycling defines LTM engram cells required for LTM.
10.1016/j.celrep.2018.11.022
Engram Cell Excitability State Determines the Efficacy of Memory Retrieval.
Pignatelli Michele,Ryan Tomás J,Roy Dheeraj S,Lovett Chanel,Smith Lillian M,Muralidhar Shruti,Tonegawa Susumu
Neuron
Animals need to optimize the efficacy of memory retrieval to adapt to environmental circumstances for survival. The recent development of memory engram labeling technology allows a precise investigation of the processes associated with the recall of a specific memory. Here, we show that engram cell excitability is transiently increased following memory reactivation. This short-term increase of engram excitability enhances the subsequent retrieval of specific memory content in response to cues and is manifest in the animal's ability to recognize contexts more precisely and more effectively. These results reveal a hitherto unknown transient enhancement of context recognition based on the plasticity of engram cell excitability. They also suggest that recall of a contextual memory is influenced by previous but recent activation of the same engram. The state of excitability of engram cells mediates differential behavioral outcomes upon memory retrieval and may be crucial for survival by promoting adaptive behavior.
10.1016/j.neuron.2018.11.029
Coordinating what we've learned about memory consolidation: Revisiting a unified theory.
Runyan Jason D,Moore Anthony N,Dash Pramod K
Neuroscience and biobehavioral reviews
According to traditional systems consolidation theories neocortical long-term plasticity (i.e., cellular consolidation) lags behind, and is dependent upon, hippocampal long-term plasticity. In this review, we examine accumulating evidence that local neocortical and hippocampal cellular consolidation occurs with a similar time-course. The implication is that the rate-limiting step for systems consolidation is the time it takes for cellular consolidation in longer connections throughout a more distributed extra-hippocampal system that comes to coordinate distributed neocortical activity during recall. The hippocampus is, thus, crucial for the development of this extra-hippocampal coordinating system, and acts to coordinate activities crucial for recall until it develops. Recent work on schema formation, engram cells, and the role of sleep in consolidation add substantial evidence for this "unified theory" of systems and cellular consolidation. Here, we discuss this evidence, its implications, and consider remaining questions.
10.1016/j.neubiorev.2019.02.010
Optogenetic reactivation of memory ensembles in the retrosplenial cortex induces systems consolidation.
de Sousa André F,Cowansage Kiriana K,Zutshi Ipshita,Cardozo Leonardo M,Yoo Eun J,Leutgeb Stefan,Mayford Mark
Proceedings of the National Academy of Sciences of the United States of America
The neural circuits underlying memory change over prolonged periods after learning, in a process known as systems consolidation. Postlearning spontaneous reactivation of memory-related neural ensembles is thought to mediate this process, although a causal link has not been established. Here we test this hypothesis in mice by using optogenetics to selectively reactivate neural ensembles representing a contextual fear memory (sometimes referred to as engram neurons). High-frequency stimulation of these ensembles in the retrosplenial cortex 1 day after learning produced a recent memory with features normally observed in consolidated remote memories, including higher engagement of neocortical areas during retrieval, contextual generalization, and decreased hippocampal dependence. Moreover, this effect was only present if memory ensembles were reactivated during sleep or light anesthesia. These results provide direct support for postlearning memory ensemble reactivation as a mechanism of systems consolidation, and show that this process can be accelerated by ensemble reactivation in an unconscious state.
10.1073/pnas.1818432116
Distinct hippocampal engrams control extinction and relapse of fear memory.
Nature neuroscience
Learned fear often relapses after extinction, suggesting that extinction training generates a new memory that coexists with the original fear memory; however, the mechanisms governing the expression of competing fear and extinction memories remain unclear. We used activity-dependent neural tagging to investigate representations of fear and extinction memories in the dentate gyrus. We demonstrate that extinction training suppresses reactivation of contextual fear engram cells while activating a second ensemble, a putative extinction engram. Optogenetic inhibition of neurons that were active during extinction training increased fear after extinction training, whereas silencing neurons that were active during fear training reduced spontaneous recovery of fear. Optogenetic stimulation of fear acquisition neurons increased fear, while stimulation of extinction neurons suppressed fear and prevented spontaneous recovery. Our results indicate that the hippocampus generates a fear extinction representation and that interactions between hippocampal fear and extinction representations govern the suppression and relapse of fear after extinction.
10.1038/s41593-019-0361-z
Deconstructing the Gestalt: Mechanisms of Fear, Threat, and Trauma Memory Encoding.
Maddox Stephanie A,Hartmann Jakob,Ross Rachel A,Ressler Kerry J
Neuron
Threat processing is central to understanding debilitating fear- and trauma-related disorders such as posttraumatic stress disorder (PTSD). Progress has been made in understanding the neural circuits underlying the "engram" of threat or fear memory formation that complements a decades-old appreciation of the neurobiology of fear and threat involving hub structures such as the amygdala. In this review, we examine key recent findings, as well as integrate the importance of hormonal and physiological approaches, to provide a broader perspective of how bodily systems engaged in threat responses may interact with amygdala-based circuits in the encoding and updating of threat-related memory. Understanding how trauma-related memories are encoded and updated throughout the brain and the body will ultimately lead to novel biologically-driven approaches for treatment and prevention.
10.1016/j.neuron.2019.03.017
Reactivation of Recall-Induced Neurons in the Infralimbic Cortex and the Basolateral Amygdala After Remote Fear Memory Attenuation.
Khalaf Ossama,Gräff Johannes
Frontiers in molecular neuroscience
Whether the attenuation of traumatic memories is mediated through the suppression of the original memory trace of fear by a new memory trace of safety, or through an updating of the original fear trace towards safety has been a long-standing question at the interface of neuroscience and psychology. This matter is of particular importance for remote fear memories as they lie at the core of stress- and anxiety-related disorders. Recently, we have found that in the dentate gyrus, the effective attenuation of remote fear memories is accompanied by a reactivation of memory recall-induced neurons and that the continued activity of these neurons is critical for fear reduction. However, whether this also applies to other brain areas implicated in the storage of remote fear memories remains to be determined. Here, we show-by cellular compartment analysis of temporal activity using fluorescence hybridization-that such reactivation also occurs in the basolateral amygdala and the infralimbic cortex, two brain areas known to be involved in fear memory attenuation. These results provide further experimental support for effective traumatic memory attenuation likely being mediated by an updating of the original fear trace towards safety.
10.3389/fnmol.2019.00070
Memory strength gates the involvement of a CREB-dependent cortical fear engram in remote memory.
Matos Mariana R,Visser Esther,Kramvis Ioannis,van der Loo Rolinka J,Gebuis Titia,Zalm Robbert,Rao-Ruiz Priyanka,Mansvelder Huibert D,Smit August B,van den Oever Michel C
Nature communications
Encoding and retrieval of contextual memories is initially mediated by sparsely activated neurons, so-called engram cells, in the hippocampus. Subsequent memory persistence is thought to depend on network-wide changes involving progressive contribution of cortical regions, a process referred to as systems consolidation. Using a viral-based TRAP (targeted recombination in activated populations) approach, we studied whether consolidation of contextual fear memory by neurons in the medial prefrontal cortex (mPFC) is modulated by memory strength and CREB function. We demonstrate that activity of a small subset of mPFC neurons is sufficient and necessary for remote memory expression, but their involvement depends on the strength of conditioning. Furthermore, selective disruption of CREB function in mPFC engram cells after mild conditioning impairs remote memory expression. Together, our data demonstrate that memory consolidation by mPFC engram cells requires CREB-mediated transcription, with the functionality of this network hub being gated by memory strength.
10.1038/s41467-019-10266-1
Adult hippocampal neurogenesis for systems consolidation of memory.
Terranova Joseph I,Ogawa Sachie K,Kitamura Takashi
Behavioural brain research
The hippocampus (HPC) is required for the initial process of permanent memory formation. After memory acquisition, HPC-dependency of memory recall gradually decreases with time, whereas cortical-dependency of memory recall increases. This phenomenon is often referred to as systems consolidation of memory. In the HPC, adult neurogenesis has been described in many mammalian species and is involved in the process of learning and memory. In this review, we first examine the neural circuit mechanisms that underlie the systems consolidation of episodic memories, focusing on adult neurogenesis within the HPC. Recently, several studies have examined the characterization of memory engram cells, their biochemical and physiological changes, and the circuits for systems consolidation of memory. Therefore, we discuss the possible role of adult neurogenesis on functional states of memory engram cells, and speculate the implications of this transition of memory type for psychiatric disorders such as post-traumatic stress disorder.
10.1016/j.bbr.2019.112035
Initiated by CREB: Resolving Gene Regulatory Programs in Learning and Memory: Switch in Cofactors and Transcription Regulators between Memory Consolidation and Maintenance Network.
Kaldun Jenifer C,Sprecher Simon G
BioEssays : news and reviews in molecular, cellular and developmental biology
Consolidation of long-term memory is a highly and precisely regulated multistep process. The transcription regulator cAMP response element-binding protein (CREB) plays a key role in initiating memory consolidation. With time processing, first the cofactors are changed and, secondly, CREB gets dispensable. This ultimately changes the expressed gene program to genes required to maintain the memory. Regulation of memory consolidation also requires epigenetic mechanisms and control at the RNA level. At the neuronal circuit level, oscillation in the activity of CREB and downstream factor define engram cells. Together the combination of all regulation mechanisms allows correct memory processing while keeping the process dynamic and flexible to adjust to different contexts. Also see the video abstract here https://youtu.be/BhSCSmorpEc.
10.1002/bies.201900045
A ventral CA1 to nucleus accumbens core engram circuit mediates conditioned place preference for cocaine.
Nature neuroscience
The importance of neuronal ensembles, termed engram cells, in storing and retrieving memory is increasingly being appreciated, but less is known about how these engram cells operate within neural circuits. Here we tagged engram cells in the ventral CA1 region of the hippocampus (vCA1) and the core of the nucleus accumbens (AcbC) during cocaine conditioned place preference (CPP) training and show that the vCA1 engram projects preferentially to the AcbC and that the engram circuit from the vCA1 to the AcbC mediates memory recall. Direct activation of the AcbC engram while suppressing the vCA1 engram is sufficient for cocaine CPP. The AcbC engram primarily consists of D1 medium spiny neurons, but not D2 medium spiny neurons. The preferential synaptic strengthening of the vCA1→AcbC engram circuit evoked by cocaine conditioning mediates the retrieval of cocaine CPP memory. Our data suggest that the vCA1 engram stores specific contextual information, while the AcbC D1 engram and its downstream network store both cocaine reward and associated contextual information, providing a potential mechanism by which cocaine CPP memory is stored.
10.1038/s41593-019-0524-y
Mysterious Mechanisms of Memory Formation: Are the Answers Hidden in Synapses?
Cureus
After decades of research on memory formation and retention, we are still searching for the definite concept and process behind neuroplasticity. This review article will address the relationship between synapses, memory formation, and memory retention and their genetic correlations. In the last six decades, there have been enormous improvements in the neurochemistry domain, especially in the area of neural plasticity. In the central nervous system, the complexity of the synapses between neurons allows communication among them. It is believed that each time certain types of sensory signals pass through sequences of synapses, these synapses can transmit the same signals more efficiently the following time. The concept of Hebb synapse has provided revolutionary thinking about the nature of neural mechanisms of learning and memory formation. To improve the local circuitry for memory formation and behavioral change and stabilization in the mammalian central nervous system, long-term potentiation and long-term depression are the crucial components of Hebbian plasticity. In this review, we will be discussing the role of glutamatergic synapses, engram cells, cytokines, neuropeptides, neurosteroids and many aspects, covering the synaptic basis of memory. Lastly, we have tried to cover the etiology of neurodegenerative disorders due to synaptic dysfunction. To enhance pharmacological interventions for neurodegenerative diseases, we need more research in this direction. With the help of technology, and a better understanding of the disease etiology, not only can we identify the missing pieces of synaptic functions, but we might also cure or even prevent serious neurodegenerative diseases like Alzheimer's disease (AD).
10.7759/cureus.5795
A time-dependent role for the transcription factor CREB in neuronal allocation to an engram underlying a fear memory revealed using a novel in vivo optogenetic tool to modulate CREB function.
Park Albert,Jacob Alexander D,Walters Brandon J,Park Sungmo,Rashid Asim J,Jung Jung Hoon,Lau Jocelyn,Woolley G Andrew,Frankland Paul W,Josselyn Sheena A
Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology
The internal representation of an experience is thought to be encoded by long-lasting physical changes to the brain ("engrams") . Previously, we and others showed within the lateral amygdala (LA), a region critical for auditory conditioned fear, eligible neurons compete against one other for allocation to an engram. Neurons with relatively higher function of the transcription factor CREB were more likely to be allocated to the engram. In these studies, though, CREB function was artificially increased for several days before training. Precisely when increased CREB function is important for allocation remains an unanswered question. Here, we took advantage of a novel optogenetic tool (opto-DN-CREB) to gain spatial and temporal control of CREB function in freely behaving mice. We found increasing CREB function in a small, random population of LA principal neurons in the minutes, but not 24 h, before training was sufficient to enhance memory, likely because these neurons were preferentially allocated to the underlying engram. However, similarly increasing CREB activity in a small population of random LA neurons immediately after training disrupted subsequent memory retrieval, likely by disrupting the precise spatial and temporal patterns of offline post-training neuronal activity and/or function required for consolidation. These findings reveal the importance of the timing of CREB activity in regulating allocation and subsequent memory retrieval, and further, highlight the potential of optogenetic approaches to control protein function with temporal specificity in behaving animals.
10.1038/s41386-019-0588-0
Evidence that a defined population of neurons in lateral amygdala is directly involved in auditory fear learning and memory.
Butler Christopher W,Wilson Yvette M,Mills Samuel A,Gunnersen Jenny M,Murphy Mark
Neurobiology of learning and memory
Memory is thought to be encoded within networks of neurons within the brain, but the identity of the neurons involved and circuits they form have not been described for any memory. Previously, we used fos-tau-lacZ (FTL) transgenic mice to identify discrete populations of neurons in different regions of the brain which were specifically activated following fear conditioning. This suggested that these populations of neurons form nodes in a network that encodes fear memory. In particular, one population of learning activated neurons was found within a discrete region of the lateral amygdala (LA), a key nucleus required for fear conditioning. In order to provide evidence that this population is directly involved in fear conditioning, we have analysed the expression of a key molecular requirement for fear conditioning in LA, phosphorylated Extracellular Signal Regulated Kinase 1 and 2 (pERK1/2). The only neurons in LA that specifically expressed pERK1/2 following auditory fear conditioning were in the ventrolateral nucleus of the LA (LAvl), in the same discrete region where we found learning specific FTL neurons. Double labelling experiments in FTL mice showed that a substantial proportion of the learning activated neurons expressed both pERK1/2 and FTL. These experiments provide clear evidence that the learning specific neurons we identified within LAvl are directly involved in auditory fear conditioning. In addition, learning specific expression of pERK1/2 was found in a dense network of dendrites contained within the border region of the LAvl. This network of dendrites may represent an activated dendritic field involved in fear conditioning in LA.
10.1016/j.nlm.2019.107139
Memory engrams: Recalling the past and imagining the future.
Josselyn Sheena A,Tonegawa Susumu
Science (New York, N.Y.)
In 1904, Richard Semon introduced the term "engram" to describe the neural substrate for storing memories. An experience, Semon proposed, activates a subset of cells that undergo off-line, persistent chemical and/or physical changes to become an engram. Subsequent reactivation of this engram induces memory retrieval. Although Semon's contributions were largely ignored in his lifetime, new technologies that allow researchers to image and manipulate the brain at the level of individual neurons has reinvigorated engram research. We review recent progress in studying engrams, including an evaluation of evidence for the existence of engrams, the importance of intrinsic excitability and synaptic plasticity in engrams, and the lifetime of an engram. Together, these findings are beginning to define an engram as the basic unit of memory.
10.1126/science.aaw4325
Locating the engram: Should we look for plastic synapses or information-storing molecules?
Langille Jesse J,Gallistel Charles R
Neurobiology of learning and memory
Karl Lashley began the search for the engram nearly seventy years ago. In the time since, much has been learned but divisions remain. In the contemporary neurobiology of learning and memory, two profoundly different conceptions contend: the associative/connectionist (A/C) conception and the computational/representational (C/R) conception. Both theories ground themselves in the belief that the mind is emergent from the properties and processes of a material brain. Where these theories differ is in their description of what the neurobiological substrate of memory is and where it resides in the brain. The A/C theory of memory emphasizes the need to distinguish memory cognition from the memory engram and postulates that memory cognition is an emergent property of patterned neural activity routed through engram circuits. In this model, learning re-organizes synapse association strengths to guide future neural activity. Importantly, the version of the A/C theory advocated for here contends that synaptic change is not symbolic and, despite normally being necessary, is not sufficient for memory cognition. Instead, synaptic change provides the capacity and a blueprint for reinstating symbolic patterns of neural activity. Unlike the A/C theory, which posits that memory emerges at the circuit level, the C/R conception suggests that memory manifests at the level of intracellular molecular structures. In C/R theory, these intracellular structures are information-conveying and have properties compatible with the view that brain computation utilizes a read/write memory, functionally similar to that in a computer. New research has energized both sides and highlighted the need for new discussion. Both theories, the key questions each theory has yet to resolve and several potential paths forward are presented here.
10.1016/j.nlm.2020.107164
Amygdala Reward Neurons Form and Store Fear Extinction Memory.
Zhang Xiangyu,Kim Joshua,Tonegawa Susumu
Neuron
The ability to extinguish conditioned fear memory is critical for adaptive control of fear response, and its impairment is a hallmark of emotional disorders like post-traumatic stress disorder (PTSD). Fear extinction is thought to take place when animals form a new memory that suppresses the original fear memory. However, little is known about the nature and the site of formation and storage of this new extinction memory. Here we demonstrate that a fear extinction memory engram is formed and stored in a genetically distinct basolateral amygdala (BLA) neuronal population that drives reward behaviors and antagonizes the BLA's original fear neurons. Activation of fear extinction engram neurons and natural reward-responsive neurons overlap significantly in the BLA. Furthermore, these two neuronal subsets are mutually interchangeable in driving reward behaviors and fear extinction behaviors. Thus, fear extinction memory is a newly formed reward memory. VIDEO ABSTRACT.
10.1016/j.neuron.2019.12.025
Neurobiology of systems memory consolidation.
Takehara-Nishiuchi Kaori
The European journal of neuroscience
Psychological theories posit that the hippocampus rapidly forms associations among ongoing events as they unfold. During a subsequent maturation process, so-called systems memory consolidation, these associations are gradually stabilized within distributed neocortical circuits through close interactions between the hippocampus and neocortex. In the past 50 years, a major effort in neurobiological research has been directed towards translating these descriptive accounts into tangible, biological processes in the brain. Until the early 2000s, most studies exclusively focused on examining whether the hippocampus becomes unnecessary for memory retrieval once the memory has been consolidated. With recent methodological advances, however, the field shifted attention to several other theoretical accounts and began to uncover the genetic, physiological and structural underpinnings of systems memory consolidation at an unprecedented level of precision. Here I review these neurobiological findings in the past 15 years within a framework of six essential predictions extracted from the psychological theories. Genetic approaches have made it possible to tag neurons that were activated during memory encoding and investigate their physiological and genetic profiles as well as reactivation patterns during subsequent retrieval. In parallel, electrophysiological and imaging approaches detected signs of the gradual refinement of memory representations and its underlying hippocampal-neocortical dialogue in millisecond-resolved neural firing patterns, the inter-region coupling of neural activity, across-day stability of neural ensemble activity and functional connectome. This summary represents substantial progress in our understanding of neurobiological mechanisms of systems memory consolidation whilst also identifying several essential remaining questions for future investigations.
10.1111/ejn.14694
Memory Engrams in the Neocortex.
Brodt Svenja,Gais Steffen
The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry
While in the past much of our knowledge about memory representations in the brain has relied on loss-of-function studies in which whole brain regions were temporarily inactivated or permanently lesioned, the recent development of new methods has ushered in a new era of downright "engram excitement." Animal research is now able to specifically label, track, and manipulate engram cells in the brain. While early studies have mostly focused on single brain regions like the hippocampus, recently more and more evidence for brain-wide distributed engram networks is emerging. Memory research in humans has also picked up pace, fueled by promising magnetic resonance imaging (MRI)-based methods like diffusion-weighted MRI (DW-MRI) and brain decoding. In this review, we will outline recent advancements in engram research, with a focus on human data and neocortical representations. We will illustrate the available noninvasive methods for the detection of engrams in different neocortical regions like the medial prefrontal cortex and the posterior parietal cortex and discuss evidence for systems consolidation and parallel memory encoding. Finally, we will explore how reactivation and prior knowledge can lead to and enhance engram formation in the neocortex.
10.1177/1073858420941528
The role of neuronal excitability, allocation to an engram and memory linking in the behavioral generation of a false memory in mice.
Lau Jocelyn M H,Rashid Asim J,Jacob Alexander D,Frankland Paul W,Schacter Daniel L,Josselyn Sheena A
Neurobiology of learning and memory
Memory is a constructive, not reproductive, process that is prone to errors. Errors in memory, though, may originate from normally adaptive memory processes. At the extreme of memory distortion is falsely "remembering" an event that did not occur. False memories are well-studied in cognitive psychology, but have received relatively less attention in neuroscience. Here, we took advantage of mechanistic insights into how neurons are allocated or recruited into an engram (memory trace) to generate a false memory in mice using only behavioral manipulations. At the time of an event, neurons compete for allocation to an engram supporting the memory for this event; neurons with higher excitability win this competition (Han et al., 2007). Even after the event, these allocated "engram neurons" remain temporarily (~6 h) more excitable than neighboring neurons. Should a similar event occur in this 6 h period of heightened engram neuron excitability, an overlapping population of neurons will be co-allocated to this second engram, which serves to functionally link the two memories (Rashid et al., 2016). Here, we applied this principle of co-allocation and found that mice develop a false fear memory to a neutral stimulus if exposed to this stimulus shortly (3 h), but not a longer time (24 h), after cued fear conditioning. Similar to co-allocation, the generation of this false memory depended on the post-training excitability of engram neurons such that these neurons remained more excitable during exposure to the neutral stimulus at 3 h but not 24 h. Optogenetically silencing engram neurons 3 h after cued fear conditioning impaired formation of a false fear memory to the neutral stimulus, while optogenetically activating engram neurons 24 h after cued fear conditioning created a false fear memory. These results suggest that some false memories may originate from normally adaptive mnemonic processes such as neuronal excitability-dependent allocation and memory linking.
10.1016/j.nlm.2020.107284
Contextual Fear Memory Retrieval Is Vulnerable to Hippocampal Noise.
Iwasaki Satoshi,Ikegaya Yuji
Cerebral cortex (New York, N.Y. : 1991)
Memory retrieval depends on reactivation of memory engram cells. Inadvertent activation of these cells is expected to cause memory-retrieval failure, but little is known about how noisy activity of memory-irrelevant neurons impacts mnemonic processes. Here, we report that optogenetic nonselective activation of only tens of hippocampal CA1 cells (∼0.01% of the total cells in the CA1 pyramidal cell layer) impairs contextual fear memory recall. Memory recall failure was associated with altered neuronal reactivation in the basolateral amygdala. These results indicate that hippocampal memory retrieval requires strictly regulated activation of a specific neuron ensemble and is easily disrupted by the introduction of noisy CA1 activity, suggesting that reactivating memory engram cells as well as silencing memory-irrelevant neurons are both crucial for memory retrieval.
10.1093/cercor/bhaa257
The physical basis of memory.
Gallistel C R
Cognition
Neuroscientists are searching for the engram within the conceptual framework established by John Locke's theory of mind. This framework was elaborated before the development of information theory, before the development of information processing machines and the science of computation, before the discovery that molecules carry hereditary information, before the discovery of the codon code and the molecular machinery for editing the messages written in this code and translating it into transcription factors that mark abstract features of organic structure such as anterior and distal. The search for the engram needs to abandon Locke's conceptual framework and work within a framework informed by these developments. The engram is the medium by which information extracted from past experience is transmitted to the computations that inform future behavior. The information-conveying symbols in the engram are rapidly generated in the course of computations, which implies that they are molecules.
10.1016/j.cognition.2020.104533
Molecular and cellular mechanisms of engram allocation and maintenance.
Gulmez Karaca Kubra,Kupke Janina,Oliveira Ana M M
Brain research bulletin
Understanding how we learn and remember has been a long-standing question in neuroscience. Technological developments of the past 15 years have allowed for dramatically increased access to the neurons that hold the physical representation of memory, also known as a memory trace or engram. Such developments have tremendously facilitated advancement of the memory field, since they made possible interrogation of the cellular and molecular mechanisms underlying memory formation with unprecedented cellular specificity. Here, we discuss the studies that have investigated rules governing neuronal recruitment to a particular memory engram. Furthermore, we provide an overview of the evidence that functional and structural changes associated with memory consolidation occur in engram neurons. Moreover, we summarize the expanding literature showing that transcriptional regulatory factors such as transcription factors and epigenetic mechanisms play an important role in the maintained allocation of behaviorally-selected neurons to an engram. Together, these studies have begun elucidating how neuronal networks are selected and modified in order to support memory formation and storage.
10.1016/j.brainresbull.2021.02.019
Neuronal ensembles in memory processes.
Seminars in cell & developmental biology
A neuronal ensemble represents the concomitant activity of a specific group of neurons that could encompass a broad repertoire of brain functions such as motor, perceptual, memory or cognitive states. On the other hand, a memory engram portrays the physical manifestation of memory or the changes that enable learning and retrieval. Engram studies focused for many years on finding where memories are stored as in, which cells or brain regions represent a memory trace, and disregarded the investigation of how neuronal activity patterns give rise to such memories. Recent experiments suggest that the association and reactivation of specific neuronal groups could be the main mechanism underlying the brain's ability to remember past experiences and envision future actions. Thus, the growing consensus is that the interaction between neuronal ensembles could allow sequential activity patterns to become memories and recurrent memories to compose complex behaviors. The goal of this review is to propose how the neuronal ensemble framework could be translated and useful to understand memory processes.
10.1016/j.semcdb.2021.04.004
Engram Size Varies with Learning and Reflects Memory Content and Precision.
The Journal of neuroscience : the official journal of the Society for Neuroscience
Memories are rarely acquired under ideal conditions, rendering them vulnerable to profound omissions, errors, and ambiguities. Consistent with this, recent work using context fear conditioning has shown that memories formed after inadequate learning time display a variety of maladaptive properties, including overgeneralization to similar contexts. However, the neuronal basis of such poor learning and memory imprecision remains unknown. Using c-fos to track neuronal activity in male mice, we examined how these learning-dependent changes in context fear memory precision are encoded in hippocampal ensembles. We found that the total number of c-fos-encoding cells did not correspond with learning history but instead more closely reflected the length of the session immediately preceding c-fos measurement. However, using a c-fos-driven tagging method ( mouse line), we found that the degree of learning and memory specificity corresponded with neuronal activity in a subset of dentate gyrus cells that were active during both learning and recall. Comprehensive memories acquired after longer learning intervals were associated with more double-labeled cells. These were preferentially reactivated in the conditioning context compared with a similar context, paralleling behavioral discrimination. Conversely, impoverished memories acquired after shorter learning intervals were associated with fewer double-labeled cells. These were reactivated equally in both contexts, corresponding with overgeneralization. Together, these findings provide two surprising conclusions. First, engram size varies with learning. Second, larger engrams support better neuronal and behavioral discrimination. These findings are incorporated into a model that describes how neuronal activity is influenced by previous learning and present experience, thus driving behavior. Memories are not always formed under ideal circumstances. This is especially true in traumatic situations, such as car accidents, where individuals have insufficient time to process what happened around them. Such memories have the potential to overgeneralize to irrelevant situations, producing inappropriate fear and contributing to disorders, such as post-traumatic stress disorder. However, it is unknown how such poorly formed fear memories are encoded within the brain. We find that restricting learning time results in fear memories that are encoded by fewer hippocampal cells. Moreover, these fewer cells are inappropriately reactivated in both dangerous and safe contexts. These findings suggest that fear memories formed at brief periods overgeneralize because they lack the detail-rich information necessary to support neuronal discrimination.
10.1523/JNEUROSCI.2786-20.2021
The essence of the engram: Cellular or synaptic?
Seminars in cell & developmental biology
Memory is composed of various phases including cellular consolidation, systems consolidation, reconsolidation, and extinction. In the last few years it has been shown that simple association memories can be encoded by a subset of the neuronal population called engram cells. Activity of these cells is necessary and sufficient for the recall of association memory. However, it is unclear which molecular mechanisms allow cellular engrams to encode the diverse phases of memory. Further research is needed to examine the possibility that it is the synapses between engram cells (the synaptic engram) that constitute the memory. In this review we summarize recent findings on cellular engrams with a focus on different phases of memory, and discuss the distinct molecular mechanism required for cellular and synaptic engrams.
10.1016/j.semcdb.2021.05.033
Synaptic plasticity-dependent competition rule influences memory formation.
Nature communications
Memory is supported by a specific collection of neurons distributed in broad brain areas, an engram. Despite recent advances in identifying an engram, how the engram is created during memory formation remains elusive. To explore the relation between a specific pattern of input activity and memory allocation, here we target a sparse subset of neurons in the auditory cortex and thalamus. The synaptic inputs from these neurons to the lateral amygdala (LA) are not potentiated by fear conditioning. Using an optogenetic priming stimulus, we manipulate these synapses to be potentiated by the learning. In this condition, fear memory is preferentially encoded in the manipulated cell ensembles. This change, however, is abolished with optical long-term depression (LTD) delivered shortly after training. Conversely, delivering optical long-term potentiation (LTP) alone shortly after fear conditioning is sufficient to induce the preferential memory encoding. These results suggest a synaptic plasticity-dependent competition rule underlying memory formation.
10.1038/s41467-021-24269-4
Roles and Transcriptional Responses of Inhibitory Neurons in Learning and Memory.
Giorgi Corinna,Marinelli Silvia
Frontiers in molecular neuroscience
Increasing evidence supports a model whereby memories are encoded by sparse ensembles of neurons called engrams, activated during memory encoding and reactivated upon recall. An engram consists of a network of cells that undergo long-lasting modifications of their transcriptional programs and connectivity. Ground-breaking advancements in this field have been made possible by the creative exploitation of the characteristic transcriptional responses of neurons to activity, allowing both engram labeling and manipulation. Nevertheless, numerous aspects of engram cell-type composition and function remain to be addressed. As recent transcriptomic studies have revealed, memory encoding induces persistent transcriptional and functional changes in a plethora of neuronal subtypes and non-neuronal cells, including glutamatergic excitatory neurons, GABAergic inhibitory neurons, and glia cells. Dissecting the contribution of these different cellular classes to memory engram formation and activity is quite a challenging yet essential endeavor. In this review, we focus on the role played by the GABAergic inhibitory component of the engram through two complementary lenses. On one hand, we report on available physiological evidence addressing the involvement of inhibitory neurons to different stages of memory formation, consolidation, storage and recall. On the other, we capitalize on a growing number of transcriptomic studies that profile the transcriptional response of inhibitory neurons to activity, revealing important clues on their potential involvement in learning and memory processes. The picture that emerges suggests that inhibitory neurons are an essential component of the engram, likely involved in engram allocation, in tuning engram excitation and in storing the memory trace.
10.3389/fnmol.2021.689952
GABAergic microcircuitry of fear memory encoding.
Neurobiology of learning and memory
The paradigm of fear conditioning is largely responsible for our current understanding of how memories are encoded at the cellular level. Its most fundamental underlying mechanism is considered to be plasticity of synaptic connections between excitatory projection neurons (PNs). However, recent studies suggest that while PNs execute critical memory functions, their activity at key stages of learning and recall is extensively orchestrated by a diverse array of GABAergic interneurons (INs). Here we review the contributions of genetically-defined INs to processing of threat-related stimuli in fear conditioning, with a particular focus on how synaptic interactions within interconnected networks of INs modulates PN activity through both inhibition and disinhibition. Furthermore, we discuss accumulating evidence that GABAergic microcircuits are an important locus for synaptic plasticity during fear learning and therefore a viable substrate for long-term memory. These findings suggest that further investigation of INs could unlock unique conceptual insights into the organization and function of fear memory networks.
10.1016/j.nlm.2021.107504
Imaging human engrams using 7 Tesla magnetic resonance imaging.
Hippocampus
The investigation of the physical traces of memories (engrams) has made significant progress in the last decade due to optogenetics and fluorescent cell tagging applied in rodents. Engram cells were identified. The ablation of engram cells led to the loss of the associated memory, silent memories were reactivated, and artificial memories were implanted in the brain. Human engram research lags behind engram research in rodents due to methodological and ethical constraints. However, advances in multivariate analysis techniques of functional magnetic resonance imaging (fMRI) data and machine learning algorithms allowed the identification of stable engram patterns in humans. In addition, MRI scanners with an ultrahigh field strength of 7 Tesla (T) have left their prototype state and became more common around the world to assist human engram research. Although most engram research in humans is still being performed with a field strength of 3T, fMRI at 7T will push engram research. Here, we summarize the current state and findings of human engram research and discuss the advantages and disadvantages of applying 7 versus 3T fMRI to image human memory traces.
10.1002/hipo.23391
The Hebb Synapse Before Hebb: Theories of Synaptic Function in Learning and Memory Before , With a Discussion of the Long-Lost Synaptic Theory of William McDougall.
Frontiers in behavioral neuroscience
Since the work of Semon was rediscovered by Schacter in 1978, there has been a renewed interest is searching for the "engram" as the locus of memory in the brain and Hebb's cell assembly has been equated with Semon's engram. There have been many theories of memory involving some concept of synaptic change, culminating in the "Hebb Synapse" theory in 1949. However, Hebb said that the idea that any two cells or systems of cells that are repeatedly active at the same time will tend to become "associated," was not his idea, but an old one. In this manuscript we give an overview of some of the theories of the neural basis of learning and memory before Hebb and describe the synaptic theory of William McDougall, which appears to have been an idea ahead of its time; so far ahead of its time that it was completely ignored by his contemporaries. We conclude by examining some critiques of McDougall's theory of inhibition and with a short discussion on the fate of neuroscientists whose ideas were neglected when first presented but were accepted as important many decades later.
10.3389/fnbeh.2021.732195
Retrosplenial cortex in spatial memory: focus on immediate early genes mapping.
Balcerek Edyta,Włodkowska Urszula,Czajkowski Rafał
Molecular brain
The ability to form, retrieve and update autobiographical memories is one of the most fascinating features of human behavior. Spatial memory, the ability to remember the layout of the external environment and to navigate within its boundaries, is closely related to the autobiographical memory domain. It is served by an overlapping brain circuit, centered around the hippocampus (HPC) where the cognitive map index is stored. Apart from the hippocampus, several cortical structures participate in this process. Their relative contribution is a subject of intense research in both humans and animal models. One of the most widely studied regions is the retrosplenial cortex (RSC), an area in the parietal lobe densely interconnected with the hippocampal formation. Several methodological approaches have been established over decades in order to investigate the cortical aspects of memory. One of the most successful techniques is based on the analysis of brain expression patterns of the immediate early genes (IEGs). The common feature of this diverse group of genes is fast upregulation of their mRNA translation upon physiologically relevant stimulus. In the central nervous system they are rapidly triggered by neuronal activity and plasticity during learning. There is a widely accepted consensus that their expression level corresponds to the engagement of individual neurons in the formation of memory trace. Imaging of the IEGs might therefore provide a picture of an emerging memory engram. In this review we present the overview of IEG mapping studies of retrosplenial cortex in rodent models. We begin with classical techniques, immunohistochemical detection of protein and fluorescent in situ hybridization of mRNA. We then proceed to advanced methods where fluorescent genetically encoded IEG reporters are chronically followed in vivo during memory formation. We end with a combination of genetic IEG labelling and optogenetic approach, where the activity of the entire engram is manipulated. We finally present a hypothesis that attempts to unify our current state of knowledge about the function of RSC.
10.1186/s13041-021-00880-w
Information impact on synaptic arousal and formation of permanent memory trace.
Fałek Paulina,Fałek Artur,Kager Monika,Kager Richard,Walkowicz Piotr,Kubiak Marcin,Starosławska Elżbieta,Burdan Franciszek
Folia medica Cracoviensia
Memory trace is an effect of temporary arousal (perception, experience, action) that causes a specific change in the nervous system. Memory allows to record and recall various information, thus enabling to learn new things. It is an extremely active and dynamic process. The influence of emotions on memory is obvious, largely determined by the close cooperation of the amygdala (responsible for emotions) and the hippocampus (memory processes).
10.24425/fmc.2021.138949
Forgetting as a form of adaptive engram cell plasticity.
Nature reviews. Neuroscience
One leading hypothesis suggests that memories are stored in ensembles of neurons (or 'engram cells') and that successful recall involves reactivation of these ensembles. A logical extension of this idea is that forgetting occurs when engram cells cannot be reactivated. Forms of 'natural forgetting' vary considerably in terms of their underlying mechanisms, time course and reversibility. However, we suggest that all forms of forgetting involve circuit remodelling that switches engram cells from an accessible state (where they can be reactivated by natural recall cues) to an inaccessible state (where they cannot). In many cases, forgetting rates are modulated by environmental conditions and we therefore propose that forgetting is a form of neuroplasticity that alters engram cell accessibility in a manner that is sensitive to mismatches between expectations and the environment. Moreover, we hypothesize that disease states associated with forgetting may hijack natural forgetting mechanisms, resulting in reduced engram cell accessibility and memory loss.
10.1038/s41583-021-00548-3
Understanding the physical basis of memory: Molecular mechanisms of the engram.
The Journal of biological chemistry
Memory, defined as the storage and use of learned information in the brain, is necessary to modulate behavior and critical for animals to adapt to their environments and survive. Despite being a cornerstone of brain function, questions surrounding the molecular and cellular mechanisms of how information is encoded, stored, and recalled remain largely unanswered. One widely held theory is that an engram is formed by a group of neurons that are active during learning, which undergoes biochemical and physical changes to store information in a stable state, and that are later reactivated during recall of the memory. In the past decade, the development of engram labeling methodologies has proven useful to investigate the biology of memory at the molecular and cellular levels. Engram technology allows the study of individual memories associated with particular experiences and their evolution over time, with enough experimental resolution to discriminate between different memory processes: learning (encoding), consolidation (the passage from short-term to long-term memories), and storage (the maintenance of memory in the brain). Here, we review the current understanding of memory formation at a molecular and cellular level by focusing on insights provided using engram technology.
10.1016/j.jbc.2022.101866
Brain-wide mapping reveals that engrams for a single memory are distributed across multiple brain regions.
Nature communications
Neuronal ensembles that hold specific memory (memory engrams) have been identified in the hippocampus, amygdala, or cortex. However, it has been hypothesized that engrams of a specific memory are distributed among multiple brain regions that are functionally connected, referred to as a unified engram complex. Here, we report a partial map of the engram complex for contextual fear conditioning memory by characterizing encoding activated neuronal ensembles in 247 regions using tissue phenotyping in mice. The mapping was aided by an engram index, which identified 117 cFos brain regions holding engrams with high probability, and brain-wide reactivation of these neuronal ensembles by recall. Optogenetic manipulation experiments revealed engram ensembles, many of which were functionally connected to hippocampal or amygdala engrams. Simultaneous chemogenetic reactivation of multiple engram ensembles conferred a greater level of memory recall than reactivation of a single engram ensemble, reflecting the natural memory recall process. Overall, our study supports the unified engram complex hypothesis for memory storage.
10.1038/s41467-022-29384-4
Neuronal Ensembles Organize Activity to Generate Contextual Memory.
Frontiers in behavioral neuroscience
Contextual learning is a critical component of episodic memory and important for living in any environment. Context can be described as the attributes of a location that are not the location itself. This includes a variety of non-spatial information that can be derived from sensory systems (sounds, smells, lighting, etc.) and internal state. In this review, we first address the behavioral underpinnings of contextual memory and the development of context memory theory, with a particular focus on the contextual fear conditioning paradigm as a means of assessing contextual learning and the underlying processes contributing to it. We then present the various neural centers that play roles in contextual learning. We continue with a discussion of the current knowledge of the neural circuitry and physiological processes that underlie contextual representations in the Entorhinal cortex-Hippocampal (EC-HPC) circuit, as the most well studied contributor to contextual memory, focusing on the role of ensemble activity as a representation of context with a description of remapping, and pattern separation and completion in the processing of contextual information. We then discuss other critical regions involved in contextual memory formation and retrieval. We finally consider the engram assembly as an indicator of stored contextual memories and discuss its potential contribution to contextual memory.
10.3389/fnbeh.2022.805132
Excitability-Independent Memory Allocation for Repeated Event.
Frontiers in behavioral neuroscience
How memory is organized in cell ensembles when an event is repeated is not well-understood. Recently, we found that retraining 24 h after the initial fear conditioning (FC) event induces turnover of neurons in the lateral amygdala (LA) that encodes fear memory. Excitability-dependent competition between eligible neurons has been suggested as a rule that governs memory allocation. However, it remains undetermined whether excitability is also involved in the allocation of a repeated event. By increasing excitability in a subset of neurons in the LA before FC, we confirmed that these neurons preferentially participated in encoding fear memory as previously reported. These neurons, however, became unnecessary for memory recall after retraining 24 h following initial FC. Consistently, the initial memory-encoding neurons became less likely to be reactivated during recall. This reorganization in cell ensembles, however, was not induced and memory was co-allocated when retraining occurred 6 h after the initial FC. In 24-h retraining condition, artificially increasing excitability right before retraining failed to drive memory co-allocation. These results suggest a distinct memory allocation mechanism for repeated events distantly separated in time.
10.3389/fnbeh.2022.860027
Interrogating structural plasticity among synaptic engrams.
Current opinion in neurobiology
Our daily experiences and learnings are stored in the form of memories. These experiences trigger synaptic plasticity and persistent structural and functional changes in neuronal synapses. Recently, cellular studies of memory storage and engrams have emerged over the last decade. Engram cells reflect interconnected neurons via modified synapses. However, we were unable to observe the structural changes arising from synaptic plasticity in the past, because it was not possible to distinguish the synapses between engram cells. To overcome this barrier, dual-eGRASP (enhanced green fluorescent protein reconstitution across synaptic partners) technology can label specific synapses among multiple synaptic ensembles. Selective labeling of engram synapses elucidated their role by observing the structural changes in synapses according to the memory state. Dual-eGRASP extends cellular level engram studies to introduce the era of synaptic level studies. Here, we review this concept and possible applications of the dual-eGRASP, including recent studies that provided visual evidence of structural plasticity at the engram synapse.
10.1016/j.conb.2022.102552
Neuronal activity in the dorsal dentate gyrus during extinction regulates fear memory extinction and renewal.
Experimental neurology
Memory extinction and renewal are major factors that limits the efficacy of exposure therapy. The dorsal dentate gyrus (dDG) plays a crucial role in spatial memory, and epigenetic modifications in the dDG play an important role in fear memory renewal. However, whether dDG activity regulates fear memory extinction and renewal remains unclear. In this study, we showed that an extinction procedure that prevents fear memory renewal (extinction within the reconsolidation window) leads to increased c-fos expression in the dDG. Chemicogenetic activation of dDG excitatory neurons during extinction training elevated fear memory extinction and prevented renewal, whereas inhibition of dDG excitatory neurons inhibited fear memory extinction. We also demonstrated that inhibiting fear engram cells (neurons active during fear acquisition) during extinction training inhibits fear memory extinction. Therefore, dDG activity during fear extinction plays an important role in fear memory extinction and renewal.
10.1016/j.expneurol.2022.114224
Hippocampal cells segregate positive and negative engrams.
Communications biology
The hippocampus is involved in processing a variety of mnemonic computations specifically the spatiotemporal components and emotional dimensions of contextual memory. Recent studies have demonstrated cellular heterogeneity along the hippocampal axis. The ventral hippocampus has been shown to be important in the processing of emotion and valence. Here, we combine transgenic and all-virus based activity-dependent tagging strategies to visualize multiple valence-specific engrams in the vHPC and demonstrate two partially segregated cell populations and projections that respond to appetitive and aversive experiences. Next, using RNA sequencing and DNA methylation sequencing approaches, we find that vHPC appetitive and aversive engram cells display different transcriptional programs and DNA methylation landscapes compared to a neutral engram population. Additionally, optogenetic manipulation of tagged cell bodies in vHPC is not sufficient to drive appetitive or aversive behavior in real-time place preference, stimulation of tagged vHPC terminals projecting to the amygdala and nucleus accumbens (NAc), but not the prefrontal cortex (PFC), showed the capacity drive preference and avoidance. These terminals also were able to change their capacity to drive behavior. We conclude that the vHPC contains genetically, cellularly, and behaviorally segregated populations of cells processing appetitive and aversive memory engrams.
10.1038/s42003-022-03906-8
Formation and fate of an engram in the lateral amygdala supporting a rewarding memory in mice.
Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology
Memories allow past experiences to guide future decision making and behavior. Sparse ensembles of neurons, known as engrams, are thought to store memories in the brain. Most previous research has focused on engrams supporting threatening or fearful memories where results show that neurons involved in a particular engram ("engram neurons") are both necessary and sufficient for memory expression. Far less is understood about engrams supporting appetitive or rewarding memories. As circumstances and environments are dynamic, the fate of a previously acquired engram with changing circumstances is unknown. Here we examined how engrams supporting a rewarding cue-cocaine memory are formed and whether this original engram is important in reinstatement of memory-guided behavior following extinction. Using a variety of techniques, we show that neurons in the lateral amygdala are allocated to an engram based on relative neuronal excitability at training. Furthermore, once allocated, these neurons become both necessary and sufficient for behavior consistent with recall of that rewarding memory. Allocated neurons are also critical for cocaine-primed reinstatement of memory-guided behavior following extinction. Moreover, artificial reactivation of initially allocated neurons supports reinstatement-like behavior following extinction even in the absence of cocaine-priming. Together, these findings suggest that cocaine priming after extinction reactivates the original engram, and that memory-guided reinstatement behavior does not occur in the absence of this reactivation. Although we focused on neurons in one brain region only, our findings that manipulations of lateral amygdala engram neurons alone were sufficient to impact memory-guided behavior indicate that the lateral amygdala is a critical hub region in what may be a larger brain-wide engram.
10.1038/s41386-022-01472-5
Opto-extinction of a threat memory in mice.
Brain research bulletin
Memories of past experiences guide future behaviour. Sparse ensembles of neurons, known as engrams, are thought to store memories in the brain. Neurons involved in a particular engram ("engram neurons") are necessary for subsequent memory expression as memory retrieval is thought to be initiated by an external sensory cue reactivating engram neurons. However, conditions or environments are dynamic, such that future behaviour should be flexible. The role of engrams in mediating flexible behaviour is not understood. Here we examined this question using one type of flexible behaviour, extinction of a threat response. An initially neutral tone is first paired with an aversive footshock such that the tone alone induces defensive freezing. After subsequent repeated tone presentations without the footshock, rodents no longer freeze to the tone. Because the tone cue is thought to reactivate the engram to induce memory retrieval, we examined whether it is possible to induce an extinction-like behavioural effect by optogenetically reactivating the lateral amygdala component of the engram alone (without tone re-exposure). Similar to tone-induced extinction, mice showed decreased freezing to optogenetic stimulation of the lateral amygdala engram in the "extinction training" session. Moreover, "opto-extinguished" mice showed decreased freezing to the tone when subsequently tested for retrieval of the extinction training in the same context, suggesting that the opto-extinction transferred to the actual sensory stimulus. However, unlike tone extinction, in which mice showed renewal of tone-induced freezing when tested in a novel context, opto-extinguished mice continued to show a deficit in tone-induced freezing. Extinction has been characterized as new learning that inhibits the original memory or a phenomenon in which the original memory is "unlearned". Our findings suggest that opto-extinction may silence the original engram to "unlearn" the original memory.
10.1016/j.brainresbull.2022.10.012
Locus coeruleus input-modulated reactivation of dentate gyrus opioid-withdrawal engrams promotes extinction.
Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology
Extinction training during the reconsolidation window following memory recall is an effective behavioral pattern for promoting the extinction of pathological memory. However, promoted extinction by recall-extinction procedure has not been universally replicated in different studies. One potential reason for this may relate to whether initially acquired memory is successfully activated. Thus, the methods for inducing the memory into an active or plastic condition may contribute to promoting its extinction. The aim of this study is to find and demonstrate a manipulatable neural circuit that engages in the memory recall process and where its activation improves the extinction process through recall-extinction procedure. Here, naloxone-precipitated conditioned place aversion (CPA) in morphine-dependent mice was mainly used as a pathological memory model. We found that the locus coeruleus (LC)-dentate gyrus (DG) circuit was necessary for CPA memory recall and that artificial activation of LC inputs to the DG just prior to initiating a recall-extinction procedure significantly promoted extinction learning. We also found that activating this circuit caused an increase in the ensemble size of DG engram cells activated during the extinction, which was confirmed by a cFos targeted strategy to label cells combined with immunohistochemical and in vivo calcium imaging techniques. Collectively, our data uncover that the recall experience is important for updating the memory during the reconsolidation window; they also suggest a promising neural circuit or target based on the recall-extinction procedure for weakening pathological aversion memory, such as opioid withdrawal memory and fear memory.
10.1038/s41386-022-01477-0
A short-term memory trace persists for days in the mouse hippocampus.
Communications biology
Active recall of short-term memory (STM) is known to last for a few hours, but whether STM has long-term functions is unknown. Here we show that STM can be optogenetically retrieved at a time point during which natural recall is not possible, uncovering the long-term existence of an STM engram. Moreover, re-training within 3 days led to natural long-term recall, indicating facilitated consolidation. Inhibiting offline CA1 activity during non-rapid eye movement (NREM) sleep, N-methyl-D-aspartate receptor (NMDAR) activity, or protein synthesis after first exposure to the STM-forming event impaired the future re-exposure-facilitated consolidation, which highlights a role of protein synthesis, NMDAR and NREM sleep in the long-term storage of an STM trace. These results provide evidence that STM is not completely lost within hours and demonstrates a possible two-step STM consolidation, first long-term storage as a behaviorally inactive engram, then transformation into an active state by recurrence within 3 days.
10.1038/s42003-022-04167-1
The Recruitment of a Neuronal Ensemble in the Central Nucleus of the Amygdala During the First Extinction Episode Has Persistent Effects on Extinction Expression.
Biological psychiatry
BACKGROUND:Adaptive behavior depends on the delicate and dynamic balance between acquisition and extinction memories. Disruption of this balance, particularly when the extinction of memory loses control over behavior, is the root of treatment failure of maladaptive behaviors such as substance abuse or anxiety disorders. Understanding this balance requires a better understanding of the underlying neurobiology and its contribution to behavioral regulation. METHODS:We microinjected Daun02 in Fos-lacZ transgenic rats following a single extinction training episode to delete extinction-recruited neuronal ensembles in the basolateral amygdala (BLA) and central nucleus of the amygdala (CN) and examined their contribution to behavior in an appetitive Pavlovian task. In addition, we used immunohistochemistry and neuronal staining methods to identify the molecular markers of activated neurons in the BLA and CN during extinction learning or retrieval. RESULTS:CN neurons were preferentially engaged following extinction, and deletion of these extinction-activated ensembles in the CN but not the BLA impaired the retrieval of extinction despite additional extinction training and promoted greater levels of behavioral restoration in spontaneous recovery and reinstatement. Disrupting extinction processing in the CN in turn increased activity in the BLA. Our results also show a specific role for CN PKCδ+ neurons in behavioral inhibition but not during initial extinction learning. CONCLUSIONS:We showed that the initial extinction-recruited CN ensemble is critical to the acquisition-extinction balance and that greater behavioral restoration does not mean weaker extinction contribution. These findings provide a novel avenue for thinking about the neural mechanisms of extinction and for developing treatments for cue-triggered appetitive behaviors.
10.1016/j.biopsych.2022.07.021
Trauma and Remembering: From Neuronal Circuits to Molecules.
Life (Basel, Switzerland)
Individuals with posttraumatic stress disorder (PTSD) experience intrusions of vivid traumatic memories, heightened arousal, and display avoidance behavior. Disorders in identity, emotion regulation, and interpersonal relationships are also common. The cornerstone of PTSD is altered learning, memory, and remembering, regulated by a complex neuronal and molecular network. We propose that the essential feature of successful treatment is the modification of engrams in their unstable state during retrieval. During psychedelic psychotherapy, engrams may show a pronounced instability, which enhances modification. In this narrative review, we outline the clinical characteristics of PTSD, its multifaceted neuroanatomy, and the molecular pathways that regulate memory destabilization and reconsolidation. We propose that psychedelics, acting by serotonin-glutamate interactions, destabilize trauma-related engrams and open the door to change them during psychotherapy.
10.3390/life12111707
Noradrenergic signaling mediates cortical early tagging and storage of remote memory.
Nature communications
The neocortical prefrontal memory engram generated during initial learning is critical for remote episodic memory storage, however, the nature of early cortical tagging remains unknown. Here we found that in mice, increased norepinephrine (NE) release from the locus coeruleus (LC) to the medial prefrontal cortex (mPFC) during contextual fear conditioning (CFC) was critical for engram tagging and remote memory storage, which was regulated by the ventrolateral periaqueductal grey. β-Blocker infusion, or knockout of β1-adrenergic receptor (β1-AR) in the mPFC, impaired the storage of remote CFC memory, which could not be rescued by activation of LC-mPFC NE projection. Remote memory retrieval induced the activation of mPFC engram cells that were tagged during CFC. Inhibition of LC-mPFC NE projection or β1-AR knockout impaired mPFC engram tagging. Juvenile mice had fewer LC NE neurons than adults and showed deficiency in mPFC engram tagging and remote memory of CFC. Activation of β1-AR signaling promoted mPFC early tagging and remote memory storage in juvenile mice. Our data demonstrate that activation of LC NEergic signaling during CFC memory encoding mediates engram early tagging in the mPFC and systems consolidation of remote memory.
10.1038/s41467-022-35342-x
A timely glimpse of memories to come.
Learning & behavior
Research in the last century has provided insight into the systems, cellular, and molecular processes involved in the formation, storage, recall, and update of memory engrams - the physical manifestation of the long sought-after philosophical and psychological concept of memory traces. Recent technologies allow scientists to visualize the key molecular players involved in segregating, ordering, and linking memories close in time, for future treatment of "disorders of the engram" where memory linking is deficient (e.g., cognitive aging or Alzheimer's) or excessive (e.g., PTSD).
10.3758/s13420-022-00557-x
A search pattern for the engram.
Learning & behavior
Roy and colleagues (Nature Communications, 13.1, 1-16, 2022) examined neuronal ensembles associated with contextual fear conditioning memory across multiple brain regions, referred to as a unified engram complex. Their four-step approach incorporating brain-wide mapping of activated neurons, engram indexing, and optogenetic and chemogenetic manipulations could offer a novel, holistic approach to implement in our continued search for the engram.
10.3758/s13420-022-00562-0
Neocortical synaptic engrams for remote contextual memories.
Nature neuroscience
While initial encoding of contextual memories involves the strengthening of hippocampal circuits, these memories progressively mature to stabilized forms in neocortex and become less hippocampus dependent. Although it has been proposed that long-term storage of contextual memories may involve enduring synaptic changes in neocortical circuits, synaptic substrates of remote contextual memories have been elusive. Here we demonstrate that the consolidation of remote contextual fear memories in mice correlated with progressive strengthening of excitatory connections between prefrontal cortical (PFC) engram neurons active during learning and reactivated during remote memory recall, whereas the extinction of remote memories weakened those synapses. This synapse-specific plasticity was CREB-dependent and required sustained hippocampal signals, which the retrosplenial cortex could convey to PFC. Moreover, PFC engram neurons were strongly connected to other PFC neurons recruited during remote memory recall. Our study suggests that progressive and synapse-specific strengthening of PFC circuits can contribute to long-term storage of contextual memories.
10.1038/s41593-022-01223-1
Memory reactivations during sleep.
Neuroscience research
Neuronal activities that occur during awake periods are often reactivated again during sleep, to consolidate recently encoded memories, a process known as consolidation. In recent years, advanced tools, specially optical techniques and in-vivo live Ca imaging, have revealed a deeper understanding to the offline periods' neuronal activities and their correspondence to later awake behavioral outputs. Recently, there is a growing consensus that sleep is more of an active process. Sleep has been associated with various functions, memory updating, future imaginations of possible familiar scenarios, decision making and planning by replaying past memories. Also, boosting insightful thoughts, creative thinking and problem solving by forming new associations and connections that were not present in awake states. Sleep activities have been directly associated with many "EUREKA" or "AHA" moments. Here, we describe recent views on memory reactivations during sleep and their implications on learning and memory.
10.1016/j.neures.2022.12.018
Hippocampal engram networks for fear memory recruit new synapses and modify pre-existing synapses in vivo.
Current biology : CB
As basic units of neural networks, ensembles of synapses underlie cognitive functions such as learning and memory. These synaptic engrams show elevated synaptic density among engram cells following contextual fear memory formation. Subsequent analysis of the CA3-CA1 engram synapse revealed larger spine sizes, as the synaptic connectivity correlated with the memory strength. Here, we elucidate the synapse dynamics between CA3 and CA1 by tracking identical synapses at multiple time points by adapting two-photon microscopy and dual-eGRASP technique in vivo. After memory formation, synaptic connections between engram populations are enhanced in conjunction with synaptogenesis within the hippocampal network. However, extinction learning specifically correlated with the disappearance of CA3 engram to CA1 engram (E-E) synapses. We observed "newly formed" synapses near pre-existing synapses, which clustered CA3-CA1 engram synapses after fear memory formation. Overall, we conclude that dynamics at CA3 to CA1 E-E synapses are key sites for modification during fear memory states.
10.1016/j.cub.2022.12.038
Persistent representation of the environment in the hippocampus.
Cell reports
In the hippocampus, environmental changes elicit rearrangement of active neuronal ensembles or remapping of place cells. However, it remains elusive how the brain ensures a consistent representation of a certain environment itself despite salient events occurring there. Here, we longitudinally tracked calcium dynamics of dorsal hippocampal CA1 neurons in mice subjected to contextual fear conditioning and extinction training. Overall population activities were significantly changed by fear conditioning and were responsive to footshocks and freezing. However, a small subset of neurons, termed environment cells, were consistently active in a specific environment irrespective of experiences. A decoder modeling study showed that these cells, but not place cells, were able to predict the environment to which the mouse was exposed. Environment cells might underlie the constancy of cognition for distinct environments across time and events. Additionally, our study highlights the functional heterogeneity of cells in the hippocampus.
10.1016/j.celrep.2022.111989
[Richard Semon (1859-1918): expeditions, engrams and epigenetics].
Neuropsychiatrie : Klinik, Diagnostik, Therapie und Rehabilitation : Organ der Gesellschaft Osterreichischer Nervenarzte und Psychiater
Richard Semon (1859-1918) was a student of Ernst Haeckel and began his career as a zoologist with work on sea urchins, starfish, chicken and lung fish, which he collected at the Mediterranean Sea and in Australia. After his return to Germany he was forced to leave Jena and the university due to private reasons, and settled in Munich, where Semon devoted most of his time to the more philosophical aspects of biology, developed the theory of "mneme" (1904), which he extended towards the inheritance of acquired characteristics (1912). Semon's concept of memory reached far beyond the brain and the individual person. In 1918 he took his life, despondent because of a surmised lack of scientific appreciation, the death of his beloved wife, the political turmoil at the end of WWI, and his-the memory researcher's-suspected loss of memory. Eight years later, the experimental biologist Paul Kammerer (1880-1926) from Vienna, Semon's must trusted source for the inheritance of acquired characteristics, also shot himself. Serious doubts increasingly overshadowed his work on salamanders and midwife toads. Epigenetics, the nature of memory, the fear of cognitive impairment, depression, the impact of private and political matters on scientific work, suspected scientific errors, fraud and a scientists' suicides are condensed in Semon's life and death.
10.1007/s40211-022-00454-9
Threat Memory in the Sensory Cortex: Insights from Olfaction.
The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry
The amygdala has long held the center seat in the neural basis of threat conditioning. However, a rapidly growing literature has elucidated extra-amygdala circuits in this process, highlighting the sensory cortex for its critical role in the mnemonic aspect of the process. While this literature is largely focused on the auditory system, substantial human and rodent findings on the olfactory system have emerged. The unique nature of the olfactory neuroanatomy and its intimate association with emotion compels a review of this recent literature to illuminate its special contribution to threat memory. Here, integrating recent evidence in humans and animal models, we posit that the olfactory (piriform) cortex is a primary and necessary component of the distributed threat memory network, supporting mnemonic ensemble coding of acquired threat. We further highlight the basic circuit architecture of the piriform cortex characterized by distributed, auto-associative connections, which is prime for highly efficient content-addressable memory computing to support threat memory. Given the primordial role of the piriform cortex in cortical evolution and its simple, well-defined circuits, we propose that olfaction can be a model system for understanding (transmodal) sensory cortical mechanisms underlying threat memory.
10.1177/10738584221148994
Arc-driven mGRASP highlights CA1 to CA3 synaptic engrams.
Frontiers in behavioral neuroscience
Subpopulations of neurons display increased activity during memory encoding and manipulating the activity of these neurons can induce artificial formation or erasure of memories. Thus, these neurons are thought to be cellular engrams. Moreover, correlated activity between pre- and postsynaptic engram neurons is thought to lead to strengthening of their synaptic connections, thus increasing the probability of neural activity patterns occurring during encoding to reoccur at recall. Therefore, synapses between engram neurons can also be considered as a substrate of memory, or a synaptic engram. One can label synaptic engrams by targeting two complementary, non-fluorescent, synapse-targeted GFP fragments separately to the pre- and postsynaptic compartment of engram neurons; the two GFP fragments reconstitute a fluorescent GFP at the synaptic cleft between the engram neurons, thereby highlighting synaptic engrams. In this work we explored a transsynaptic GFP reconstitution system (mGRASP) to label synaptic engrams between hippocampal CA1 and CA3 engram neurons identified by different Immediate-Early Genes: and . We characterized the expression of the cellular and synaptic labels of the mGRASP system upon exposure to a novel environment or learning of a hippocampal-dependent memory task. We found that mGRASP under the control of transgenic ArcCre labeled synaptic engrams more efficiently than when controlled by viral cFostTA, possibly due to differences in the genetic systems rather than the specific IEG promoters.
10.3389/fnbeh.2022.1072571
Route-dependent spatial engram tagging in mouse dentate gyrus.
Neurobiology of learning and memory
The dentate gyrus (DG) of hippocampus is hypothesized to act as a pattern separator that distinguishes between similar input patterns during memory formation and retrieval. Sparse ensembles of DG cells associated with learning and memory, i.e. engrams, have been labeled and manipulated to recall novel context memories. Functional studies of DG cell activity have demonstrated the spatial specificity and stability of DG cells during navigation. To reconcile how the DG contributes to separating global context as well as individual navigational routes, we trained mice to perform a delayed-non-match-to-position (DNMP) T-maze task and labeled DG neurons during performance of this task on a novel T-maze. The following day, mice navigated a second environment: the same T-maze, the same T-maze with one route permanently blocked but still visible, or a novel open field. We found that the degree of engram reactivation across days differed based on the traversal of maze routes, such that mice traversing only one arm had higher ensemble overlap than chance but less overlap than mice running the full two-route task. Mice experiencing the open field had similar ensemble sizes to the other groups but only chance-level ensemble reactivation. Ensemble overlap differences could not be explained by behavioral variability across groups, nor did behavioral metrics correlate to degree of ensemble reactivation. Together, these results support the hypothesis that DG contributes to spatial navigation memory and that partially non-overlapping ensembles encode different routes within the context of an environment.
10.1016/j.nlm.2023.107738
A possible mechanism of neural read-out from a molecular engram.
Neurobiology of learning and memory
What is the physical basis of declarative memory? The predominant view holds that stored information is embedded in the structure of a neural net, that is, in the signs and weights of its synaptic connections. An alternative possibility is that storage and processing are separated, and that the engram is encoded chemically, most probably in the sequence of a nucleic acid. One deterrent to adoption of the latter hypothesis has been the difficulty of envisaging how neural actively could be converted to and from a molecular code. Our purpose here is limited to suggesting how a molecular sequence could be read out from nucleic acid to neural activity by means of nanopores.
10.1016/j.nlm.2023.107748
An integrative view of human hippocampal function: Differences with other species and capacity considerations.
Hippocampus
We describe an integrative model that encodes associations between related concepts in the human hippocampal formation, constituting the skeleton of episodic memories. The model, based on partially overlapping assemblies of "concept cells," contrast markedly with the well-established notion of pattern separation, which relies on conjunctive, context dependent single neuron responses, instead of the invariant, context independent responses found in the human hippocampus. We argue that the model of partially overlapping assemblies is better suited to cope with memory capacity limitations, that the finding of different types of neurons and functions in this area is due to a flexible and temporary use of the extraordinary machinery of the hippocampus to deal with the task at hand, and that only information that is relevant and frequently revisited will consolidate into long-term hippocampal representations, using partially overlapping assemblies. Finally, we propose that concept cells are uniquely human and that they may constitute the neuronal underpinnings of cognitive abilities that are much further developed in humans compared to other species.
10.1002/hipo.23527
Examining the engram encoding specificity hypothesis in mice.
Neuron
According to the encoding specificity hypothesis, memory is best recalled by retrieval cues that overlap with training cues. Human studies generally support this hypothesis. However, memories are thought to be stored in neuronal ensembles (engrams), and retrieval cues are thought to reactivate neurons in an engram to induce memory recall. Here, we visualized engrams in mice to test whether retrieval cues that overlap with training cues produce maximal memory recall via high engram reactivation (engram encoding specificity hypothesis). Using variations of cued threat conditioning (pairing conditioned stimulus [CS] with footshock), we manipulated encoding and retrieval conditions along multiple domains, including pharmacological state, external sensory cue, and internal optogenetic cue. Maximal engram reactivation and memory recall occurred when retrieval conditions closely matched training conditions. These findings provide a biological basis for the encoding specificity hypothesis and highlight the important interaction between stored information (engram) and cues available at memory retrieval (ecphory).
10.1016/j.neuron.2023.03.007
Insights into the encoding of memories through the circuitry of fear.
Current opinion in neurobiology
Associative learning induces physical changes to a network of cells, known as the memory engram. Fear is widely used as a model to understand the circuit motifs that underpin associative memories. Recent advances suggest that the distinct circuitry engaged by different conditioned stimuli (e.g. tone vs. context) can provide insights into what information is being encoded in the fear engram. Moreover, as the fear memory matures, the circuitry engaged indicates how information is remodelled after learning and hints at potential mechanisms for consolidation. Finally, we propose that the consolidation of fear memories involves plasticity of engram cells through coordinated activity between brain regions, and the inherent characteristics of the circuitry may mediate this process.
10.1016/j.conb.2023.102712
How engram mediates learning, extinction, and relapse.
Current opinion in neurobiology
Fear learning ensures survival through an expression of certain behavior as a conditioned fear response. Fear memory is processed and stored in a fear memory circuit, including the amygdala, hippocampus, and prefrontal cortex. A gradual decrease in conditioned fear response can be induced by fear extinction, which is mediated through the weakening of the original fear memory traces and the newly formed inhibition of those traces. Fear memory can also recover after extinction, which shows flexible control of the fear memory state. Here, we demonstrate how fear engram, which is a physical substrate of fear memory, changes during fear extinction and relapse by reviewing recent studies regarding engram.
10.1016/j.conb.2023.102723
A shift in the mechanisms controlling hippocampal engram formation during brain maturation.
Science (New York, N.Y.)
The ability to form precise, episodic memories develops with age, with young children only able to form gist-like memories that lack precision. The cellular and molecular events in the developing hippocampus that underlie the emergence of precise, episodic-like memory are unclear. In mice, the absence of a competitive neuronal engram allocation process in the immature hippocampus precluded the formation of sparse engrams and precise memories until the fourth postnatal week, when inhibitory circuits in the hippocampus mature. This age-dependent shift in precision of episodic-like memories involved the functional maturation of parvalbumin-expressing interneurons in subfield CA1 through assembly of extracellular perineuronal nets, which is necessary and sufficient for the onset of competitive neuronal allocation, sparse engram formation, and memory precision.
10.1126/science.ade6530
The 21st century engram.
Wiley interdisciplinary reviews. Cognitive science
The search for the engram-the neural mechanism of memory-has been a guiding research project for neuroscience since its emergence as a distinct scientific field. Recent developments in the tools and techniques available for investigating the mechanisms of memory have allowed researchers to proclaimed the search is over. While there is ongoing debate about the justification for that claim, renewed interest in the engram is clear. This attention highlights the impoverished status of the engram concept. As research accelerates, the simple characterization of the engram as an enduring physical change is stretched thin. Now that the engram commitment has been made more explicit, it must also be made more precise. If the project of 20th century neurobiology was finding the engram, the project of the 21st must be supplying a richer account of what's been found. This paper sketches a history of the engram, and a way forward. This article is categorized under: Philosophy > Foundations of Cognitive Science.
10.1002/wcs.1653
Anterior basolateral amygdala neurons comprise a remote fear memory engram.
Frontiers in neural circuits
Introduction:Threatening environmental cues often generate enduring fear memories, but how these are formed and stored remains actively investigated. Recall of a recent fear memory is thought to reflect reactivation of neurons, in multiple brain regions, activated during memory formation, indicating that anatomically distributed and interconnected neuronal ensembles comprise fear memory engrams. The extent to which anatomically specific activation-reactivation engrams persist during long-term fear memory recall, however, remains largely unexplored. We hypothesized that principal neurons in the anterior basolateral amygdala (aBLA), which encode negative valence, acutely reactivate during remote fear memory recall to drive fear behavior. Methods:Using adult offspring of TRAP2 and Ai14 mice, persistent tdTomato expression was used to "TRAP" aBLA neurons that underwent Fos-activation during contextual fear conditioning (electric shocks) or context only conditioning (no shocks) ( = 5/group). Three weeks later, mice were re-exposed to the same context cues for remote memory recall, then sacrificed for Fos immunohistochemistry. Results:TRAPed (tdTomato +), Fos +, and reactivated (double-labeled) neuronal ensembles were larger in fear- than context-conditioned mice, with the middle sub-region and middle/caudal dorsomedial quadrants of aBLA displaying the greatest densities of all three ensemble populations. Whereas tdTomato + ensembles were dominantly glutamatergic in context and fear groups, freezing behavior during remote memory recall was not correlated with ensemble sizes in either group. Discussion:We conclude that although an aBLA-inclusive fear memory engram forms and persists at a remote time point, plasticity impacting electrophysiological responses of engram neurons, not their population size, encodes fear memory and drives behavioral manifestations of long-term fear memory recall.
10.3389/fncir.2023.1167825
The memory engram: beginning the search.
Dementia & neuropsychologia
Some of the earliest conceptual milestones in memory research with relevance to the physical means through which its preservation is made possible, namely, the 'memory trace' or 'engram', are analysed in this study. The fundamental notions were laid down by Platon and Aristoteles. While Platon regarded memory as an imprint on a 'wax block' in the immortal soul, Aristoteles considered memory a modification in the mortal soul, imprinted like a cast at birth time. The Roman orators were interested in mnemotechnics, and Cicero is credited for the term 'trace' () used for the first time. Much later, Descartes described the (memory) 'trace' (), linking psychic, and physical processes. Finally, Semon posited innovative concepts and terms centralized by the 'engram' (). The search of this important question, which begun about two and a half millennia ago, continues in focus, as can be seen through the growing rate of published papers on the subject.
10.1590/1980-5764-DN-2022-0059
Dissecting cell-type-specific pathways in medial entorhinal cortical-hippocampal network for episodic memory.
Journal of neurochemistry
Episodic memory, which refers to our ability to encode and recall past events, is essential to our daily lives. Previous research has established that both the entorhinal cortex (EC) and hippocampus (HPC) play a crucial role in the formation and retrieval of episodic memories. However, to understand neural circuit mechanisms behind these processes, it has become necessary to monitor and manipulate the neural activity in a cell-type-specific manner with high temporal precision during memory formation, consolidation, and retrieval in the EC-HPC networks. Recent studies using cell-type-specific labeling, monitoring, and manipulation have demonstrated that medial EC (MEC) contains multiple excitatory neurons that have differential molecular markers, physiological properties, and anatomical features. In this review, we will comprehensively examine the complementary roles of superficial layers of neurons (II and III) and the roles of deeper layers (V and VI) in episodic memory formation and recall based on these recent findings.
10.1111/jnc.15850
Fear extinction relies on ventral hippocampal safety codes shaped by the amygdala.
Science advances
Extinction memory retrieval is influenced by spatial contextual information that determines responding to conditioned stimuli (CS). However, it is poorly understood whether contextual representations are imbued with emotional values to support memory selection. Here, we performed activity-dependent engram tagging and in vivo single-unit electrophysiological recordings from the ventral hippocampus (vH) while optogenetically manipulating basolateral amygdala (BLA) inputs during the formation of cued fear extinction memory. During fear extinction when CS acquire safety properties, we found that CS-related activity in the vH reactivated during sleep consolidation and was strengthened upon memory retrieval. Moreover, fear extinction memory was facilitated when the extinction context exhibited precise coding of its affective zones. Last, these activity patterns along with the retrieval of the fear extinction memory were dependent on glutamatergic transmission from the BLA during extinction learning. Thus, fear extinction memory relies on the formation of contextual and stimulus safety representations in the vH instructed by the BLA.
10.1126/sciadv.adg4881
Altered fear engram encoding underlying conditioned versus unconditioned stimulus-initiated memory updating.
Science advances
It is known that post-retrieval extinction but not extinction alone could erase fear memory. However, whether the coding pattern of original fear engrams is remodeled or inhibited remains largely unclear. We found increased reactivation of engram cells in the prelimbic cortex and basolateral amygdala during memory updating. Moreover, conditioned stimulus- and unconditioned stimulus-initiated memory updating depends on the engram cell reactivation in the prelimbic cortex and basolateral amygdala, respectively. Last, we found that memory updating causes increased overlapping between fear and extinction cells, and the original fear engram encoding was altered during memory updating. Our data provide the first evidence to show the overlapping ensembles between fear and extinction cells and the functional reorganization of original engrams underlying conditioned stimulus- and unconditioned stimulus-initiated memory updating.
10.1126/sciadv.adf0284