
Fluvoxamine alleviates bleomycin-induced lung fibrosis via regulating the cGAS-STING pathway.
Pharmacological research
Idiopathic pulmonary fibrosis (IPF) is a fatal disease with high mortality and limited effective therapy. Herein, we reported that fluvoxamine, a selective serotonin reuptake inhibitor (SSRI), used in depression and anxiety treatment, also exhibited therapeutic activities in IPF. Fluvoxamine inhibited cyclic GMP-AMP synthase (cGAS) and stimulator of interferon genes (STING), restrained the activation of their downstream targets, including PERK/ eIF2α/ c-Myc/ miR-9-5p/ TBPL1 and TBK1/ YAP/ JNK1/2/ Bnip3/ CaMKII/ cofilin signaling, thus attenuated the activation and migration of fibroblasts upon TGF-β1 challenge. Fluvoxamine dose-dependently improved pulmonary function, decreased the expression of inflammatory factors, reduced excessive production of extracellular matrix, and thus alleviated bleomycin (BLM)-induced lung fibrosis in mice. Moreover, fluvoxamine at a dose of 10 mg/ kg showed similar efficacy as pirfenidone (PFD) at a dose of 30 mg/kg in a mice model of lung fibrosis. In summary, our results suggest that fluvoxamine is an effective anti-fibrotic agent for IPF.
10.1016/j.phrs.2022.106577
Recombinant BCG Expressing ESX-1 of Mycobacterium marinum Combines Low Virulence with Cytosolic Immune Signaling and Improved TB Protection.
Gröschel Matthias I,Sayes Fadel,Shin Sung Jae,Frigui Wafa,Pawlik Alexandre,Orgeur Mickael,Canetti Robin,Honoré Nadine,Simeone Roxane,van der Werf Tjip S,Bitter Wilbert,Cho Sang-Nae,Majlessi Laleh,Brosch Roland
Cell reports
Recent insights into the mechanisms by which Mycobacterium tuberculosis, the etiologic agent of human tuberculosis, is recognized by cytosolic nucleotide sensors have opened new avenues for rational vaccine design. The only licensed anti-tuberculosis vaccine, Mycobacterium bovis BCG, provides limited protection. A feature of BCG is the partial deletion of the ESX-1 type VII secretion system, which governs phagosomal rupture and cytosolic pattern recognition, key intracellular phenotypes linked to increased immune signaling. Here, by heterologously expressing the esx-1 region of Mycobacterium marinum in BCG, we engineered a low-virulence, ESX-1-proficient, recombinant BCG (BCG::ESX-1) that induces the cGas/STING/TBK1/IRF-3/type I interferon axis and enhances AIM2 and NLRP3 inflammasome activity, resulting in both higher proportions of CD8 T cell effectors against mycobacterial antigens shared with BCG and polyfunctional CD4 Th1 cells specific to ESX-1 antigens. Importantly, independent mouse vaccination models show that BCG::ESX-1 confers superior protection relative to parental BCG against challenges with highly virulent M. tuberculosis.
10.1016/j.celrep.2017.02.057
SMYD2 inhibition-mediated hypomethylation of Ku70 contributes to impaired nonhomologous end joining repair and antitumor immunity.
Science advances
DNA damage repair (DDR) is a double-edged sword with different roles in cancer susceptibility and drug resistance. Recent studies suggest that DDR inhibitors affect immune surveillance. However, this phenomenon is poorly understood. We report that methyltransferase SMYD2 plays an essential role in nonhomologous end joining repair (NHEJ), driving tumor cells adaptive to radiotherapy. Mechanically, in response to DNA damage, SMYD2 is mobilized onto chromatin and methylates Ku70 at lysine-74, lysine-516, and lysine-539, leading to increased recruitment of Ku70/Ku80/DNA-PKcs complex. Knockdown of SMYD2 or its inhibitor AZ505 results in persistent DNA damage and improper repair, which sequentially leads to accumulation of cytosolic DNA, and activation of cGAS-STING pathway and triggers antitumor immunity via infiltration and activation of cytotoxic CD8 T cells. Our study reveals an unidentified role of SMYD2 in regulating NHEJ pathway and innate immune responses, suggesting that SMYD2 is a promising therapeutic target for cancer treatment.
10.1126/sciadv.ade6624
Simultaneous Delivery of Dual Inhibitors of DNA Damage Repair Sensitizes Pancreatic Cancer Response to Irreversible Electroporation.
ACS nano
Pancreatic ductal adenocarcinoma (PDAC) is an abysmal disease refractory to most standard therapies. Irreversible electroporation (IRE) is a local ablative technique for the clinical treatment of solid tumors, including locally advanced and unresectable PDAC, by intratumorally delivering high-intensity electric pulses to permanently disrupt cell membranes and induce cell death. But the distribution of electric field is uneven within the tumor, and in some regions, tumor cells only experience temporary perturbation to their cell membrane, a phenomenon denoted as reversible electroporation (RE). These tumor cells may survive and therefore are the main culprit of tumor relapse after IRE. We herein showed that RE, although not killing tumor cells, induced DNA double-strand breaks and activated DNA damage repair (DDR) responses. Using reactive oxygen species-sensitive polymeric micelles coloaded with Olaparib, an inhibitor of poly(ADP-ribose) polymerase (PARP), and AZD0156, an inhibitor of ataxia telangiectasia mutated (ATM), the resultant nanoformulation (M-TK-OA) disrupted both homologous recombination and nonhomologous end joining signaling of the DDR response and impaired colony formation in pancreatic cancer cells after RE. The combination of IRE and M-TK-OA significantly prolonged animal survival in both subcutaneous and orthotopic murine PDAC models and elicited CD8 T cell-mediated antitumor immunity with a sustained antitumor memory. The efficacy of combined IRE and M-TK-OA treatments was partially attributed to the activation of cyclic GMP-AMP synthase-stimulator of interferon genes innate immune responses. Our study suggests that dual inhibition of PARP and ATM with nanomedicine is a promising strategy to enhance the pancreatic cancer response to IRE.
10.1021/acsnano.3c05009
Bloom syndrome protein restrains innate immune sensing of micronuclei by cGAS.
The Journal of experimental medicine
Cellular innate immune sensors of DNA are essential for host defense against invading pathogens. However, the presence of self-DNA inside cells poses a risk of triggering unchecked immune responses. The mechanisms limiting induction of inflammation by self-DNA are poorly understood. BLM RecQ-like helicase is essential for genome integrity and is deficient in Bloom syndrome (BS), a rare genetic disease characterized by genome instability, accumulation of micronuclei, susceptibility to cancer, and immunodeficiency. Here, we show that BLM-deficient fibroblasts show constitutive up-regulation of inflammatory interferon-stimulated gene (ISG) expression, which is mediated by the cGAS-STING-IRF3 cytosolic DNA-sensing pathway. Increased DNA damage or down-regulation of the cytoplasmic exonuclease TREX1 enhances ISG expression in BLM-deficient fibroblasts. cGAS-containing cytoplasmic micronuclei are increased in BS cells. Finally, BS patients demonstrate elevated ISG expression in peripheral blood. These results reveal that BLM limits ISG induction, thus connecting DNA damage to cellular innate immune response, which may contribute to human pathogenesis.
10.1084/jem.20181329
Regulating Photosensitizer Metabolism with DNAzyme-Loaded Nanoparticles for Amplified Mitochondria-Targeting Photodynamic Immunotherapy.
ACS nano
Mitochondria-specific photosensitizer accumulation is highly recommended for photodynamic therapy and mitochondrial DNA (mtDNA) oxidative damage-based innate immunotherapy but remains challenging. 5-Aminolevulinic acid (ALA), precursor of photosensitizer protoporphyrin IX (PpIX), can induce the exclusive biosynthesis of PpIX in mitochondria. Nevertheless, its photodynamic effect is limited by the intracellular biotransformation of ALA in tumors. Here, we report a photosensitizer metabolism-regulating strategy using ALA/DNAzyme-co-loaded nanoparticles (ALA&Dz@ZIF-PEG) for mitochondria-targeting photodynamic immunotherapy. The zeolitic imidazolate framework (ZIF-8) nanoparticles can be disassembled and release large amounts of zinc ions (Zn) within tumor cells. Notably, Zn can relieve tumor hypoxia for promoting the conversion of ALA to PpIX. Moreover, Zn acts as a cofactor of rationally designed DNAzyme for silencing excessive ferrochelatase (FECH; which catalyzes PpIX into photoinactive Heme), cooperatively promoting the exclusive accumulation of PpIX in mitochondria via the "open source and reduced expenditure" manner. Subsequently, the photodynamic effects derived from PpIX lead to the damage and release of mtDNA and activate the innate immune response. In addition, the released Zn further enhances the mtDNA/cGAS-STING pathway mediated innate immunity. The ALA&Dz@ZIF-PEG system induced 3 times more PpIX accumulation than ALA-loaded liposome, significantly enhancing tumor regression in xenograft tumor models.
10.1021/acsnano.3c03308
Constitutive Interferon Maintains GBP Expression Required for Release of Bacterial Components Upstream of Pyroptosis and Anti-DNA Responses.
Cell reports
Legionella pneumophila elicits caspase-11-driven macrophage pyroptosis through guanylate-binding proteins (GBPs) encoded on chromosome 3. It has been proposed that microbe-driven IFN upregulates GBPs to facilitate pathogen vacuole rupture and bacteriolysis preceding caspase-11 activation. We show here that macrophage death occurred independently of microbial-induced IFN signaling and that GBPs are dispensable for pathogen vacuole rupture. Instead, the host-intrinsic IFN status sustained sufficient GBP expression levels to drive caspase-1 and caspase-11 activation in response to cytosol-exposed bacteria. In addition, endogenous GBP levels were sufficient for the release of DNA from cytosol-exposed bacteria, preceding the cyclic GMP-AMP synthase/stimulator of interferon genes (cGAS/STING) pathway for Ifnb induction. Mice deficient for chromosome 3 GBPs were unable to mount a rapid IL-1/chemokine (C-X-C motif) ligand 1 (CXCL1) response during Legionella-induced pneumonia, with defective bacterial clearance. Our results show that rapid GBP activity is controlled by host-intrinsic cytokine signaling and that GBP activities precede immune amplification responses, including IFN induction, inflammasome activation, and cell death.
10.1016/j.celrep.2018.06.012
MnOOH-Catalyzed Autoxidation of Glutathione for Reactive Oxygen Species Production and Nanocatalytic Tumor Innate Immunotherapy.
Journal of the American Chemical Society
The antioxidant system, signed with reduced glutathione (GSH) overexpression, is the key weapon for tumor to resist the attack by reactive oxygen species (ROS). Counteracting the ROS depletion by GSH is an effective strategy to guarantee the antitumor efficacy of nanocatalytic therapy. However, simply reducing the concentration of GSH does not sufficiently improve tumor response to nanocatalytic therapy intervention. Herein, a well-dispersed MnOOH nanocatalyst is developed to catalyze GSH autoxidation and peroxidase-like reaction concurrently and respectively to promote GSH depletion and HO decomposition to produce abundant ROS such as hydroxyl radical (·OH), thereby generating a highly effective superadditive catalytic therapeutic efficacy. Such a therapeutic strategy that transforms endogenous "antioxidant" into "oxidant" may open a new avenue for the development of antitumor nanocatalytic medicine. Moreover, the released Mn can activate and sensitize the cGAS-STING pathway to the damaged intratumoral DNA double-strands induced by the produced ROS to further promote macrophage maturation and M1-polarization, which will boost the innate immunotherapeutic efficacy. Resultantly, the developed simple MnOOH nanocatalytic medicine capable of simultaneously catalyzing GSH depletion and ROS generation, and mediating innate immune activation, holds great potential in the treatment of malignant tumors.
10.1021/jacs.2c12942
Sterile liver injury induces a protective tissue-resident cDC1-ILC1 circuit through cDC1-intrinsic cGAS-STING-dependent IL-12 production.
Cell reports
Tissue-resident immune cells are critical to the initiation and potentiation of inflammation. However, the tissue-protective cellular communication networks initiated by resident immunity during sterile inflammation are not well understood. Using single-cell transcriptomic analysis, we show the liver-resident cell connectome and signalome during acute liver injury. These analyses identify Il12b as a central regulator of liver injury-associated changes in gene expression. Interleukin (IL)-12 produced by conventional type 1 dendritic cells (cDC1s) is required for protection during acute injury through activation of interferon (IFN)-γ production by liver-resident type 1 innate lymphoid cells (ILC1s). Using a targeted in vivo CRISPR-Cas9 screen of innate immune sensing pathways, we find that cDC1-intrinsic cGAS-STING signaling acts upstream of IL-12 production to initiate early protective immune responses. Our study identifies the core communication hubs initiated by tissue-resident innate immune cells during sterile inflammation in vivo and implicates cDC1-derived IL-12 as an important regulator of this process.
10.1016/j.celrep.2023.112141
Synthetic enforcement of STING signaling in cancer cells appropriates the immune microenvironment for checkpoint inhibitor therapy.
Science advances
Immune checkpoint inhibitors (ICIs) enhance anticancer immunity by releasing repressive signals into tumor microenvironments (TMEs). To be effective, ICIs require preexisting immunologically "hot" niches for tumor antigen presentation and lymphocyte recruitment. How the mutational landscape of cancer cells shapes these immunological niches remains poorly defined. We found in human and murine colorectal cancer (CRC) models that the superior antitumor immune response of mismatch repair (MMR)-deficient CRC required tumor cell-intrinsic activation of cGAS-STING signaling triggered by genomic instability. Subsequently, we synthetically enforced STING signaling in CRC cells with intact MMR signaling using constitutively active STING variants. Even in MMR-proficient CRC, genetically encoded gain-of-function STING was sufficient to induce cancer cell-intrinsic interferon signaling, local activation of antigen-presenting cells, recruitment of effector lymphocytes, and sensitization of previously "cold" TMEs to ICI therapy in vivo. Thus, our results introduce a rational strategy for modulating cancer cell-intrinsic programs via engineered STING enforcement to sensitize resistant tumors to ICI responsiveness.
10.1126/sciadv.add8564
The Chlamydia trachomatis Inclusion Membrane Protein CpoS Counteracts STING-Mediated Cellular Surveillance and Suicide Programs.
Cell host & microbe
Evading cell death is critical for Chlamydia to maintain a replicative niche, but the underlying mechanisms are unknown. We screened a library of Chlamydia mutants for modulators of cell death. Inactivation of the inclusion membrane protein CpoS (Chlamydia promoter of survival) induced rapid apoptotic and necrotic death in infected cells. The protection afforded by CpoS is limited to the inclusion in which it resides, indicating that it counteracts a spatially restricted pro-death signal. CpoS-deficient Chlamydia induced an exacerbated type I interferon response that required the host cGAS/STING/TBK1/IRF3 signaling pathway. Disruption of STING, but not cGAS or IRF3, attenuated cell death, suggesting that STING mediates Chlamydia-induced cell death independent of its role in regulating interferon responses. CpoS-deficient strains are attenuated in their ability to propagate in cell culture and are cleared faster from the murine genital tract, highlighting the importance of CpoS for Chlamydia pathogenesis.
10.1016/j.chom.2016.12.002
X-ray-Induced Release of Nitric Oxide from Hafnium-Based Nanoradiosensitizers for Enhanced Radio-Immunotherapy.
Advanced materials (Deerfield Beach, Fla.)
Radiotherapy (RT) is an extensively used strategy for cancer treatment, but its therapeutic effect is usually limited by the abnormal tumor microenvironment (TME) and it lacks the ability to control tumor metastases. In this work, a nanoscale coordination polymer, Hf-nIm@PEG (HNP), is prepared by the coordination of hafnium ions (Hf ) with 2-nitroimidazole (2-nIm), and then modified with lipid bilayers containing poly(ethylene glycol) (PEG). Under low-dose X-ray irradiation, on the one hand, Hf with high computed tomography signal enhancement ability can deposit radiation energy to induce DNA damage, and on the other hand, NO can be persistently released from 2-nIm, which can not only directly react with the radical DNA to prevent the repair of damaged DNA but also relieves the hypoxic immunosuppressive TME to sensitize radiotherapy. Additionally, NO can also react with superoxide ions to generate reactive nitrogen species (RNS) to induce cell apoptosis. More interestingly, it is discovered that Hf can effectively activate the cyclic-di-GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway to promote the immune responses induced by radiotherapy. Thus, this work presents a simple but multifunctional nanoscale coordination polymer to deposit radiation energy, trigger the release of NO, modulate the TME, activate the cGAS-STING pathway, and finally realize synergistic radio-immunotherapy.
10.1002/adma.202302220
SRSF6 balances mitochondrial-driven innate immune outcomes through alternative splicing of BAX.
eLife
To mount a protective response to infection while preventing hyperinflammation, gene expression in innate immune cells must be tightly regulated. Despite the importance of pre-mRNA splicing in shaping the proteome, its role in balancing immune outcomes remains understudied. Transcriptomic analysis of murine macrophage cell lines identified Serine/Arginine Rich Splicing factor 6 (SRSF6) as a gatekeeper of mitochondrial homeostasis. SRSF6-dependent orchestration of mitochondrial health is directed in large part by alternative splicing of the pro-apoptosis pore-forming protein BAX. Loss of SRSF6 promotes accumulation of BAX-κ, a variant that sensitizes macrophages to undergo cell death and triggers upregulation of interferon stimulated genes through cGAS sensing of cytosolic mitochondrial DNA. Upon pathogen sensing, macrophages regulate SRSF6 expression to control the liberation of immunogenic mtDNA and adjust the threshold for entry into programmed cell death. This work defines BAX alternative splicing by SRSF6 as a critical node not only in mitochondrial homeostasis but also in the macrophage's response to pathogens.
10.7554/eLife.82244
Cyclic Nucleotide Signaling: A Second Messenger of Death.
Høyland-Kroghsbo Nina Molin
Cell host & microbe
All life forms rely on defenses to fight off viruses that prey on them. Intriguingly, bacteria often develop the blueprints for these. Recently published in Nature, Cohen et al. (2019) uncover a widespread bacterial anti-viral defense system, which may be the evolutionary precursor to the metazoan cGAS-STING immune pathway.
10.1016/j.chom.2019.10.017
Electronic complementarity permits hindered butenolide heterodimerization and discovery of novel cGAS/STING pathway antagonists.
Huffman Benjamin J,Chen Shuming,Schwarz J Luca,Plata R Erik,Chin Emily N,Lairson Luke L,Houk K N,Shenvi Ryan A
Nature chemistry
sp-hybridized attached-rings are common motifs in secondary metabolites and represent tetrahedral equivalents to the biaryl substructures that overpopulate synthetic libraries. Few methods are available that can link fully substituted carbon atoms of two rings with stereocontrol. Here we have developed a stereoselective, heteroselective butenolide coupling that exhibits an unusually fast rate of C-C bond formation driven by exquisite complementarity of the reacting π systems. Heterodimerization generates a compound collection with topological complexity and diverse principal moments of inertia. The special status of the sp-sp attached-ring motif is demonstrated in a high-throughput screen for inhibitors of the cyclic GMP-AMP synthase/stimulator of interferon genes pathway, which recruited these butenolide heterodimers from a field of 250,000 compounds. The driving forces underlying this general attached-ring coupling identify a novel paradigm for the accession of wider natural product chemical space, accelerating the discovery of selective lead compounds.
10.1038/s41557-019-0413-8
Oligoadenylate-Synthetase-Family Protein OASL Inhibits Activity of the DNA Sensor cGAS during DNA Virus Infection to Limit Interferon Production.
Ghosh Arundhati,Shao Lulu,Sampath Padmavathi,Zhao Baoyu,Patel Nidhi V,Zhu Jianzhong,Behl Bharat,Parise Robert A,Beumer Jan H,O'Sullivan Roderick J,DeLuca Neal A,Thorne Stephen H,Rathinam Vijay A K,Li Pingwei,Sarkar Saumendra N
Immunity
Interferon-inducible human oligoadenylate synthetase-like (OASL) and its mouse ortholog, Oasl2, enhance RNA-sensor RIG-I-mediated type I interferon (IFN) induction and inhibit RNA virus replication. Here, we show that OASL and Oasl2 have the opposite effect in the context of DNA virus infection. In Oasl2 mice and OASL-deficient human cells, DNA viruses such as vaccinia, herpes simplex, and adenovirus induced increased IFN production, which resulted in reduced virus replication and pathology. Correspondingly, ectopic expression of OASL in human cells inhibited IFN induction through the cGAS-STING DNA-sensing pathway. cGAS was necessary for the reduced DNA virus replication observed in OASL-deficient cells. OASL directly and specifically bound to cGAS independently of double-stranded DNA, resulting in a non-competitive inhibition of the second messenger cyclic GMP-AMP production. Our findings define distinct mechanisms by which OASL differentially regulates host IFN responses during RNA and DNA virus infection and identify OASL as a negative-feedback regulator of cGAS.
10.1016/j.immuni.2018.12.013
MRE11-dependent instability in mitochondrial DNA fork protection activates a cGAS immune signaling pathway.
Science advances
Mitochondrial DNA (mtDNA) instability activates cGAS-dependent innate immune signaling by unknown mechanisms. Here, we find that Fanconi anemia suppressor genes are acting in the mitochondria to protect mtDNA replication forks from instability. Specifically, Fanconi anemia patient cells show a loss of nascent mtDNA through MRE11 nuclease degradation. In contrast to DNA replication fork stability, which requires pathway activation by FANCD2-FANCI monoubiquitination and upstream FANC core complex genes, mitochondrial replication fork protection does not, revealing a mechanistic and genetic separation between mitochondrial and nuclear genome stability pathways. The degraded mtDNA causes hyperactivation of cGAS-dependent immune signaling resembling the unphosphorylated ISG3 response. Chemical inhibition of MRE11 suppresses this innate immune signaling, identifying MRE11 as a nuclease responsible for activating the mtDNA-dependent cGAS/STING response. Collective results establish a previously unknown molecular pathway for mtDNA replication stability and reveal a molecular handle to control mtDNA-dependent cGAS activation by inhibiting MRE11 nuclease.
10.1126/sciadv.abf9441
OX40L-expressing recombinant modified vaccinia virus Ankara induces potent antitumor immunity via reprogramming Tregs.
The Journal of experimental medicine
Effective depletion of immune suppressive regulatory T cells (Tregs) in the tumor microenvironment without triggering systemic autoimmunity is an important strategy for cancer immunotherapy. Modified vaccinia virus Ankara (MVA) is a highly attenuated, non-replicative vaccinia virus with a long history of human use. Here, we report rational engineering of an immune-activating recombinant MVA (rMVA, MVA∆E5R-Flt3L-OX40L) with deletion of the vaccinia E5R gene (encoding an inhibitor of the DNA sensor cyclic GMP-AMP synthase, cGAS) and expression of two membrane-anchored transgenes, Flt3L and OX40L. Intratumoral (IT) delivery of rMVA (MVA∆E5R-Flt3L-OX40L) generates potent antitumor immunity, dependent on CD8+ T cells, the cGAS/STING-mediated cytosolic DNA-sensing pathway, and type I IFN signaling. Remarkably, IT rMVA (MVA∆E5R-Flt3L-OX40L) depletes OX40hi regulatory T cells via OX40L/OX40 interaction and IFNAR signaling. Single-cell RNA-seq analyses of tumors treated with rMVA showed the depletion of OX40hiCCR8hi Tregs and expansion of IFN-responsive Tregs. Taken together, our study provides a proof-of-concept for depleting and reprogramming intratumoral Tregs via an immune-activating rMVA.
10.1084/jem.20221166
Ion Man: GSDMD Punches Pores to Knock Out cGAS.
Feltham Rebecca,Vince James E
Immunity
The pore-forming protein GSDMD promotes cytokine release and induces pyroptotic cell death. In this issue of Immunity, Banerjee et al. (2018) document how GSDMD triggers potassium efflux to inhibit cGAS-STING and prevent damaging interferon production after bacterial infection.
10.1016/j.immuni.2018.08.026
Extrachromosomal telomere repeat DNA is linked to ALT development via cGAS-STING DNA sensing pathway.
Chen Yi-An,Shen Yi-Ling,Hsia Hsuan-Yu,Tiang Yee-Peng,Sung Tzu-Ling,Chen Liuh-Yow
Nature structural & molecular biology
Extrachromosomal telomere repeat (ECTR) DNA is unique to cancer cells that maintain telomeres through the alternative lengthening of telomeres (ALT) pathway, but the role of ECTRs in ALT development remains elusive. We found that induction of ECTRs in normal human fibroblasts activated the cGAS-STING-TBK1-IRF3 signaling axis to trigger IFNβ production and a type I interferon response, resulting in cell-proliferation defects. In contrast, ALT cancer cells are commonly defective in sensing cytosolic DNA. We found that STING expression was inhibited in ALT cancer cell lines and transformed ALT cells. Notably, the ALT suppressors histone H3.3 and the ATRX-Daxx histone chaperone complex were also required to activate the DNA-sensing pathway. Collectively, our data suggest that the loss of the cGAS-STING pathway may be required to evade ECTR-induced anti-proliferation effects and permit ALT development, and this requirement may be exploited for treatments specific to cancers utilizing the ALT pathway.
10.1038/nsmb.3498
Sterile Lung Inflammation Induced by Silica Exacerbates Mycobacterium tuberculosis Infection via STING-Dependent Type 2 Immunity.
Benmerzoug Sulayman,Bounab Badreddine,Rose Stéphanie,Gosset David,Biet Franck,Cochard Thierry,Xavier Aurore,Rouxel Nathalie,Fauconnier Louis,Horsnell William G C,Ryffel Bernhard,Togbe Dieudonnee,Quesniaux Valerie F J
Cell reports
Lung inflammation induced by silica impairs host control of tuberculosis, yet the underlying mechanism remains unclear. Here, we show that silica-driven exacerbation of M. tuberculosis infection associates with raised type 2 immunity. Silica increases pulmonary Th2 cell and M2 macrophage responses, while reducing type 1 immunity after M. tuberculosis infection. Silica induces lung damage that prompts extracellular self-DNA release and activates STING. This STING priming potentiates M. tuberculosis DNA sensing by and activation of cGAS/STING, which triggers enhanced type I interferon (IFNI) response and type 2 immunity. cGAS-, STING-, and IFNAR-deficient mice are resistant to silica-induced exacerbation of M. tuberculosis infection. Thus, silica-induced self-DNA primes the host response to M. tuberculosis-derived nucleic acids, which increases type 2 immunity while reducing type 1 immunity, crucial for controlling M. tuberculosis infection. These data show how cGAS/STING pathway activation, at the crossroads of sterile inflammation and infection, may affect the host response to pathogens such as M. tuberculosis.
10.1016/j.celrep.2019.04.110
Biodegradable MnO-Based Nanoparticles with Engineering Surface for Tumor Therapy: Simultaneous Fenton-Like Ion Delivery and Immune Activation.
ACS nano
Immune checkpoint inhibitors have achieved significant clinical success but are still suffering from inadequate immune activation. It is worth noting that manganese as a nutritional inorganic trace element is closely associated with immune activation to fight against tumor growth and metastasis the cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) pathway. Herein, we designed hollow mesoporous silica-coated MnO nanoparticles (NPs), followed by conjugation of tumor homing peptide iRGD (CRGDKGPD). The obtained NPs (MnO@mSiO-iRGD NPs) were applied to magnetic resonance imaging (MRI)-guided tumor immune-chemodynamic combination therapy, in which MnO NPs can be harnessed for cGAS-STING pathway-activated immunotherapy, Fenton-like reaction-induced reactive oxygen species upregulation, and T-weighted MRI. The rough surface and large cavities of the mSiO shell promote cellular uptake and MnO NPs delivery. Meanwhile, it was found that MnO@mSiO-iRGD NPs would dissociate under an acid environment, resulting in tumor specificity of MRI and exogenous Mn release. Our results revealed that these pH-responsive biodegradable MnO@mSiO-iRGD NPs synergized with α-PD-1 (PD-1 = programmed cell death-1) blocking antibody to highly elicit cytotoxic T lymphocyte infiltration and restrict melanoma progression and metastasis, which were envisioned as a promising candidate for tumor theranostics.
10.1021/acsnano.2c00969
Genome instability independent of type I interferon signaling drives neuropathology caused by impaired ribonucleotide excision repair.
Neuron
Aicardi-Goutières syndrome (AGS) is a monogenic type I interferonopathy characterized by neurodevelopmental defects and upregulation of type I interferon signaling and neuroinflammation. Mutations in genes that function in nucleic acid metabolism, including RNASEH2, are linked to AGS. Ribonuclease H2 (RNASEH2) is a genome surveillance factor critical for DNA integrity by removing ribonucleotides incorporated into replicating DNA. Here we show that RNASEH2 is necessary for neurogenesis and to avoid activation of interferon-responsive genes and neuroinflammation. Cerebellar defects after RNASEH2B inactivation are rescued by p53 but not cGAS deletion, suggesting that DNA damage signaling, not neuroinflammation, accounts for neuropathology. Coincident inactivation of Atm and Rnaseh2 further affected cerebellar development causing ataxia, which was dependent upon aberrant activation of non-homologous end-joining (NHEJ). The loss of ATM also markedly exacerbates cGAS-dependent type I interferon signaling. Thus, DNA damage-dependent signaling rather than type I interferon signaling underlies neurodegeneration in this class of neurodevelopmental/neuroinflammatory disease.
10.1016/j.neuron.2021.09.040
Herpesvirus-Mimicking DNAzyme-Loaded Nanoparticles as a Mitochondrial DNA Stress Inducer to Activate Innate Immunity for Tumor Therapy.
Advanced materials (Deerfield Beach, Fla.)
Virus-based immunotherapy is a promising approach to treat tumor. Closely mimicking the structure and sequential infection processes of natural viruses is highly desirable for effective tumor immunotherapy but remains challenging. Here, inspired by the robust innate immunity induced by herpesvirus, a herpesvirus-mimicking nanoparticle (named Vir-ZM@TD) is engineered for tumor therapy by mimicking the structure and infection processes of herpesvirus. In this biomimetic system, DNAzyme-loaded manganese-doped zeolitic imidazolate framework-90 (ZIF-90) nanoparticles (ZM@TD) mimic the virus nucleocapsid containing the genome; the erythrocyte membrane mimics the viral envelope; and two functional peptides, RGD and HA2 peptides, resemble the surface glycoprotein spikes of herpesvirus. Vir-ZM@TD can both effectively evade rapid clearance in the blood circulation and closely mimic the serial infection processes of herpesvirus, including specific tumor targeting, membrane fusion-mediated endosomal escape, and TFAM (transcription factor A, mitochondrial) deficiency-triggered mitochondrial DNA stress, as well as the release of manganese ions (Mn ) from organelles into the cytosol, ultimately effectively priming cGAS-STING pathway-mediated innate immunity with 68% complete regression of primary tumors and extending by 32 days the median survival time of 4T1-tumor-bearing mice.
10.1002/adma.202204585
A General Biomineralization Strategy to Synthesize Autologous Cancer Vaccines with cGAS-STING Activating Capacity for Postsurgical Immunotherapy.
ACS nano
Autologous cancer vaccines constructed by nonproliferative whole tumor cells or tumor lysates together with appropriate adjuvants represent a promising strategy to suppress postsurgical tumor recurrence. Inspired by the potency of cytosolic double-stranded DNA (dsDNA) in initiating anticancer immunity by activating the cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) pathway, we herein report the concise synthesis of a cGAS-STING agonist through dsDNA-templated biomineralization growth of calcium carbonate (CaCO) microparticles. The yielded DNA@CaCO can activate the intracellular cGAS-STING pathway of dendritic cells (DCs) by promoting endosomal escape of dsDNA, triggering their maturation and activation as a potent immune stimulator. Upon intratumoral injection, DNA@CaCO can reverse the immunosuppressive tumor microenvironment by simultaneously provoking innate and adaptive antitumor immunity, thereby effectively suppressing the growth of murine CT26 and B16-F10 tumors in mice. Furthermore, via CaCO-based biomineralization of complete tumor lysates, we constructed a personalized autologous cancer vaccine with intrinsic cGAS-STING activation capacity that could provoke tumor-specific immune responses to not only delay the growth of challenged tumors but also synergize with anti-PD-1 immunotherapy to suppress postsurgical tumor recurrence. This study highlights a CaCO-based biomineralization method to prepare autologous cancer vaccines in a concise manner, which is promising for personalized immunotherapy and clinical translation.
10.1021/acsnano.3c01404
A Cell-Intrinsic Interferon-like Response Links Replication Stress to Cellular Aging Caused by Progerin.
Kreienkamp Ray,Graziano Simona,Coll-Bonfill Nuria,Bedia-Diaz Gonzalo,Cybulla Emily,Vindigni Alessandro,Dorsett Dale,Kubben Nard,Batista Luis Francisco Zirnberger,Gonzalo Susana
Cell reports
Hutchinson-Gilford progeria syndrome (HGPS) is a premature aging disease caused by a truncated lamin A protein (progerin) that drives cellular and organismal decline. HGPS patient-derived fibroblasts accumulate genomic instability, but its underlying mechanisms and contribution to disease remain poorly understood. Here, we show that progerin-induced replication stress (RS) drives genomic instability by eliciting replication fork (RF) stalling and nuclease-mediated degradation. Rampant RS is accompanied by upregulation of the cGAS/STING cytosolic DNA sensing pathway and activation of a robust STAT1-regulated interferon (IFN)-like response. Reducing RS and the IFN-like response, especially with calcitriol, improves the fitness of progeria cells and increases the efficiency of cellular reprogramming. Importantly, other compounds that improve HGPS phenotypes reduce RS and the IFN-like response. Our study reveals mechanisms underlying progerin toxicity, including RS-induced genomic instability and activation of IFN-like responses, and their relevance for cellular decline in HGPS.
10.1016/j.celrep.2018.01.090
Viral cGAMP nuclease reveals the essential role of DNA sensing in protection against acute lethal virus infection.
Science advances
Cells contain numerous immune sensors to detect virus infection. The cyclic GMP-AMP (cGAMP) synthase (cGAS) recognizes cytosolic DNA and activates innate immune responses via stimulator of interferon genes (STING), but the impact of DNA sensing pathways on host protective responses has not been fully defined. We demonstrate that cGAS/STING activation is required to resist lethal poxvirus infection. We identified viral Schlafen (vSlfn) as the main STING inhibitor, and ectromelia virus was severely attenuated in the absence of vSlfn. Both vSlfn-mediated virulence and STING inhibitory activity were mapped to the recently discovered poxin cGAMP nuclease domain. Animals were protected from subcutaneous, respiratory, and intravenous infection in the absence of vSlfn, and interferon was the main antiviral protective mechanism controlled by the DNA sensing pathway. Our findings support the idea that manipulation of DNA sensing is an efficient therapeutic strategy in diseases triggered by viral infection or tissue damage-mediated release of self-DNA.
10.1126/sciadv.abb4565
Tetrahedral DNA Nanostructure with Interferon Stimulatory DNA Delivers Highly Potent Toxins and Activates the cGAS-STING Pathway for Robust Chemotherapy and Immunotherapy.
Advanced materials (Deerfield Beach, Fla.)
Tumor metastases and reoccurrences are considered the leading cause of cancer-associated deaths. While highly efficient treatments for the eradication of primary tumors have been developed, the treatment of secondary or metastatic tumors remains poorly accessible. Over the past years, compounds that intervene through the cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) signaling pathway against tumor metastases have emerged with potential for clinical development. While interferon stimulatory DNAs have demonstrated activation of this pathway, these compounds are associated with poor bioavailability, poor stability, and poor cancer selectivity, hindering their use for therapeutic applications. Herein, the encapsulation of a highly potent chemotherapeutic platinum(II) complex and the incorporation of interferon stimulatory DNA strands for activation of the cGAS-STING pathway into multimodal tetrahedral DNA nanostructures (84bp-TDN ) for combined chemotherapy and immunotherapy is reported. It is found that 84bp-TDN can work as not only a drug delivery carrier for highly potent toxins, but also an immunostimulant agent that can activate the STING pathway for antitumor immune responses. In a mouse breast cancer model, the DNA nanostructure is found to nearly fully eradicate primary as well as secondary/metastatic tumors, hence demonstrating its potential clinical translational value.
10.1002/adma.202210267
The innate immune sensor Toll-like receptor 2 controls the senescence-associated secretory phenotype.
Science advances
Cellular senescence is a stress response program characterized by a robust cell cycle arrest and the induction of a proinflammatory senescence-associated secretory phenotype (SASP) that is triggered through an unknown mechanism. Here, we show that, during oncogene-induced senescence (OIS), the Toll-like receptor 2 (TLR2) and its partner TLR10 are key mediators of senescence in vitro and in murine models. TLR2 promotes cell cycle arrest by regulating the tumor suppressors p53-p21, p16, and p15 and regulates the SASP through the induction of the acute-phase serum amyloids A1 and A2 (A-SAAs) that, in turn, function as the damage-associated molecular patterns (DAMPs) signaling through TLR2 in OIS. Last, we found evidence that the cGAS-STING cytosolic DNA sensing pathway primes TLR2 and A-SAAs expression in OIS. In summary, we report that innate immune sensing of senescence-associated DAMPs by TLR2 controls the SASP and reinforces the cell cycle arrest program in OIS.
10.1126/sciadv.aaw0254
Virus infection is controlled by hematopoietic and stromal cell sensing of murine cytomegalovirus through STING.
Piersma Sytse J,Poursine-Laurent Jennifer,Yang Liping,Barber Glen N,Parikh Bijal A,Yokoyama Wayne M
eLife
Recognition of DNA viruses, such as cytomegaloviruses (CMVs), through pattern-recognition receptor (PRR) pathways involving MyD88 or STING constitute a first-line defense against infections mainly through production of type I interferon (IFN-I). However, the role of these pathways in different tissues is incompletely understood, an issue particularly relevant to the CMVs which have broad tissue tropisms. Herein, we contrasted anti-viral effects of MyD88 versus STING in distinct cell types that are infected with murine CMV (MCMV). Bone marrow chimeras revealed STING-mediated MCMV control in hematological cells, similar to MyD88. However, unlike MyD88, STING also contributed to viral control in non-hematological, stromal cells. Infected splenic stromal cells produced IFN-I in a cGAS-STING-dependent and MyD88-independent manner, while we confirmed plasmacytoid dendritic cell IFN-I had inverse requirements. MCMV-induced natural killer cytotoxicity was dependent on MyD88 and STING. Thus, MyD88 and STING contribute to MCMV control in distinct cell types that initiate downstream immune responses.
10.7554/eLife.56882
Transposon-triggered innate immune response confers cancer resistance to the blind mole rat.
Nature immunology
Blind mole rats (BMRs) are small rodents, characterized by an exceptionally long lifespan (>21 years) and resistance to both spontaneous and induced tumorigenesis. Here we report that cancer resistance in the BMR is mediated by retrotransposable elements (RTEs). Cells and tissues of BMRs express very low levels of DNA methyltransferase 1. Following cell hyperplasia, the BMR genome DNA loses methylation, resulting in the activation of RTEs. Upregulated RTEs form cytoplasmic RNA-DNA hybrids, which activate the cGAS-STING pathway to induce cell death. Although this mechanism is enhanced in the BMR, we show that it functions in mice and humans. We propose that RTEs were co-opted to serve as tumor suppressors that monitor cell proliferation and are activated in premalignant cells to trigger cell death via activation of the innate immune response. Activation of RTEs is a double-edged sword, serving as a tumor suppressor but contributing to aging in late life via the induction of sterile inflammation.
10.1038/s41590-021-01027-8
Structures of diverse poxin cGAMP nucleases reveal a widespread role for cGAS-STING evasion in host-pathogen conflict.
eLife
DNA viruses in the family encode poxin enzymes that degrade the immune second messenger 2'3'-cGAMP to inhibit cGAS-STING immunity in mammalian cells. The closest homologs of poxin exist in the genomes of insect viruses suggesting a key mechanism of cGAS-STING evasion may have evolved outside of mammalian biology. Here we use a biochemical and structural approach to discover a broad family of 369 poxins encoded in diverse viral and animal genomes and define a prominent role for 2'3'-cGAMP cleavage in metazoan host-pathogen conflict. Structures of insect poxins reveal unexpected homology to flavivirus proteases and enable identification of functional self-cleaving poxins in RNA-virus polyproteins. Our data suggest widespread 2'3'-cGAMP signaling in insect antiviral immunity and explain how a family of cGAS-STING evasion enzymes evolved from viral proteases through gain of secondary nuclease activity. Poxin acquisition by poxviruses demonstrates the importance of environmental connections in shaping evolution of mammalian pathogens.
10.7554/eLife.59753
Manganese Coordination Micelles That Activate Stimulator of Interferon Genes and Capture In Situ Tumor Antigens for Cancer Metalloimmunotherapy.
ACS nano
Cancer immunotherapy holds great promise but is generally limited by insufficient induction of anticancer immune responses. Here, a metal micellar nanovaccine is developed by the self-assembly of manganese (Mn), a stimulator of interferon genes (STING) agonist (ABZI) and naphthalocyanine (ONc) coordinated nanoparticles (ONc-Mn-A) in maleimide-modified Pluronic F127 (malF127) micelles. Owing to synergy between Mn and ABZI, the nanovaccine, termed ONc-Mn-A-malF127, elevates levels of interferon-β (IFNβ) by 324- and 8-fold in vivo, compared to use of Mn or ABZI alone. As such, the activation of the cyclic guanosine monophosphate-adenosine monophosphate synthase (cGAS)-STING pathway induces sufficient dendritic cell (DC) maturation, eventually resulting in the death of CD8 T cell-sensitive tumors and CD8 T cell-resistant tumors by simultaneously promoting cytotoxic CD8 T cells and NK cells, respectively. Furthermore, with ONc used as a Mn chelator and an efficient photosensitizer, photoinduced immunogenic cell death (ICD) of tumor cells releases damage-associated molecular patterns (DAMPs) and neoantigens from dying primary tumor cells upon laser irradiation, which are captured in situ by malF127 in tumor cells and then transported to DCs. After laser treatment, in addition to the photothermal therapy, immune responses characterized by the level of IFNβ are further elevated by another 4-fold. In murine cancer models, ICD-based metalloimmunotherapy using the ONc-Mn-A-malF127 nanovaccine in a single dose by intravenous injection achieved eradication of primary and distant tumors. Taken together, ONc-Mn-A-malF127 offers a nanoplatform to enhance anticancer efficacy by metalloimmunotherapy and photoinduced ICD based immunotherapy with strong abscopal effect.
10.1021/acsnano.2c06926
N-glycanase NGLY1 regulates mitochondrial homeostasis and inflammation through NRF1.
Yang Kun,Huang Ryan,Fujihira Haruhiko,Suzuki Tadashi,Yan Nan
The Journal of experimental medicine
Mutations in the (N-glycanase 1) gene, encoding an evolutionarily conserved deglycosylation enzyme, are associated with a rare congenital disorder leading to global developmental delay and neurological abnormalities. The molecular mechanism of the NGLY1 disease and its function in tissue and immune homeostasis remain unknown. Here, we find that -deficient human and mouse cells chronically activate cytosolic nucleic acid-sensing pathways, leading to elevated interferon gene signature. We also find that cellular clearance of damaged mitochondria by mitophagy is impaired in the absence of NGLY1, resulting in severely fragmented mitochondria and activation of cGAS-STING as well as MDA5-MAVS pathways. Furthermore, we show that NGLY1 regulates mitochondrial homeostasis through transcriptional factor NRF1. Remarkably, pharmacological activation of a homologous but nonglycosylated transcriptional factor NRF2 restores mitochondrial homeostasis and suppresses immune gene activation in -deficient cells. Together, our findings reveal novel functions of the NGLY1-NRF1 pathway in mitochondrial homeostasis and inflammation and uncover an unexpected therapeutic strategy using pharmacological activators of NRF2 for treating mitochondrial and immune dysregulation.
10.1084/jem.20180783
Interaction mapping of endoplasmic reticulum ubiquitin ligases identifies modulators of innate immune signalling.
eLife
Ubiquitin ligases (E3s) embedded in the endoplasmic reticulum (ER) membrane regulate essential cellular activities including protein quality control, calcium flux, and sterol homeostasis. At least 25 different, transmembrane domain (TMD)-containing E3s are predicted to be ER-localised, but for most their organisation and cellular roles remain poorly defined. Using a comparative proteomic workflow, we mapped over 450 protein-protein interactions for 21 stably expressed, full-length E3s. Bioinformatic analysis linked ER-E3s and their interactors to multiple homeostatic, regulatory, and metabolic pathways. Among these were four membrane-embedded interactors of RNF26, a polytopic E3 whose abundance is auto-regulated by ubiquitin-proteasome dependent degradation. RNF26 co-assembles with TMEM43, ENDOD1, TMEM33 and TMED1 to form a complex capable of modulating innate immune signalling through the cGAS-STING pathway. This RNF26 complex represents a new modulatory axis of STING and innate immune signalling at the ER membrane. Collectively, these data reveal the broad scope of regulation and differential functionalities mediated by ER-E3s for both membrane-tethered and cytoplasmic processes.
10.7554/eLife.57306
The RAB2B-GARIL5 Complex Promotes Cytosolic DNA-Induced Innate Immune Responses.
Takahama Michihiro,Fukuda Mitsunori,Ohbayashi Norihiko,Kozaki Tatsuya,Misawa Takuma,Okamoto Toru,Matsuura Yoshiharu,Akira Shizuo,Saitoh Tatsuya
Cell reports
Cyclic GMP-AMP synthase (cGAS) is a cytosolic DNA sensor that induces the IFN antiviral response. However, the regulatory mechanisms that mediate cGAS-triggered signaling have not been fully explored. Here, we show the involvement of a small GTPase, RAB2B, and its effector protein, Golgi-associated RAB2B interactor-like 5 (GARIL5), in the cGAS-mediated IFN response. RAB2B-deficiency affects the IFN response induced by cytosolic DNA. Consistent with this, RAB2B deficiency enhances replication of vaccinia virus, a DNA virus. After DNA stimulation, RAB2B colocalizes with stimulator of interferon genes (STING), the downstream signal mediator of cGAS, on the Golgi apparatus. The GTP-binding activity of RAB2B is required for its localization on the Golgi apparatus and for recruitment of GARIL5. GARIL5 deficiency also affects the IFN response induced by cytosolic DNA and enhances replication of vaccinia virus. These findings indicate that the RAB2B-GARIL5 complex promotes IFN responses against DNA viruses by regulating the cGAS-STING signaling axis.
10.1016/j.celrep.2017.08.085
HSV1 VP1-2 deubiquitinates STING to block type I interferon expression and promote brain infection.
Bodda Chiranjeevi,Reinert Line S,Fruhwürth Stefanie,Richardo Timmy,Sun Chenglong,Zhang Bao-Cun,Kalamvoki Maria,Pohlmann Anja,Mogensen Trine H,Bergström Petra,Agholme Lotta,O'Hare Peter,Sodeik Beate,Gyrd-Hansen Mads,Zetterberg Henrik,Paludan Søren R
The Journal of experimental medicine
Herpes simplex virus (HSV) is the main cause of viral encephalitis in the Western world, and the type I interferon (IFN) system is important for antiviral control in the brain. Here, we have compared Ifnb induction in mixed murine brain cell cultures by a panel of HSV1 mutants, each devoid of one mechanism to counteract the IFN-stimulating cGAS-STING pathway. We found that a mutant lacking the deubiquitinase (DUB) activity of the VP1-2 protein induced particularly strong expression of Ifnb and IFN-stimulated genes. HSV1 ΔDUB also induced elevated IFN expression in murine and human microglia and exhibited reduced viral replication in the brain. This was associated with increased ubiquitination of STING and elevated phosphorylation of STING, TBK1, and IRF3. VP1-2 associated directly with STING, leading to its deubiquitination. Recruitment of VP1-2 to STING was dependent on K150 of STING, which was ubiquitinated by TRIM32. Thus, the DUB activity of HSV1 VP1-2 is a major viral immune-evasion mechanism in the brain.
10.1084/jem.20191422
The Cyclopeptide Astin C Specifically Inhibits the Innate Immune CDN Sensor STING.
Li Senlin,Hong Ze,Wang Zhe,Li Fei,Mei Jiahao,Huang Lulu,Lou Xiwen,Zhao Simeng,Song Lihua,Chen Wei,Wang Qiang,Liu Heng,Cai Yanni,Yu Huansha,Xu Huimin,Zeng Guangzhi,Wang Quanyi,Zhu Juanjuan,Liu Xing,Tan Ninghua,Wang Chen
Cell reports
cGAS-STING signaling is essential for innate immunity. Its misregulation promotes cancer or autoimmune and autoinflammatory diseases, and it is imperative to identify effective lead compounds that specifically downregulate the pathway. We report here that astin C, a cyclopeptide isolated from the medicinal plant Aster tataricus, inhibits cGAS-STING signaling and the innate inflammatory responses triggered by cytosolic DNAs. Moreover, mice treated with astin C are more susceptible to HSV-1 infection. Consistently, astin C markedly attenuates the autoinflammatory responses in Trex1 BMDM cells and in Trex1 mouse autoimmune disease model. Mechanistically, astin C specifically blocks the recruitment of IRF3 onto the STING signalosome. Collectively, this study characterizes a STING-specific small-molecular inhibitor that may be applied for potentially manipulating the STING-mediated clinical diseases.
10.1016/j.celrep.2018.11.097
Genome-wide association studies identify the role of caspase-9 in kidney disease.
Science advances
Genome-wide association studies (GWAS) have identified hundreds of genetic risk regions for kidney dysfunction [estimated glomerular filtration rate (eGFR)]; however, the causal genes, cell types, and pathways are poorly understood. Integration of GWAS and human kidney expression of quantitative trait analysis using Bayesian colocations, transcriptome-wide association studies, and summary-based Mendelian randomization studies prioritized caspase-9 (CASP9) as a kidney disease risk gene. Human kidney single-cell epigenetic and immunostaining studies indicated kidney tubule cells as a disease-causing cell type. Mice with genetic deletion or pharmacological inhibition of CASP9 showed lower apoptosis while having improved mitophagy, resulting in dampened activation of cytosolic nucleotide sensing pathways (cGAS-STING), reduction of inflammation, and protection from acute kidney disease or renal fibrosis. In summary, here, we prioritized CASP9 as an eGFR GWAS target gene and demonstrated the causal role of CASP9 in kidney disease development via improving mitophagy and lowering inflammation and apoptosis.
10.1126/sciadv.abi8051
HIV-2/SIV Vpx targets a novel functional domain of STING to selectively inhibit cGAS-STING-mediated NF-κB signalling.
Nature microbiology
Innate immunity is the first line of host defence against pathogens. Suppression of innate immune responses is essential for the survival of all viruses. However, the interplay between innate immunity and HIV/SIV is only poorly characterized. We have discovered Vpx as a novel inhibitor of innate immune activation that associates with STING signalosomes and interferes with the nuclear translocation of NF-κB and the induction of innate immune genes. This new function of Vpx could be separated from its role in mediating degradation of the antiviral factor SAMHD1, and is conserved among diverse HIV-2/SIV Vpx. Vpx selectively suppressed cGAS-STING-mediated nuclear factor-κB signalling. Furthermore, Vpx and Vpr had complementary activities against cGAS-STING activity. Since SIV lacking both Vpx and Vpr was less pathogenic than SIV deficient for Vpr or Vpx alone, suppression of innate immunity by HIV/SIV is probably a key pathogenic determinant, making it a promising target for intervention.
10.1038/s41564-019-0585-4
Reshaping of the Dendritic Cell Chromatin Landscape and Interferon Pathways during HIV Infection.
Johnson Jarrod S,Lucas Sasha Y,Amon Lynn M,Skelton Stephanie,Nazitto Rodolfo,Carbonetti Sara,Sather D Noah,Littman Dan R,Aderem Alan
Cell host & microbe
Myeloid dendritic cells (DCs) have the innate capacity to sense pathogens and orchestrate immune responses. However, DCs do not mount efficient immune responses to HIV-1, primarily due to restriction of virus reverse transcription, which prevents accumulation of viral cDNA and limits its detection through the cGAS-STING pathway. By allowing reverse transcription to proceed, we find that DCs detect HIV-1 in distinct phases, before and after virus integration. Blocking integration suppresses, but does not abolish, activation of the transcription factor IRF3, downstream interferon (IFN) responses, and DC maturation. Consistent with two stages of detection, HIV-1 "primes" chromatin accessibility of innate immune genes before and after integration. Once primed, robust IFN responses can be unmasked by agonists of the innate adaptor protein, MyD88, through a process that requires cGAS, STING, IRF3, and nuclear factor κB. Thus, HIV-1 replication increases material available for sensing, and discrete inflammatory inputs tune cGAS signaling to drive DC maturation.
10.1016/j.chom.2018.01.012
Leaked genomic and mitochondrial DNA contribute to the host response to noroviruses in a STING-dependent manner.
Cell reports
The cGAS-STING pathway is central to the interferon response against DNA viruses. However, recent studies are increasingly demonstrating its role in the restriction of some RNA viruses. Here, we show that the cGAS-STING pathway also contributes to the interferon response against noroviruses, currently the commonest causes of infectious gastroenteritis worldwide. We show a significant reduction in interferon-β induction and a corresponding increase in viral replication in norovirus-infected cells after deletion of STING, cGAS, or IFI16. Further, we find that immunostimulatory host genome-derived DNA and mitochondrial DNA accumulate in the cytosol of norovirus-infected cells. Lastly, overexpression of the viral NS4 protein is sufficient to drive the accumulation of cytosolic DNA. Together, our data find a role for cGAS, IFI16, and STING in the restriction of noroviruses and show the utility of host genomic DNA as a damage-associated molecular pattern in cells infected with an RNA virus.
10.1016/j.celrep.2023.112179
Intracellular bacteria engage a STING-TBK1-MVB12b pathway to enable paracrine cGAS-STING signalling.
Nature microbiology
The innate immune system is crucial for eventual control of infections, but may also contribute to pathology. Listeria monocytogenes is an intracellular Gram-positive bacteria and a major cause of food-borne disease. However, important knowledge on the interactions between L. monocytogenes and the immune system is still missing. Here, we report that Listeria DNA is sorted into extracellular vesicles (EVs) in infected cells and delivered to bystander cells to stimulate the cyclic guanosine monophosphate-adenosine monophosphate synthase (cGAS)-stimulator of interferon genes (STING) pathway. This was also observed during infections with Francisella tularensis and Legionella pneumophila. We identify the multivesicular body protein MVB12b as a target for TANK-binding kinase 1 phosphorylation, which is essential for the sorting of DNA into EVs and stimulation of bystander cells. EVs from Listeria-infected cells inhibited T-cell proliferation, and primed T cells for apoptosis. Collectively, we describe a pathway for EV-mediated delivery of foreign DNA to bystander cells, and suggest that intracellular bacteria exploit this pathway to impair antibacterial defence.
10.1038/s41564-019-0367-z
The ubiquitin E3 ligase TRIM10 promotes STING aggregation and activation in the Golgi apparatus.
Cell reports
STING is an endoplasmic reticulum-resident protein regulating innate immunity. After binding with cyclic guanosine monophosphate-AMP (cGAMP), STING translocates from the endoplasmic reticulum (ER) to the Golgi apparatus to stimulate TBK1 and IRF3 activation, leading to expression of type I interferon. However, the exact mechanism concerning STING activation remains largely enigmatic. Here, we identify tripartite motif 10 (TRIM10) as a positive regulator of STING signaling. TRIM10-deficient macrophages exhibit reduced type I interferon production upon double-stranded DNA (dsDNA) or cGAMP stimulation and decreased resistance to herpes simplex virus 1 (HSV-1) infection. Additionally, TRIM10-deficient mice are more susceptible to HSV-1 infection and exhibit faster melanoma growth. Mechanistically, TRIM10 associates with STING and catalyzes K27- and K29-linked polyubiquitination of STING at K289 and K370, which promotes STING trafficking from the ER to the Golgi apparatus, formation of STING aggregates, and recruitment of TBK1 to STING, ultimately enhancing the STING-dependent type I interferon response. Our study defines TRIM10 as a critical activator in cGAS-STING-mediated antiviral and antitumor immunity.
10.1016/j.celrep.2023.112306
Innate immune signaling drives late cardiac toxicity following DNA-damaging cancer therapies.
The Journal of experimental medicine
Late cardiac toxicity is a potentially lethal complication of cancer therapy, yet the pathogenic mechanism remains largely unknown, and few treatment options exist. Here we report DNA-damaging agents such as radiation and anthracycline chemotherapies inducing delayed cardiac inflammation following therapy due to activation of cGAS- and STING-dependent type I interferon signaling. Genetic ablation of cGAS-STING signaling in mice inhibits DNA damage-induced cardiac inflammation, rescues late cardiac functional decline, and prevents death from cardiac events. Treatment with a STING antagonist suppresses cardiac interferon signaling following DNA-damaging therapies and effectively mitigates cardiac toxicity. These results identify a therapeutically targetable, pathogenic mechanism for one of the most vexing treatment-related toxicities in cancer survivors.
10.1084/jem.20220809
Polymerase θ inhibition steps on the cGAS pedal.
The Journal of clinical investigation
Deficiencies in homologous recombination (HR) repair lead to an accumulation of DNA damage and can predispose individuals to cancer. Polymerase theta (Pol θ, encoded by POLQ) is overexpressed by HR-deficient cancers and promotes cancer cell survival by mediating error-prone double-stranded break (DSB) repair and facilitating resistance against poly-ADP ribose polymerase inhibitor treatment. In this issue of the JCI, Oh, Wang, et al. report on the impact of Pol θ inhibition on activation of antitumor immunity. The authors used pancreatic ductal adenocarcinoma (PDAC) cell and mouse models characterized by HR-associated gene alterations and POLQ overexpression. POLQ knockdown showed synthetic lethality in combination with gene mutations involving DNA repair, including BRCA1, BRCA2, and ATM. Notably, Pol θ deficiency or inhibition suppressed tumor growth, increased the accumulation of unrepaired DNA damage, and enhanced T cell infiltration via the cGAS/STING pathway. These findings suggest a broader scope for Pol θ inhibition in HR-deficient cancers.
10.1172/JCI170660
DNA sensing in senescence.
Ruiz de Galarreta Marina,Lujambio Amaia
Nature cell biology
Cellular senescence, a cell-autonomous growth arrest program, also executes pleiotropic non-cell-autonomous activities through the senescence-associated secretory phenotype (SASP). The innate cGAS-STING DNA-sensing pathway is now shown to regulate senescence by recognizing cytosolic DNA and inducing SASP factors, uncovering an unexpected link between these two previously unrelated pathways.
10.1038/ncb3603
Human Cytomegalovirus Tegument Protein UL82 Inhibits STING-Mediated Signaling to Evade Antiviral Immunity.
Fu Yu-Zhi,Su Shan,Gao Yi-Qun,Wang Pei-Pei,Huang Zhe-Fu,Hu Ming-Ming,Luo Wei-Wei,Li Shu,Luo Min-Hua,Wang Yan-Yi,Shu Hong-Bing
Cell host & microbe
Recognition of human cytomegalovirus (HCMV) DNA by the cytosolic sensor cGAS initiates STING-dependent innate antiviral responses. HCMV can antagonize host immune responses to promote latency infection. However, it is unknown whether and how HCMV targets the cGAS-STING axis for immune evasion. Here we identified the HCMV tegument protein UL82 as a negative regulator of STING-dependent antiviral responses. UL82 interacted with STING and impaired STING-mediated signaling via two mechanisms. UL82 inhibited the translocation of STING from the ER to perinuclear microsomes by disrupting the STING-iRhom2-TRAPβ translocation complex. UL82 also impaired the recruitment of TBK1 and IRF3 to the STING complex. The levels of downstream antiviral genes induced by UL82-deficient HCMV were higher than those induced by wild-type HCMV. Conversely, wild-type HCMV replicated more efficiently than the UL82-deficient mutant. These findings reveal an important mechanism of immune evasion by HCMV.
10.1016/j.chom.2017.01.001
RELA tunes innate-like interferon I/III responses in human T cells.
The Journal of experimental medicine
In innate immune cells, intracellular sensors such as cGAS-STING stimulate type I/III interferon (IFN) expression, which promotes antiviral defense and immune activation. However, how IFN-I/III expression is controlled in adaptive cells is poorly understood. Here, we identify a transcriptional rheostat orchestrated by RELA that confers human T cells with innate-like abilities to produce IFN-I/III. Despite intact cGAS-STING signaling, IFN-I/III responses are stunted in CD4+ T cells compared with dendritic cells or macrophages. We find that lysine residues in RELA tune the IFN-I/III response at baseline and in response to STING stimulation in CD4+ T cells. This response requires positive feedback driven by cGAS and IRF7 expression. By combining RELA with IRF3 and DNA demethylation, IFN-I/III production in CD4+ T cells reaches levels observed in dendritic cells. IFN-I/III production provides self-protection of CD4+ T cells against HIV infection and enhances the elimination of tumor cells by CAR T cells. Therefore, innate-like functions can be tuned and leveraged in human T cells.
10.1084/jem.20220666
ATR inhibition potentiates ionizing radiation-induced interferon response via cytosolic nucleic acid-sensing pathways.
Feng Xu,Tubbs Anthony,Zhang Chunchao,Tang Mengfan,Sridharan Sriram,Wang Chao,Jiang Dadi,Su Dan,Zhang Huimin,Chen Zhen,Nie Litong,Xiong Yun,Huang Min,Nussenzweig André,Chen Junjie
The EMBO journal
Mechanistic understanding of how ionizing radiation induces type I interferon signaling and how to amplify this signaling module should help to maximize the efficacy of radiotherapy. In the current study, we report that inhibitors of the DNA damage response kinase ATR can significantly potentiate ionizing radiation-induced innate immune responses. Using a series of mammalian knockout cell lines, we demonstrate that, surprisingly, both the cGAS/STING-dependent DNA-sensing pathway and the MAVS-dependent RNA-sensing pathway are responsible for type I interferon signaling induced by ionizing radiation in the presence or absence of ATR inhibitors. The relative contributions of these two pathways in type I interferon signaling depend on cell type and/or genetic background. We propose that DNA damage-elicited double-strand DNA breaks releases DNA fragments, which may either activate the cGAS/STING-dependent pathway or-especially in the case of AT-rich DNA sequences-be transcribed and initiate MAVS-dependent RNA sensing and signaling. Together, our results suggest the involvement of two distinct pathways in type I interferon signaling upon DNA damage. Moreover, radiation plus ATR inhibition may be a promising new combination therapy against cancer.
10.15252/embj.2019104036
Dysregulated cellular functions and cell stress pathways provide critical cues for activating and targeting natural killer cells to transformed and infected cells.
Immunological reviews
Natural killer (NK) cells recognize and kill cancer cells and infected cells by engaging cell surface ligands that are induced preferentially or exclusively on these cells. These ligands are recognized by activating receptors on NK cells, such as NKG2D. In addition to activation by cell surface ligands, the acquisition of optimal effector activity by NK cells is driven in vivo by cytokines and other signals. This review addresses a developing theme in NK cell biology: that NK-activating ligands on cells, and the provision of cytokines and other signals that drive high effector function in NK cells, are driven by abnormalities that arise from transformation or the infected state. The pathways include genomic damage, which causes self DNA to be exposed in the cytosol of affected cells, where it activates the DNA sensor cGAS. The resulting signaling induces NKG2D ligands and also mobilizes NK cell activation. Other key pathways that regulate NKG2D ligands include PI-3 kinase activation, histone acetylation, and the integrated stress response. This review summarizes the roles of these pathways and their relevance in both viral infections and cancer.
10.1111/imr.12600
Tousled-Like Kinases Suppress Innate Immune Signaling Triggered by Alternative Lengthening of Telomeres.
Segura-Bayona Sandra,Villamor-Payà Marina,Attolini Camille Stephan-Otto,Koenig Lars M,Sanchiz-Calvo Maria,Boulton Simon J,Stracker Travis H
Cell reports
The Tousled-like kinases 1 and 2 (TLK1/2) control histone deposition through the ASF1 histone chaperone and influence cell cycle progression and genome maintenance, yet the mechanisms underlying TLK-mediated genome stability remain uncertain. Here, we show that TLK loss results in severe chromatin decompaction and altered genome accessibility, particularly affecting heterochromatic regions. Failure to maintain heterochromatin increases spurious transcription of repetitive elements and induces features of alternative lengthening of telomeres (ALT). TLK depletion culminates in a cGAS-STING-TBK1-mediated innate immune response that is independent of replication-stress signaling and attenuated by the depletion of factors required to produce extra-telomeric DNA. Analysis of human cancers reveals that chromosomal instability correlates with high TLK2 and low STING levels in many cohorts. Based on these findings, we propose that high TLK levels contribute to immune evasion in chromosomally unstable and ALT+ cancers.
10.1016/j.celrep.2020.107983
Pleiotropic Immunomodulatory Functions of Radioactive Inactivated Bacterial Vectors for Enhanced Cancer Radio-immunotherapy.
ACS nano
Biomaterial-based pleiotropic immune activation may effectively improve the response rate of immunotherapy and enhance the therapeutic effect of the tumor. Bacteria as a natural carrier have demonstrated great advantages in tumor targeted delivery and immune activation of the body. Herein, we construct an inactivated bacteria vector with I/I labeling (I-VNP/I-VNP), which could retain radioiodine at the tumor site for a long time and deliver it into tumor cells and a tumor-associated macrophage (TAM), thus achieving efficient internal radioisotope therapy (IRT) of the primary tumor with good biosafety. More importantly, I-VNP-mediated local IRT could further stimulate robust systemic antitumor immune responses via activation of the cGAS-STING pathway of innate immunity and promotion of the maturation of DC cells for T-cell-dominated adaptive immunity. After combination with systemic checkpoint blockade therapy (αPD-L1), I-VNP, which induces the up-regulation of PD-L1 expression in the distant tumor, could lead to the inhibition of in situ colon cancer and protection against tumor rechallenge. Our strategy pioneers the use of an inactivated bacteria vector as a bridge to cleverly connect radiotherapy and immunotherapy and provide an enlightening idea for radio-immunotherapy mediated by pleiotropic immune activation functions of bacterial vectors.
10.1021/acsnano.2c04982
DNA sensing via the cGAS/STING pathway activates the immunoproteasome and adaptive T-cell immunity.
The EMBO journal
The immunoproteasome is a specialized type of proteasome involved in MHC class I antigen presentation, antiviral adaptive immunity, autoimmunity, and is also part of a broader response to stress. Whether the immunoproteasome is regulated by DNA stress, however, is not known. We here demonstrate that mitochondrial DNA stress upregulates the immunoproteasome and MHC class I antigen presentation pathway via cGAS/STING/type I interferon signaling resulting in cell autonomous activation of CD8 T cells. The cGAS/STING-induced adaptive immune response is also observed in response to genomic DNA and is conserved in epithelial and mesenchymal cells of mice and men. In patients with idiopathic pulmonary fibrosis, chronic activation of the cGAS/STING-induced adaptive immune response in aberrant lung epithelial cells concurs with CD8 T-cell activation in diseased lungs. Genetic depletion of the immunoproteasome and specific immunoproteasome inhibitors counteract DNA stress induced cytotoxic CD8 T-cell activation. Our data thus unravel cytoplasmic DNA sensing via the cGAS/STING pathway as an activator of the immunoproteasome and CD8 T cells. This represents a novel potential pathomechanism for pulmonary fibrosis that opens new therapeutic perspectives.
10.15252/embj.2022110597
Viral and metazoan poxins are cGAMP-specific nucleases that restrict cGAS-STING signalling.
Nature
Cytosolic DNA triggers innate immune responses through the activation of cyclic GMP-AMP synthase (cGAS) and production of the cyclic dinucleotide second messenger 2',3'-cyclic GMP-AMP (cGAMP). 2',3'-cGAMP is a potent inducer of immune signalling; however, no intracellular nucleases are known to cleave 2',3'-cGAMP and prevent the activation of the receptor stimulator of interferon genes (STING). Here we develop a biochemical screen to analyse 24 mammalian viruses, and identify poxvirus immune nucleases (poxins) as a family of 2',3'-cGAMP-degrading enzymes. Poxins cleave 2',3'-cGAMP to restrict STING-dependent signalling and deletion of the poxin gene (B2R) attenuates vaccinia virus replication in vivo. Crystal structures of vaccinia virus poxin in pre- and post-reactive states define the mechanism of selective 2',3'-cGAMP degradation through metal-independent cleavage of the 3'-5' bond, converting 2',3'-cGAMP into linear Gp[2'-5']Ap[3']. Poxins are conserved in mammalian poxviruses. In addition, we identify functional poxin homologues in the genomes of moths and butterflies and the baculoviruses that infect these insects. Baculovirus and insect host poxin homologues retain selective 2',3'-cGAMP degradation activity, suggesting an ancient role for poxins in cGAS-STING regulation. Our results define poxins as a family of 2',3'-cGAMP-specific nucleases and demonstrate a mechanism for how viruses evade innate immunity.
10.1038/s41586-019-0928-6
Innate virus-sensing pathways in B cell systemic autoimmunity.
Science (New York, N.Y.)
Although all multicellular organisms have germ line-encoded innate receptors to sense pathogen-associated molecular patterns, vertebrates also evolved adaptive immunity based on somatically generated antigen receptors on B and T cells. Because randomly generated antigen receptors may also react with self-antigens, tolerance checkpoints operate to limit but not completely prevent autoimmunity. These two systems are intricately linked, with innate immunity playing an instrumental role in the induction of adaptive antiviral immunity. In this work, we review how inborn errors of innate immunity can instigate B cell autoimmunity. Increased nucleic acid sensing, often resulting from defects in metabolizing pathways or retroelement control, can break B cell tolerance and converge into TLR7-, cGAS-STING-, or MAVS-dominant signaling pathways. The resulting syndromes span a spectrum that ranges from chilblain and systemic lupus to severe interferonopathies.
10.1126/science.adg6427
Cancer cell-derived type I interferons instruct tumor monocyte polarization.
Cell reports
Monocytes are highly plastic immune cells that modulate antitumor immunity. Therefore, identifying factors that regulate tumor monocyte functions is critical for developing effective immunotherapies. Here, we determine that endogenous cancer cell-derived type I interferons (IFNs) control monocyte functional polarization. Guided by single-cell transcriptomic profiling of human and mouse tumors, we devise a strategy to distinguish and separate immunostimulatory from immunosuppressive tumor monocytes by surface CD88 and Sca-1 expression. Leveraging this approach, we show that cGAS-STING-regulated cancer cell-derived IFNs polarize immunostimulatory monocytes associated with anti-PD-1 immunotherapy response in mice. We also demonstrate that immunosuppressive monocytes convert into immunostimulatory monocytes upon cancer cell-intrinsic cGAS-STING activation. Consistently, we find that human cancer cells can produce type I IFNs that polarize monocytes, and our immunostimulatory monocyte gene signature is enriched in patient tumors that respond to anti-PD-1 immunotherapy. Our work exposes a role for cancer cell-derived IFNs in licensing monocyte functions that influence immunotherapy outcomes.
10.1016/j.celrep.2022.111769
Pharmacological modulation of nucleic acid sensors - therapeutic potential and persisting obstacles.
Vanpouille-Box Claire,Hoffmann Jules A,Galluzzi Lorenzo
Nature reviews. Drug discovery
Nucleic acid sensors, primarily TLR and RLR family members, as well as cGAS-STING signalling, play a critical role in the preservation of cellular and organismal homeostasis. Accordingly, deregulated nucleic acid sensing contributes to the origin of a diverse range of disorders, including infectious diseases, as well as cardiovascular, autoimmune and neoplastic conditions. Accumulating evidence indicates that normalizing aberrant nucleic acid sensing can mediate robust therapeutic effects. However, targeting nucleic acid sensors with pharmacological agents, such as STING agonists, presents multiple obstacles, including drug-, target-, disease- and host-related issues. Here, we discuss preclinical and clinical data supporting the potential of this therapeutic paradigm and highlight key limitations and possible strategies to overcome them.
10.1038/s41573-019-0043-2
Atrx deletion impairs CGAS/STING signaling and increases sarcoma response to radiation and oncolytic herpesvirus.
The Journal of clinical investigation
ATRX is one of the most frequently altered genes in solid tumors, and mutation is especially frequent in soft tissue sarcomas. However, the role of ATRX in tumor development and response to cancer therapies remains poorly understood. Here, we developed a primary mouse model of soft tissue sarcoma and showed that Atrx-deleted tumors were more sensitive to radiation therapy and to oncolytic herpesvirus. In the absence of Atrx, irradiated sarcomas had increased persistent DNA damage, telomere dysfunction, and mitotic catastrophe. Our work also showed that Atrx deletion resulted in downregulation of the CGAS/STING signaling pathway at multiple points in the pathway and was not driven by mutations or transcriptional downregulation of the CGAS/STING pathway components. We found that both human and mouse models of Atrx-deleted sarcoma had a reduced adaptive immune response, markedly impaired CGAS/STING signaling, and increased sensitivity to TVEC, an oncolytic herpesvirus that is currently FDA approved for the treatment of aggressive melanomas. Translation of these results to patients with ATRX-mutant cancers could enable genomically guided cancer therapy approaches to improve patient outcomes.
10.1172/JCI149310
Termination of STING responses is mediated via ESCRT-dependent degradation.
The EMBO journal
cGAS-STING signalling is induced by detection of foreign or mislocalised host double-stranded (ds)DNA within the cytosol. STING acts as the major signalling hub, where it controls production of type I interferons and inflammatory cytokines. Basally, STING resides on the ER membrane. Following activation STING traffics to the Golgi to initiate downstream signalling and subsequently to endolysosomal compartments for degradation and termination of signalling. While STING is known to be degraded within lysosomes, the mechanisms controlling its delivery remain poorly defined. Here we utilised a proteomics-based approach to assess phosphorylation changes in primary murine macrophages following STING activation. This identified numerous phosphorylation events in proteins involved in intracellular and vesicular transport. We utilised high-temporal microscopy to track STING vesicular transport in live macrophages. We subsequently identified that the endosomal complexes required for transport (ESCRT) pathway detects ubiquitinated STING on vesicles, which facilitates the degradation of STING in murine macrophages. Disruption of ESCRT functionality greatly enhanced STING signalling and cytokine production, thus characterising a mechanism controlling effective termination of STING signalling.
10.15252/embj.2022112712
STING directly recruits WIPI2 for autophagosome formation during STING-induced autophagy.
The EMBO journal
The cGAS-STING pathway plays an important role in host defense by sensing pathogen DNA, inducing type I IFNs, and initiating autophagy. However, the molecular mechanism of autophagosome formation in cGAS-STING pathway-induced autophagy is still unclear. Here, we report that STING directly interacts with WIPI2, which is the key protein for LC3 lipidation in autophagy. Binding to WIPI2 is necessary for STING-induced autophagosome formation but does not affect STING activation and intracellular trafficking. In addition, the specific interaction between STING and the PI3P-binding motif of WIPI2 leads to the competition of WIPI2 binding between STING and PI3P, and mutual inhibition between STING-induced autophagy and canonical PI3P-dependent autophagy. Furthermore, we show that the STING-WIPI2 interaction is required for the clearance of cytoplasmic DNA and the attenuation of cGAS-STING signaling. Thus, the direct interaction between STING and WIPI2 enables STING to bypass the canonical upstream machinery to induce LC3 lipidation and autophagosome formation.
10.15252/embj.2022112387
Old dogs, new trick: classic cancer therapies activate cGAS.
Yum Seoyun,Li Minghao,Chen Zhijian J
Cell research
The discovery of cancer immune surveillance and immunotherapy has opened up a new era of cancer treatment. Immunotherapies modulate a patient's immune system to specifically eliminate cancer cells; thus, it is considered a very different approach from classic cancer therapies that usually induce DNA damage to cause cell death in a cell-intrinsic manner. However, recent studies have revealed that classic cancer therapies such as radiotherapy and chemotherapy also elicit antitumor immunity, which plays an essential role in their therapeutic efficacy. The cytosolic DNA sensor cyclic GMP-AMP synthase (cGAS) and the downstream effector Stimulator of Interferon Genes (STING) have been determined to be critical for this interplay. Here, we review the antitumor roles of the cGAS-STING pathway during tumorigenesis, cancer immune surveillance, and cancer therapies. We also highlight classic cancer therapies that elicit antitumor immune responses through cGAS activation.
10.1038/s41422-020-0346-1
CBASS Immunity Uses CARF-Related Effectors to Sense 3'-5'- and 2'-5'-Linked Cyclic Oligonucleotide Signals and Protect Bacteria from Phage Infection.
Lowey Brianna,Whiteley Aaron T,Keszei Alexander F A,Morehouse Benjamin R,Mathews Ian T,Antine Sadie P,Cabrera Victor J,Kashin Dmitry,Niemann Percy,Jain Mohit,Schwede Frank,Mekalanos John J,Shao Sichen,Lee Amy S Y,Kranzusch Philip J
Cell
cGAS/DncV-like nucleotidyltransferase (CD-NTase) enzymes are immune sensors that synthesize nucleotide second messengers and initiate antiviral responses in bacterial and animal cells. Here, we discover Enterobacter cloacae CD-NTase-associated protein 4 (Cap4) as a founding member of a diverse family of >2,000 bacterial receptors that respond to CD-NTase signals. Structures of Cap4 reveal a promiscuous DNA endonuclease domain activated through ligand-induced oligomerization. Oligonucleotide recognition occurs through an appended SAVED domain that is an unexpected fusion of two CRISPR-associated Rossman fold (CARF) subunits co-opted from type III CRISPR immunity. Like a lock and key, SAVED effectors exquisitely discriminate 2'-5'- and 3'-5'-linked bacterial cyclic oligonucleotide signals and enable specific recognition of at least 180 potential nucleotide second messenger species. Our results reveal SAVED CARF family proteins as major nucleotide second messenger receptors in CBASS and CRISPR immune defense and extend the importance of linkage specificity beyond mammalian cGAS-STING signaling.
10.1016/j.cell.2020.05.019
Cyclic GMP-AMP as an Endogenous Second Messenger in Innate Immune Signaling by Cytosolic DNA.
Kato Kazuki,Omura Hiroki,Ishitani Ryuichiro,Nureki Osamu
Annual review of biochemistry
The innate immune system functions as the first line of defense against invading bacteria and viruses. In this context, the cGAS/STING [cyclic guanosine monophosphate (GMP)-adenosine monophosphate (AMP) synthase/STING] signaling axis perceives the nonself DNA associated with bacterial and viral infections, as well as the leakage of self DNA by cellular dysfunction and stresses, to elicit the host's immune responses. In this pathway, the noncanonical cyclic dinucleotide 2',3'-cyclic GMP-AMP (2',3'-cGAMP) functions as a second messenger for signal transduction: 2',3'-cGAMP is produced by the enzyme cGAS upon its recognition of double-stranded DNA, and then the 2',3'-cGAMP is recognized by the receptor STING to induce the phosphorylation of downstream factors, including TBK1 (TANK binding kinase 1) and IRF3 (interferon regulatory factor 3). Numerous crystal structures of the components of this cGAS/STING signaling axis have been reported and these clarify the structural basis for their signal transduction mechanisms. In this review, we summarize recent progress made in the structural dissection of this signaling pathway and indicate possible directions of forthcoming research.
10.1146/annurev-biochem-061516-044813
Interferon b drives intestinal regeneration after radiation.
Science advances
The cGAS-STING cytosolic DNA sensing pathway is critical for host defense. Here, we report that cGAS-STING–dependent type 1 interferon (IFN) response drives intestinal regeneration and animal recovery from radiation injury. deficiency has no effect on radiation-induced DNA damage or crypt apoptosis but abrogates epithelial IFN-β production, local inflammation, innate transcriptional response, and subsequent crypt regeneration. KO, KO, or KO also abrogates radiation-induced acute crypt inflammation and regeneration. Impaired intestinal regeneration and survival in deficient mice are fully rescued by a single IFN-β treatment given 48 hours after irradiation but not by wild-type (WT) bone marrow. IFN-β treatment remarkably improves the survival of WT mice and Lgr5 stem cell regeneration through elevated compensatory proliferation and more rapid DNA damage removal. Our findings support that inducible IFN-β production in the niche couples ISC injury and regeneration and its potential use to treat acute radiation injury.
10.1126/sciadv.abi5253
cGAMP-activated cGAS-STING signaling: its bacterial origins and evolutionary adaptation by metazoans.
Nature structural & molecular biology
The metazoan cGAMP-activated cGAS-STING innate immunity pathway is triggered in response to genomic instability and DNA damage, thereby providing host defense against microbial pathogens. This pathway also impacts on autophagy, cellular senescence and antitumor immunity, while its overactivation triggers autoimmune and inflammatory diseases. Metazoan cGAS generates cGAMP containing distinct combinations of 3'-5' and 2'-5' linkages, which target the adaptor protein STING and activate the innate immune response through a signaling cascade leading to upregulation of cytokine and interferon production. This Review highlights a structure-based mechanistic perspective of recent advances in cGAMP-activated cGAS-STING innate immune signaling by focusing on the cGAS sensor, cGAMP second messenger and STING adaptor components, thereby elucidating the specificity, activation, regulation and signal transduction features of the pathway. In addition, the Review addresses progress towards identification of inhibitors and activators targeting cGAS and STING, as well as strategies developed by pathogens to evade cGAS-STING immunity. Most importantly, it highlights cyclic nucleotide second messengers as ancient signaling molecules that elicit a potent innate immune response that originated in bacteria and evolved through evolutionary adaptation to metazoans.
10.1038/s41594-023-00933-9
Immunological conversion of solid tumours using a bispecific nanobioconjugate for cancer immunotherapy.
Nature nanotechnology
Solid tumours display a limited response to immunotherapies. By contrast, haematological malignancies exhibit significantly higher response rates to immunotherapies as compared with solid tumours. Among several microenvironmental and biological disparities, the differential expression of unique immune regulatory molecules contributes significantly to the interaction of blood cancer cells with immune cells. The self-ligand receptor of the signalling lymphocytic activation molecule family member 7 (SLAMF7), a molecule that is critical in promoting the body's innate immune cells to detect and engulf cancer cells, is expressed nearly exclusively on the cell surface of haematologic tumours, but not on solid ones. Here we show that a bispecific nanobioconjugate that enables the decoration of SLAMF7 on the surface of solid tumours induces robust phagocytosis and activates the phagocyte cyclic guanosine monophosphate-adenosine monophosphate synthase-stimulator of interferon genes (cGAS-STING) pathway, sensitizing the tumours to immune checkpoint blockade. Our findings support an immunological conversion strategy that uses nano-adjuvants to improve the effectiveness of immunotherapies for solid tumours.
10.1038/s41565-022-01245-7
Intracellular Nucleic Acid Detection in Autoimmunity.
Crowl John T,Gray Elizabeth E,Pestal Kathleen,Volkman Hannah E,Stetson Daniel B
Annual review of immunology
Protective immune responses to viral infection are initiated by innate immune sensors that survey extracellular and intracellular space for foreign nucleic acids. The existence of these sensors raises fundamental questions about self/nonself discrimination because of the abundance of self-DNA and self-RNA that occupy these same compartments. Recent advances have revealed that enzymes that metabolize or modify endogenous nucleic acids are essential for preventing inappropriate activation of the innate antiviral response. In this review, we discuss rare human diseases caused by dysregulated nucleic acid sensing, focusing primarily on intracellular sensors of nucleic acids. We summarize lessons learned from these disorders, we rationalize the existence of these diseases in the context of evolution, and we propose that this framework may also apply to a number of more common autoimmune diseases for which the underlying genetics and mechanisms are not yet fully understood.
10.1146/annurev-immunol-051116-052331
POLQ inhibition elicits an immune response in homologous recombination-deficient pancreatic adenocarcinoma via cGAS/STING signaling.
The Journal of clinical investigation
Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal malignancy that harbors mutations in homologous recombination-repair (HR-repair) proteins in 20%-25% of cases. Defects in HR impart a specific vulnerability to poly ADP ribose polymerase inhibitors and platinum-containing chemotherapy in tumor cells. However, not all patients who receive these therapies respond, and many who initially respond ultimately develop resistance. Inactivation of the HR pathway is associated with the overexpression of polymerase theta (Polθ, or POLQ). This key enzyme regulates the microhomology-mediated end-joining (MMEJ) pathway of double-strand break (DSB) repair. Using human and murine HR-deficient PDAC models, we found that POLQ knockdown is synthetically lethal in combination with mutations in HR genes such as BRCA1 and BRCA2 and the DNA damage repair gene ATM. Further, POLQ knockdown enhances cytosolic micronuclei formation and activates signaling of cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING), leading to enhanced infiltration of activated CD8+ T cells in BRCA2-deficient PDAC tumors in vivo. Overall, POLQ, a key mediator in the MMEJ pathway, is critical for DSB repair in BRCA2-deficient PDAC. Its inhibition represents a synthetic lethal approach to blocking tumor growth while concurrently activating the cGAS-STING signaling pathway to enhance tumor immune infiltration, highlighting what we believe to be a new role for POLQ in the tumor immune environment.
10.1172/JCI165934
STING trafficking as a new dimension of immune signaling.
The Journal of experimental medicine
The cGAS-STING pathway is an evolutionarily conserved immune signaling pathway critical for microbial defense. Unlike other innate immune pathways that largely rely on stationary cascades of signaling events, STING is highly mobile in the cell. STING is activated on the ER, but only signals after it arrives on the Golgi, and then it is quickly degraded by the lysosome. Each step of STING trafficking through the secretory pathway is regulated by host factors. Homeostatic STING trafficking via COPI-, COPII-, and clathrin-coated vesicles is important for maintaining baseline tissue and cellular immunity. Aberrant vesicular trafficking or lysosomal dysfunction produces an immune signal through STING, which often leads to tissue pathology in mice and humans. Many trafficking-mediated diseases of STING signaling appear to impact the central nervous system, leading to neurodegeneration. Therefore, STING trafficking introduces a new dimension of immune signaling that likely has broad implications in human disease.
10.1084/jem.20220990
Inhibition of the ATM/Chk2 axis promotes cGAS/STING signaling in ARID1A-deficient tumors.
Wang Lulu,Yang Lin,Wang Chen,Zhao Wei,Ju Zhenlin,Zhang Wei,Shen Jianfeng,Peng Yang,An Clemens,Luu Yen T,Song Shumei,Yap Timothy A,Ajani Jaffer A,Mills Gordon B,Shen Xuetong,Peng Guang
The Journal of clinical investigation
ARID1A, a component of the chromatin-remodeling complex SWI/SNF, is one of the most frequently mutated genes in human cancer. We sought to develop rational combination therapy to potentiate the efficacy of immune checkpoint blockade in ARID1A-deficient tumors. In a proteomic analysis of a data set from The Cancer Genomic Atlas, we found enhanced expression of Chk2, a DNA damage checkpoint kinase, in ARID1A-mutated/deficient tumors. Surprisingly, we found that ARID1A targets the nonchromatin substrate Chk2 for ubiquitination. Loss of ARID1A increased the Chk2 level through modulating autoubiquitination of the E3-ligase RNF8 and thereby reducing RNF8-mediated Chk2 degradation. Inhibition of the ATM/Chk2 DNA damage checkpoint axis led to replication stress and accumulation of cytosolic DNA, which subsequently activated the DNA sensor STING-mediated innate immune response in ARID1A-deficient tumors. As expected, tumors with mutation or low expression of both ARID1A and ATM/Chk2 exhibited increased tumor-infiltrating lymphocytes and were associated with longer patient survival. Notably, an ATM inhibitor selectively potentiated the efficacy of immune checkpoint blockade in ARID1A-depleted tumors but not in WT tumors. Together, these results suggest that ARID1A's targeting of the nonchromatin substrate Chk2 for ubiquitination makes it possible to selectively modulate cancer cell-intrinsic innate immunity to enhance the antitumor activity of immune checkpoint blockade.
10.1172/JCI130445
TBK1 and IKKε Act Redundantly to Mediate STING-Induced NF-κB Responses in Myeloid Cells.
Cell reports
Stimulator of Interferon Genes (STING) is a critical component of host innate immune defense but can contribute to chronic autoimmune or autoinflammatory disease. Once activated, the cyclic guanosine monophosphate (GMP)-adenosine monophosphate (AMP) (cGAMP) synthase (cGAS)-STING pathway induces both type I interferon (IFN) expression and nuclear factor-κB (NF-κB)-mediated cytokine production. Currently, these two signaling arms are thought to be mediated by a single upstream kinase, TANK-binding kinase 1 (TBK1). Here, using genetic and pharmacological approaches, we show that TBK1 alone is dispensable for STING-induced NF-κB responses in human and mouse immune cells, as well as in vivo. We further demonstrate that TBK1 acts redundantly with IκB kinase ε (IKKε) to drive NF-κB upon STING activation. Interestingly, we show that activation of IFN regulatory factor 3 (IRF3) is highly dependent on TBK1 kinase activity, whereas NF-κB is significantly less sensitive to TBK1/IKKε kinase inhibition. Our work redefines signaling events downstream of cGAS-STING. Our findings further suggest that cGAS-STING will need to be targeted directly to effectively ameliorate the inflammation underpinning disorders associated with STING hyperactivity.
10.1016/j.celrep.2020.03.056
Diversity and classification of cyclic-oligonucleotide-based anti-phage signalling systems.
Millman Adi,Melamed Sarah,Amitai Gil,Sorek Rotem
Nature microbiology
Cyclic-oligonucleotide-based anti-phage signalling systems (CBASS) are a family of defence systems against bacteriophages (hereafter phages) that share ancestry with the cGAS-STING innate immune pathway in animals. CBASS systems are composed of an oligonucleotide cyclase, which generates signalling cyclic oligonucleotides in response to phage infection, and an effector that is activated by the cyclic oligonucleotides and promotes cell death. Cell death occurs before phage replication is completed, therefore preventing the spread of phages to nearby cells. Here, we analysed 38,000 bacterial and archaeal genomes and identified more than 5,000 CBASS systems, which have diverse architectures with multiple signalling molecules, effectors and ancillary genes. We propose a classification system for CBASS that groups systems according to their operon organization, signalling molecules and effector function. Four major CBASS types were identified, sharing at least six effector subtypes that promote cell death by membrane impairment, DNA degradation or other means. We observed evidence of extensive gain and loss of CBASS systems, as well as shuffling of effector genes between systems. We expect that our classification and nomenclature scheme will guide future research in the developing CBASS field.
10.1038/s41564-020-0777-y
Anti-tumor immunity in mismatch repair-deficient colorectal cancers requires type I IFN-driven CCL5 and CXCL10.
The Journal of experimental medicine
Colorectal cancers (CRCs) deficient in DNA mismatch repair (dMMR) contain abundant CD8+ tumor-infiltrating lymphocytes (TILs) responding to the abundant neoantigens from their unstable genomes. Priming of such tumor-targeted TILs first requires recruitment of CD8+ T cells into the tumors, implying that this is an essential prerequisite of successful dMMR anti-tumor immunity. We have discovered that selective recruitment and activation of systemic CD8+ T cells into dMMR CRCs strictly depend on overexpression of CCL5 and CXCL10 due to endogenous activation of cGAS/STING and type I IFN signaling by damaged DNA. TIL infiltration into orthotopic dMMR CRCs is neoantigen-independent and followed by induction of a resident memory-like phenotype key to the anti-tumor response. CCL5 and CXCL10 could be up-regulated by common chemotherapies in all CRCs, indicating that facilitating CD8+ T cell recruitment underlies their efficacy. Induction of CCL5 and CXCL10 thus represents a tractable therapeutic strategy to induce TIL recruitment into CRCs, where local priming can be maximized even in neoantigen-poor CRCs.
10.1084/jem.20210108
PARP1 inhibitors trigger innate immunity via PARP1 trapping-induced DNA damage response.
Kim Chiho,Wang Xu-Dong,Yu Yonghao
eLife
It is being increasingly appreciated that the immunomodulatory functions of PARP1 inhibitors (PARPi) underlie their clinical activities in various -mutated tumors. PARPi possess both PARP1 inhibition and PARP1 trapping activities. The relative contribution of these two mechanisms toward PARPi-induced innate immune signaling, however, is poorly understood. We find that the presence of the PARP1 protein with uncompromised DNA-binding activities is required for PARPi-induced innate immune response. The activation of cGAS-STING signaling induced by various PARPi closely depends on their PARP1 trapping activities. Finally, we show that a small molecule PARP1 degrader blocks the enzymatic activity of PARP1 without eliciting PARP1 trapping or cGAS-STING activation. Our findings thus identify PARP1 trapping as a major contributor of the immunomodulatory functions of PARPi. Although PARPi-induced innate immunity is highly desirable in human malignancies, the ability of 'non-trapping' PARP1 degraders to avoid the activation of innate immune response could be useful in non-oncological diseases.
10.7554/eLife.60637
Comprehensive Molecular Characterization Identifies Distinct Genomic and Immune Hallmarks of Renal Medullary Carcinoma.
Msaouel Pavlos,Malouf Gabriel G,Su Xiaoping,Yao Hui,Tripathi Durga N,Soeung Melinda,Gao Jianjun,Rao Priya,Coarfa Cristian,Creighton Chad J,Bertocchio Jean-Philippe,Kunnimalaiyaan Selvi,Multani Asha S,Blando Jorge,He Rong,Shapiro Daniel D,Perelli Luigi,Srinivasan Sanjana,Carbone Federica,Pilié Patrick G,Karki Menuka,Seervai Riyad N H,Vokshi Bujamin H,Lopez-Terrada Dolores,Cheng Emily H,Tang Ximing,Lu Wei,Wistuba Ignacio I,Thompson Timothy C,Davidson Irwin,Giuliani Virginia,Schlacher Katharina,Carugo Alessandro,Heffernan Timothy P,Sharma Padmanee,Karam Jose A,Wood Christopher G,Walker Cheryl L,Genovese Giannicola,Tannir Nizar M
Cancer cell
Renal medullary carcinoma (RMC) is a highly lethal malignancy that mainly afflicts young individuals of African descent and is resistant to all targeted agents used to treat other renal cell carcinomas. Comprehensive genomic and transcriptomic profiling of untreated primary RMC tissues was performed to elucidate the molecular landscape of these tumors. We found that RMC was characterized by high replication stress and an abundance of focal copy-number alterations associated with activation of the stimulator of the cyclic GMP-AMP synthase interferon genes (cGAS-STING) innate immune pathway. Replication stress conferred a therapeutic vulnerability to drugs targeting DNA-damage repair pathways. Elucidation of these previously unknown RMC hallmarks paves the way to new clinical trials for this rare but highly lethal malignancy.
10.1016/j.ccell.2020.04.002
Immune checkpoint therapy-elicited sialylation of IgG antibodies impairs antitumorigenic type I interferon responses in hepatocellular carcinoma.
Immunity
The reinvigoration of anti-tumor T cells in response to immune checkpoint blockade (ICB) therapy is well established. Whether and how ICB therapy manipulates antibody-mediated immune response in cancer environments, however, remains elusive. Using tandem mass spectrometric analysis of modification of immunoglobulin G (IgG) from hepatoma tissues, we identified a role of ICB therapy in catalyzing IgG sialylation in the Fc region. Effector T cells triggered sialylation of IgG via an interferon (IFN)-γ-ST6Gal-I-dependent pathway. DC-SIGN macrophages represented the main target cells of sialylated IgG. Upon interacting with sialylated IgG, DC-SIGN stimulated Raf-1-elicited elevation of ATF3, which inactivated cGAS-STING pathway and eliminated subsequent type-I-IFN-triggered antitumorigenic immunity. Although enhanced IgG sialylation in tumors predicted improved therapeutic outcomes for patients receiving ICB therapy, impeding IgG sialylation augmented antitumorigenic T cell immunity after ICB therapy. Thus, targeting antibody-based negative feedback action of ICB therapy has potential for improving efficacy of cancer immunotherapies.
10.1016/j.immuni.2022.11.014
Tumor Treating Fields: killing two birds with one stone.
The Journal of clinical investigation
Given its aggressive natural history and immunosuppressive nature, glioblastoma (GBM) remains difficult to treat. Tumor Treating Fields (TTFields) are a promising treatment for GBM patients, yet the entirety of their antitumor action has not been fully elucidated. In a recent issue of the JCI, Chen et al. explored the effect of TTFields in reinvigorating immune responses. By elegant step-by-step approaches, the authors demonstrated that TTFields promote the production of immune-stimulating proinflammatory and interferon type 1 cytokines in tumor cells in a cGAS/STING- and AIM2 inflammasome-dependent mechanism, thereby activating the immune system. The findings show that TTFields not only directly inhibit tumor cell growth, as previously reported, but enhance antitumor immunity, suggesting TTFields can be used as an immune-modulating approach in GBM.
10.1172/JCI159073
A Peritumorally Injected Immunomodulating Adjuvant Elicits Robust and Safe Metalloimmunotherapy against Solid Tumors.
Advanced materials (Deerfield Beach, Fla.)
Clinical immunotherapy of solid tumors elicits durable responses only in a minority of patients, largely due to the highly immunosuppressive tumor microenvironment (TME). Although rational combinations of vaccine adjuvants with inflammatory cytokines or immune agonists that relieve immunosuppression represent an appealing therapeutic strategy against solid tumors, there are unavoidable nonspecific toxicities due to the pleiotropy of cytokines and undesired activation of off-target cells. Herein, a Zn doped layered double hydroxide (Zn-LDH) based immunomodulating adjuvant, which not only relieves immunosuppression but also elicits robust antitumor immunity, is reported. Peritumorally injected Zn-LDH sustainably neutralizes acidic TME and releases abundant Zn , promoting a pro-inflammatory network composed of M1-tumor-associated macrophages, cytotoxic T cells, and natural-killer cells. Moreover, the Zn-LDH internalized by tumor cells effectively disrupts endo-/lysosomes to block autophagy and induces mitochondrial damage, and the released Zn activates the cGas-STING signaling pathway to induce immunogenic cell death, which further promotes the release of tumor-associated antigens to induce antigen-specific cytotoxic T lymphocytes. Unprecedentedly, merely injection of Zn-LDH adjuvant, without using any cytotoxic inflammatory cytokines or immune agonists, significantly inhibits the growth, recurrence, and metastasis of solid tumors in mice. This study provides a rational bottom-up design of potent adjuvant for cancer metalloimmunotherapy against solid tumors.
10.1002/adma.202206915
Immunogenic Cell Death Augmented by Manganese Zinc Sulfide Nanoparticles for Metastatic Melanoma Immunotherapy.
ACS nano
Both T-cell deprivation and insufficient tumor immunogenicity seriously hinder the efficacy of immune-mediated tumor destruction in melanoma. In this work, an amphiphilic polyethylene glycol-poly(2-hexoxy-2-oxo-1,3,2-dioxaphospholane) copolymer with a thermally sensitive flowable core (mPEG--PHEP) was chosen to incorporate IR780 dye and manganese zinc sulfide nanoparticles (ZMS) to form polymer micelles (denoted PP), which precisely controlled the release of ZMS after being triggered by near-infrared light (NIR). Mn-mediated chemodynamic therapy (CDT) by photothermal trigger boosted the generation of reactive oxygen species (ROS), making the PP smart bomblets . It was demonstrated that PP could maximize immunogenic cell death (ICD) in cancer, which is characterized by abundant damage-associated molecular pattern (DAMP) exposure. As a result, the cytotoxic T cells (CD8) and helper T cells (CD4) expanded and infiltrated the neoplastic foci, which further reprogrammed the suppressive tumor microenvironment (TME) against the primary tumor and pulmonary metastases with safe systemic cytokine expression. In addition, Mn-mediated cGAS-STING signaling pathway activation enhanced the antitumor immunity of this nanocomposite, providing a practical strategy for expanding the use of Mn-based nanostructures.
10.1021/acsnano.2c08013
Brown adipose TRX2 deficiency activates mtDNA-NLRP3 to impair thermogenesis and protect against diet-induced insulin resistance.
The Journal of clinical investigation
Brown adipose tissue (BAT), a crucial heat-generating organ, regulates whole-body energy metabolism by mediating thermogenesis. BAT inflammation is implicated in the pathogenesis of mitochondrial dysfunction and impaired thermogenesis. However, the link between BAT inflammation and systematic metabolism remains unclear. Herein, we use mice with BAT deficiency of thioredoxin-2 (TRX2), a protein that scavenges mitochondrial reactive oxygen species (ROS), to evaluate the impact of BAT inflammation on metabolism and thermogenesis and its underlying mechanism. Our results show that BAT-specific TRX2 ablation improves systematic metabolic performance via enhancing lipid uptake, which protects mice from diet-induced obesity, hypertriglyceridemia, and insulin resistance. TRX2 deficiency impairs adaptive thermogenesis by suppressing fatty acid oxidation. Mechanistically, loss of TRX2 induces excessive mitochondrial ROS, mitochondrial integrity disruption, and cytosolic release of mitochondrial DNA, which in turn activate aberrant innate immune responses in BAT, including the cGAS/STING and the NLRP3 inflammasome pathways. We identify NLRP3 as a key converging point, as its inhibition reverses both the thermogenesis defect and the metabolic benefits seen under nutrient overload in BAT-specific Trx2-deficient mice. In conclusion, we identify TRX2 as a critical hub integrating oxidative stress, inflammation, and lipid metabolism in BAT, uncovering an adaptive mechanism underlying the link between BAT inflammation and systematic metabolism.
10.1172/JCI148852
Inflammasome Activation Triggers Caspase-1-Mediated Cleavage of cGAS to Regulate Responses to DNA Virus Infection.
Wang Yutao,Ning Xiaohan,Gao Pengfei,Wu Shuxian,Sha Mengyin,Lv Mengze,Zhou Xiang,Gao Juyi,Fang Run,Meng Guangxun,Su Xiaodong,Jiang Zhengfan
Immunity
Viral infection triggers host innate immune responses that result in the production of various cytokines including type I interferons (IFN), activation of inflammasomes, and programmed cell death of the infected cells. Tight control of inflammatory cytokine production is crucial for the triggering of an effective immune response that can resolve the infection without causing host pathology. In examining the inflammatory response of Asc and Casp1 macrophages, we found that deficiency in these molecules resulted in increased IFN production upon DNA virus infection, but not RNA virus challenge. Investigation of the underlying mechanism revealed that upon canonical and non-canonical inflammasome activation, caspase-1 interacted with cyclic GMP-AMP (cGAMP) synthase (cGAS), cleaving it and dampening cGAS-STING-mediated IFN production. Deficiency in inflammasome signaling enhanced host resistance to DNA virus in vitro and in vivo, and this regulatory role extended to other inflammatory caspases. Thus, inflammasome activation dampens cGAS-dependent signaling, suggesting cross-regulation between intracellular DNA-sensing pathways.
10.1016/j.immuni.2017.02.011
HEXIM1 and NEAT1 Long Non-coding RNA Form a Multi-subunit Complex that Regulates DNA-Mediated Innate Immune Response.
Morchikh Mehdi,Cribier Alexandra,Raffel Raoul,Amraoui Sonia,Cau Julien,Severac Dany,Dubois Emeric,Schwartz Olivier,Bennasser Yamina,Benkirane Monsef
Molecular cell
The DNA-mediated innate immune response underpins anti-microbial defenses and certain autoimmune diseases. Here we used immunoprecipitation, mass spectrometry, and RNA sequencing to identify a ribonuclear complex built around HEXIM1 and the long non-coding RNA NEAT1 that we dubbed the HEXIM1-DNA-PK-paraspeckle components-ribonucleoprotein complex (HDP-RNP). The HDP-RNP contains DNA-PK subunits (DNAPKc, Ku70, and Ku80) and paraspeckle proteins (SFPQ, NONO, PSPC1, RBM14, and MATRIN3). We show that binding of HEXIM1 to NEAT1 is required for its assembly. We further demonstrate that the HDP-RNP is required for the innate immune response to foreign DNA, through the cGAS-STING-IRF3 pathway. The HDP-RNP interacts with cGAS and its partner PQBP1, and their interaction is remodeled by foreign DNA. Remodeling leads to the release of paraspeckle proteins, recruitment of STING, and activation of DNAPKc and IRF3. Our study establishes the HDP-RNP as a key nuclear regulator of DNA-mediated activation of innate immune response through the cGAS-STING pathway.
10.1016/j.molcel.2017.06.020
The DNA Inflammasome in Human Myeloid Cells Is Initiated by a STING-Cell Death Program Upstream of NLRP3.
Gaidt Moritz M,Ebert Thomas S,Chauhan Dhruv,Ramshorn Katharina,Pinci Francesca,Zuber Sarah,O'Duill Fionan,Schmid-Burgk Jonathan L,Hoss Florian,Buhmann Raymund,Wittmann Georg,Latz Eicke,Subklewe Marion,Hornung Veit
Cell
Detection of cytosolic DNA constitutes a central event in the context of numerous infectious and sterile inflammatory conditions. Recent studies have uncovered a bipartite mode of cytosolic DNA recognition, in which the cGAS-STING axis triggers antiviral immunity, whereas AIM2 triggers inflammasome activation. Here, we show that AIM2 is dispensable for DNA-mediated inflammasome activation in human myeloid cells. Instead, detection of cytosolic DNA by the cGAS-STING axis induces a cell death program initiating potassium efflux upstream of NLRP3. Forward genetics identified regulators of lysosomal trafficking to modulate this cell death program, and subsequent studies revealed that activated STING traffics to the lysosome, where it triggers membrane permeabilization and thus lysosomal cell death (LCD). Importantly, the cGAS-STING-NLRP3 pathway constitutes the default inflammasome response during viral and bacterial infections in human myeloid cells. We conclude that targeting the cGAS-STING-LCD-NLRP3 pathway will ameliorate pathology in inflammatory conditions that are associated with cytosolic DNA sensing.
10.1016/j.cell.2017.09.039
Tissue fluidification promotes a cGAS-STING cytosolic DNA response in invasive breast cancer.
Nature materials
The process in which locally confined epithelial malignancies progressively evolve into invasive cancers is often promoted by unjamming, a phase transition from a solid-like to a liquid-like state, which occurs in various tissues. Whether this tissue-level mechanical transition impacts phenotypes during carcinoma progression remains unclear. Here we report that the large fluctuations in cell density that accompany unjamming result in repeated mechanical deformations of cells and nuclei. This triggers a cellular mechano-protective mechanism involving an increase in nuclear size and rigidity, heterochromatin redistribution and remodelling of the perinuclear actin architecture into actin rings. The chronic strains and stresses associated with unjamming together with the reduction of Lamin B1 levels eventually result in DNA damage and nuclear envelope ruptures, with the release of cytosolic DNA that activates a cGAS-STING (cyclic GMP-AMP synthase-signalling adaptor stimulator of interferon genes)-dependent cytosolic DNA response gene program. This mechanically driven transcriptional rewiring ultimately alters the cell state, with the emergence of malignant traits, including epithelial-to-mesenchymal plasticity phenotypes and chemoresistance in invasive breast carcinoma.
10.1038/s41563-022-01431-x
Cyclic nucleotide-induced helical structure activates a TIR immune effector.
Nature
Cyclic nucleotide signalling is a key component of antiviral defence in all domains of life. Viral detection activates a nucleotide cyclase to generate a second messenger, resulting in activation of effector proteins. This is exemplified by the metazoan cGAS-STING innate immunity pathway, which originated in bacteria. These defence systems require a sensor domain to bind the cyclic nucleotide and are often coupled with an effector domain that, when activated, causes cell death by destroying essential biomolecules. One example is the Toll/interleukin-1 receptor (TIR) domain, which degrades the essential cofactor NAD when activated in response to infection in plants and bacteria or during programmed nerve cell death. Here we show that a bacterial antiviral defence system generates a cyclic tri-adenylate that binds to a TIR-SAVED effector, acting as the 'glue' to allow assembly of an extended superhelical solenoid structure. Adjacent TIR subunits interact to organize and complete a composite active site, allowing NAD degradation. Activation requires extended filament formation, both in vitro and in vivo. Our study highlights an example of large-scale molecular assembly controlled by cyclic nucleotides and reveals key details of the mechanism of TIR enzyme activation.
10.1038/s41586-022-05070-9
Cytosolic DNA sensing by cGAS/STING promotes TRPV2-mediated Ca release to protect stressed replication forks.
Molecular cell
The protection of DNA replication forks under stress is essential for genome maintenance and cancer suppression. One mechanism of fork protection involves an elevation in intracellular Ca ([Ca]), which in turn activates CaMKK2 and AMPK to prevent uncontrolled fork processing by Exo1. How replication stress triggers [Ca] elevation is unclear. Here, we report a role of cytosolic self-DNA (cytosDNA) and the ion channel TRPV2 in [Ca] induction and fork protection. Replication stress leads to the generation of ssDNA and dsDNA species that, upon translocation into cytoplasm, trigger the activation of the sensor protein cGAS and the production of cGAMP. The subsequent binding of cGAMP to STING causes its dissociation from TRPV2, leading to TRPV2 derepression and Ca release from the ER, which in turn activates the downstream signaling cascade to prevent fork degradation. This Ca-dependent genome protection pathway is also activated in response to replication stress caused by oncogene activation.
10.1016/j.molcel.2022.12.034
Dual inhibition of innate immunity and apoptosis by human cytomegalovirus protein UL37x1 enables efficient virus replication.
Nature microbiology
Immune evasion and inhibition of apoptosis are required for successful virus infection. However, inhibition of apoptosis can increase antiviral immune responses, which can then clear viral infections. Here we show that human cytomegalovirus (HCMV)-encoded UL37 exon-1 protein (UL37x1) not only inhibits apoptosis but also suppresses the cGAS-STING immune pathway. Using co-immunoprecipitation assays, we found that UL37x1 binds to TBK1 to abrogate the TBK1-STING-IRF3 interaction. Although the anti-apoptosis function of UL37x1 increases immune signalling, the immunosuppressive role of UL37x1 counteracts this undesirable side-effect. Furthermore, we used mutational analyses to show that the loss of either immunosuppressive or anti-apoptotic function of UL37x1 significantly reduced HCMV replication in human primary foreskin fibroblasts and humanized mice by over twofold. Finally, loss of both functions resulted in over fourfold reduction of HCMV replication in the same cell type and mouse model, showing that both UL37x1 functions are crucial for HCMV infection. We conclude that this sophisticated mechanism enables HCMV to control innate immunity and apoptosis to ensure efficient infection.
10.1038/s41564-022-01136-6
ARMH3-mediated recruitment of PI4KB directs Golgi-to-endosome trafficking and activation of the antiviral effector STING.
Immunity
The cGAS-STING pathway mediates cytoplasmic DNA-triggered innate immunity. STING activation is initiated by cyclic-GMP-AMP (cGAMP)-induced translocation from the endoplasmic reticulum and sulfated glycosaminoglycans-induced polymerization at the Golgi. Here, we examine the mechanisms underlying STING transport and activation beyond the Golgi. A genome-wide CRISPR-Cas9 screen identified Armadillo-like helical domain-containing protein 3 (ARMH3) as critical for STING activation. Upon cGAMP-triggered translocation, ARMH3 interacted with STING at the Golgi and recruited phosphatidylinositol 4-kinase beta (PI4KB) to synthesize PI4P, which directed STING Golgi-to-endosome trafficking via PI4P-binding proteins AP-1 and GGA2. Disrupting PI4P-dependent lipid transport through RNAi of other PI4P-binding proteins impaired STING activation. Consistently, disturbed lipid composition inhibited STING activation, whereas aberrantly elevated cellular PI4P led to cGAS-independent STING activation. Armh3Lyz mice were susceptible to DNA virus challenge in vivo. Thus, ARMH3 bridges STING and PIK4B to generate PI4P for STING transportation and activation, an interaction conserved in all eukaryotes.
10.1016/j.immuni.2023.02.004
Brain immune cells undergo cGAS/STING-dependent apoptosis during herpes simplex virus type 1 infection to limit type I IFN production.
The Journal of clinical investigation
Protection of the brain from viral infections involves the type I IFN (IFN-I) system, defects in which render humans susceptible to herpes simplex encephalitis (HSE). However, excessive cerebral IFN-I levels lead to pathologies, suggesting the need for tight regulation of responses. Based on data from mouse models, human HSE cases, and primary cell culture systems, we showed that microglia and other immune cells undergo apoptosis in the HSV-1-infected brain through a mechanism dependent on the cyclic GMP-AMP synthase/stimulator of interferon genes (cGAS/STING) pathway, but independent of IFN-I. HSV-1 infection of microglia induced cGAS-dependent apoptosis at high viral doses, whereas lower viral doses led to IFN-I responses. Importantly, inhibition of caspase activity prevented microglial cell death and augmented IFN-I responses. Accordingly, HSV-1-infected organotypic brain slices or mice treated with a caspase inhibitor exhibited lower viral load and an improved infection outcome. Collectively, we identify an activation-induced apoptosis program in brain immune cells that downmodulates local immune responses.
10.1172/JCI136824
Innate immune response orchestrates phosphoribosyl pyrophosphate synthetases to support DNA repair.
Liu Rui,Li Jingyi,Shao Jichun,Lee Jong-Ho,Qiu Xuemei,Xiao Yanxuan,Zhang Bowen,Hao Yilong,Li Mi,Chen Qianming
Cell metabolism
Ionizing radiation-induced DNA damages cause genome instability and are highly cytotoxic. Deoxyribonucleotide metabolism provides building blocks for DNA repair. Nevertheless, how deoxyribonucleotide metabolism is timely regulated to coordinate with DNA repair remains elusive. Here, we show that ionizing radiation results in TBK1-mediated phosphorylation of phosphoribosyl pyrophosphate synthetase (PRPS)1/2 at T228, thereby enhancing PRPS1/2 catalytic activity and promoting deoxyribonucleotide synthesis. DNA damage-elicited activation of cGAS/STING axis and ATM-mediated PRPS1/2 S16 phosphorylation are required for PRPS1/2 T228 phosphorylation under ionizing radiation. Furthermore, T228 phosphorylation overrides allosteric regulator-mediated effects and preserves PRPS1/2 with high activity. The expression of non-phosphorylatable PRPS1/2 mutants or inhibition of cGAS/STING axis counteracts ionizing radiation-induced PRPS1/2 activation, deoxyribonucleotide synthesis, and DNA repair, and further impairs cell viability. This study highlights a novel and important mechanism underlying an innate immune response-guided deoxyribonucleotide metabolism, which supports DNA repair.
10.1016/j.cmet.2021.07.009
Mitochondria-to-nucleus retrograde signaling drives formation of cytoplasmic chromatin and inflammation in senescence.
Genes & development
Cellular senescence is a potent tumor suppressor mechanism but also contributes to aging and aging-related diseases. Senescence is characterized by a stable cell cycle arrest and a complex proinflammatory secretome, termed the senescence-associated secretory phenotype (SASP). We recently discovered that cytoplasmic chromatin fragments (CCFs), extruded from the nucleus of senescent cells, trigger the SASP through activation of the innate immunity cytosolic DNA sensing cGAS-STING pathway. However, the upstream signaling events that instigate CCF formation remain unknown. Here, we show that dysfunctional mitochondria, linked to down-regulation of nuclear-encoded mitochondrial oxidative phosphorylation genes, trigger a ROS-JNK retrograde signaling pathway that drives CCF formation and hence the SASP. JNK links to 53BP1, a nuclear protein that negatively regulates DNA double-strand break (DSB) end resection and CCF formation. Importantly, we show that low-dose HDAC inhibitors restore expression of most nuclear-encoded mitochondrial oxidative phosphorylation genes, improve mitochondrial function, and suppress CCFs and the SASP in senescent cells. In mouse models, HDAC inhibitors also suppress oxidative stress, CCF, inflammation, and tissue damage caused by senescence-inducing irradiation and/or acetaminophen-induced mitochondria dysfunction. Overall, our findings outline an extended mitochondria-to-nucleus retrograde signaling pathway that initiates formation of CCF during senescence and is a potential target for drug-based interventions to inhibit the proaging SASP.
10.1101/gad.331272.119
SAMHD1 acts at stalled replication forks to prevent interferon induction.
Coquel Flavie,Silva Maria-Joao,Técher Hervé,Zadorozhny Karina,Sharma Sushma,Nieminuszczy Jadwiga,Mettling Clément,Dardillac Elodie,Barthe Antoine,Schmitz Anne-Lyne,Promonet Alexy,Cribier Alexandra,Sarrazin Amélie,Niedzwiedz Wojciech,Lopez Bernard,Costanzo Vincenzo,Krejci Lumir,Chabes Andrei,Benkirane Monsef,Lin Yea-Lih,Pasero Philippe
Nature
SAMHD1 was previously characterized as a dNTPase that protects cells from viral infections. Mutations in SAMHD1 are implicated in cancer development and in a severe congenital inflammatory disease known as Aicardi-Goutières syndrome. The mechanism by which SAMHD1 protects against cancer and chronic inflammation is unknown. Here we show that SAMHD1 promotes degradation of nascent DNA at stalled replication forks in human cell lines by stimulating the exonuclease activity of MRE11. This function activates the ATR-CHK1 checkpoint and allows the forks to restart replication. In SAMHD1-depleted cells, single-stranded DNA fragments are released from stalled forks and accumulate in the cytosol, where they activate the cGAS-STING pathway to induce expression of pro-inflammatory type I interferons. SAMHD1 is thus an important player in the replication stress response, which prevents chronic inflammation by limiting the release of single-stranded DNA from stalled replication forks.
10.1038/s41586-018-0050-1
Combinatorial targeting of Hippo-STRIPAK and PARP elicits synthetic lethality in gastrointestinal cancers.
The Journal of clinical investigation
The striatin-interacting phosphatase and kinase (STRIPAK) complexes integrate extracellular stimuli that result in intracellular activities. Previously, we discovered that STRIPAK is a key machinery responsible for loss of the Hippo tumor suppressor signal in cancer. Here, we identified the Hippo-STRIPAK complex as an essential player in the control of DNA double-stranded break (DSB) repair and genomic stability. Specifically, we found that the mammalian STE20-like protein kinases 1 and 2 (MST1/2), independent of classical Hippo signaling, directly phosphorylated zinc finger MYND type-containing 8 (ZMYND8) and hence resulted in the suppression of DNA repair in the nucleus. In response to genotoxic stress, the cyclic GMP-AMP synthase/stimulator of IFN genes (cGAS/STING) pathway was determined to relay nuclear DNA damage signals to the dynamic assembly of Hippo-STRIPAK via TANK-binding kinase 1-induced (TBK1-induced) structural stabilization of the suppressor of IKBKE 1- sarcolemma membrane-associated protein (SIKE1-SLMAP) arm. As such, we found that STRIPAK-mediated MST1/2 inactivation increased the DSB repair capacity of cancer cells and endowed these cells with resistance to radio- and chemotherapy and poly(ADP-ribose)polymerase (PARP) inhibition. Importantly, targeting the STRIPAK assembly with each of 3 distinct peptide inhibitors efficiently recovered the kinase activity of MST1/2 to suppress DNA repair and resensitize cancer cells to PARP inhibitors in both animal- and patient-derived tumor models. Overall, our findings not only uncover what we believe to be a previously unrecognized role for STRIPAK in modulating DSB repair but also provide translational implications of cotargeting STRIPAK and PARP for a new type of synthetic lethality anticancer therapy.
10.1172/JCI155468
Varicella-Zoster virus ORF9 is an antagonist of the DNA sensor cGAS.
The EMBO journal
Varicella-Zoster virus (VZV) causes chickenpox and shingles. Although the infection is associated with severe morbidity in some individuals, molecular mechanisms that determine innate immune responses remain poorly defined. We found that the cGAS/STING DNA sensing pathway was required for type I interferon (IFN) induction during VZV infection and that recognition of VZV by cGAS restricted its replication. Screening of a VZV ORF expression library identified the essential VZV tegument protein ORF9 as a cGAS antagonist. Ectopically or virally expressed ORF9 bound to endogenous cGAS leading to reduced type I IFN responses to transfected DNA. Confocal microscopy revealed co-localisation of cGAS and ORF9. ORF9 and cGAS also interacted directly in a cell-free system and phase-separated together with DNA. Furthermore, ORF9 inhibited cGAMP production by cGAS. Taken together, these results reveal the importance of the cGAS/STING DNA sensing pathway for VZV recognition and identify a VZV immune antagonist that partially but directly interferes with DNA sensing via cGAS.
10.15252/embj.2021109217
BMAL1 moonlighting as a gatekeeper for LINE1 repression and cellular senescence in primates.
Nucleic acids research
Aging in humans is intricately linked with alterations in circadian rhythms concomitant with physiological decline and stem cell exhaustion. However, whether the circadian machinery directly regulates stem cell aging, especially in primates, remains poorly understood. In this study, we found that deficiency of BMAL1, the only non-redundant circadian clock component, results in an accelerated aging phenotype in both human and cynomolgus monkey mesenchymal progenitor cells (MPCs). Unexpectedly, this phenotype was mainly attributed to a transcription-independent role of BMAL1 in stabilizing heterochromatin and thus preventing activation of the LINE1-cGAS-STING pathway. In senescent primate MPCs, we observed decreased capacity of BMAL1 to bind to LINE1 and synergistic activation of LINE1 expression. Likewise, in the skin and muscle tissues from the BMAL1-deficient cynomolgus monkey, we observed destabilized heterochromatin and aberrant LINE1 transcription. Altogether, these findings uncovered a noncanonical role of BMAL1 in stabilizing heterochromatin to inactivate LINE1 that drives aging in primate cells.
10.1093/nar/gkac146
Pervasive chromosomal instability and karyotype order in tumour evolution.
Nature
Chromosomal instability in cancer consists of dynamic changes to the number and structure of chromosomes. The resulting diversity in somatic copy number alterations (SCNAs) may provide the variation necessary for tumour evolution. Here we use multi-sample phasing and SCNA analysis of 1,421 samples from 394 tumours across 22 tumour types to show that continuous chromosomal instability results in pervasive SCNA heterogeneity. Parallel evolutionary events, which cause disruption in the same genes (such as BCL9, MCL1, ARNT (also known as HIF1B), TERT and MYC) within separate subclones, were present in 37% of tumours. Most recurrent losses probably occurred before whole-genome doubling, that was found as a clonal event in 49% of tumours. However, loss of heterozygosity at the human leukocyte antigen (HLA) locus and loss of chromosome 8p to a single haploid copy recurred at substantial subclonal frequencies, even in tumours with whole-genome doubling, indicating ongoing karyotype remodelling. Focal amplifications that affected chromosomes 1q21 (which encompasses BCL9, MCL1 and ARNT), 5p15.33 (TERT), 11q13.3 (CCND1), 19q12 (CCNE1) and 8q24.1 (MYC) were frequently subclonal yet appeared to be clonal within single samples. Analysis of an independent series of 1,024 metastatic samples revealed that 13 focal SCNAs were enriched in metastatic samples, including gains in chromosome 8q24.1 (encompassing MYC) in clear cell renal cell carcinoma and chromosome 11q13.3 (encompassing CCND1) in HER2 breast cancer. Chromosomal instability may enable the continuous selection of SCNAs, which are established as ordered events that often occur in parallel, throughout tumour evolution.
10.1038/s41586-020-2698-6
Dysbiosis exacerbates colitis by promoting ubiquitination and accumulation of the innate immune adaptor STING in myeloid cells.
Immunity
Alterations in the cGAS-STING DNA-sensing pathway affect intestinal homeostasis. We sought to delineate the functional role of STING in intestinal inflammation. Increased STING expression was a feature of intestinal inflammation in mice with colitis and in humans afflicted with inflammatory bowel disease. Mice bearing an allele rendering STING constitutively active exhibited spontaneous colitis and dysbiosis, as well as progressive chronic intestinal inflammation and fibrosis. Bone marrow chimera experiments revealed STING accumulation in intestinal macrophages and monocytes as the initial driver of inflammation. Depletion of Gram-negative bacteria prevented STING accumulation in these cells and alleviated intestinal inflammation. STING accumulation occurred at the protein rather than transcript level, suggesting post-translational stabilization. We found that STING was ubiquitinated in myeloid cells, and this K63-linked ubiquitination could be elicited by bacterial products, including cyclic di-GMP. Our findings suggest a positive feedback loop wherein dysbiosis foments the accumulation of STING in intestinal myeloid cells, driving intestinal inflammation.
10.1016/j.immuni.2021.05.008
Autophagic cell death restricts chromosomal instability during replicative crisis.
Nature
Replicative crisis is a senescence-independent process that acts as a final barrier against oncogenic transformation by eliminating pre-cancerous cells with disrupted cell cycle checkpoints. It functions as a potent tumour suppressor and culminates in extensive cell death. Cells rarely evade elimination and evolve towards malignancy, but the mechanisms that underlie cell death in crisis are not well understood. Here we show that macroautophagy has a dominant role in the death of fibroblasts and epithelial cells during crisis. Activation of autophagy is critical for cell death, as its suppression promoted bypass of crisis, continued proliferation and accumulation of genome instability. Telomere dysfunction specifically triggers autophagy, implicating a telomere-driven autophagy pathway that is not induced by intrachromosomal breaks. Telomeric DNA damage generates cytosolic DNA species with fragile nuclear envelopes that undergo spontaneous disruption. The cytosolic chromatin fragments activate the cGAS-STING (cyclic GMP-AMP synthase-stimulator of interferon genes) pathway and engage the autophagy machinery. Our data suggest that autophagy is an integral component of the tumour suppressive crisis mechanism and that loss of autophagy function is required for the initiation of cancer.
10.1038/s41586-019-0885-0
5-Fluorouracil efficacy requires anti-tumor immunity triggered by cancer-cell-intrinsic STING.
The EMBO journal
5-Fluorouracil (5-FU) is a widely used chemotherapeutic drug, but the mechanisms underlying 5-FU efficacy in immunocompetent hosts in vivo remain largely elusive. Through modeling 5-FU response of murine colon and melanoma tumors, we report that effective reduction of tumor burden by 5-FU is dependent on anti-tumor immunity triggered by the activation of cancer-cell-intrinsic STING. While the loss of STING does not induce 5-FU resistance in vitro, effective 5-FU responsiveness in vivo requires cancer-cell-intrinsic cGAS, STING, and subsequent type I interferon (IFN) production, as well as IFN-sensing by bone-marrow-derived cells. In the absence of cancer-cell-intrinsic STING, a much higher dose of 5-FU is needed to reduce tumor burden. 5-FU treatment leads to increased intratumoral T cells, and T-cell depletion significantly reduces the efficacy of 5-FU in vivo. In human colorectal specimens, higher STING expression is associated with better survival and responsiveness to chemotherapy. Our results support a model in which 5-FU triggers cancer-cell-initiated anti-tumor immunity to reduce tumor burden, and our findings could be harnessed to improve therapeutic effectiveness and toxicity for colon and other cancers.
10.15252/embj.2020106065
Combining targeted DNA repair inhibition and immune-oncology approaches for enhanced tumor control.
Molecular cell
Targeted therapy and immunotherapy have revolutionized cancer treatment. However, the ability of cancer to evade the immune system remains a major barrier for effective treatment. Related to this, several targeted DNA-damage response inhibitors (DDRis) are being tested in the clinic and have been shown to potentiate anti-tumor immune responses. Seminal studies have shown that these agents are highly effective in a pan-cancer class of tumors with genetic defects in key DNA repair genes such as BRCA1/2, BRCA-related genes, ataxia telangiectasia mutated (ATM), and others. Here, we review the molecular consequences of targeted DDR inhibition, from tumor cell death to increased engagement of the anti-tumor immune response. Additionally, we discuss mechanistic and clinical rationale for pairing targeted DDRis with immunotherapy for enhanced tumor control. We also review biomarkers for patient selection and promising new immunotherapy approaches poised to form the foundation of next-generation DDRi and immunotherapy combinations.
10.1016/j.molcel.2022.12.031
Innate immune sensing of cytosolic chromatin fragments through cGAS promotes senescence.
Nature cell biology
Cellular senescence is triggered by various distinct stresses and characterized by a permanent cell cycle arrest. Senescent cells secrete a variety of inflammatory factors, collectively referred to as the senescence-associated secretory phenotype (SASP). The mechanism(s) underlying the regulation of the SASP remains incompletely understood. Here we define a role for innate DNA sensing in the regulation of senescence and the SASP. We find that cyclic GMP-AMP synthase (cGAS) recognizes cytosolic chromatin fragments in senescent cells. The activation of cGAS, in turn, triggers the production of SASP factors via stimulator of interferon genes (STING), thereby promoting paracrine senescence. We demonstrate that diverse stimuli of cellular senescence engage the cGAS-STING pathway in vitro and we show cGAS-dependent regulation of senescence following irradiation and oncogene activation in vivo. Our findings provide insights into the mechanisms underlying cellular senescence by establishing the cGAS-STING pathway as a crucial regulator of senescence and the SASP.
10.1038/ncb3586
MYSM1 Represses Innate Immunity and Autoimmunity through Suppressing the cGAS-STING Pathway.
Tian Mingfu,Liu Weiyong,Zhang Qi,Huang Yuqing,Li Wen,Wang Wenbiao,Zhao Peiyi,Huang Shanyu,Song Yunting,Shereen Muhammad Adnan,Qin Mengying,Liu Yingle,Wu Kailang,Wu Jianguo
Cell reports
The immune system is not only required for preventing threats exerted by pathogens but also essential for developing immune tolerance to avoid tissue damage. This study identifies a distinct mechanism by which MYSM1 suppresses innate immunity and autoimmunity. The expression of MYSM1 is induced upon DNA virus infection and by intracellular DNA stimulation. MYSM1 subsequently interacts with STING and cleaves STING K63-linked ubiquitination to suppress cGAS-STING signaling. Notably, Mysm1-deficient mice exhibit a hyper-inflammatory response, acute tissue damage, and high mortality upon virus infection. Moreover, in the PBMCs of patients with systemic lupus erythematosus (SLE), MYSM1 production decreases, while type I interferons and pro-inflammatory cytokine expressions increase. Importantly, MYSM1 treatment represses the production of IFNs and pro-inflammatory cytokines in the PBMCs of SLE patients. Thus, MYSM1 is a critical repressor of innate immunity and autoimmunity and is thus a potential therapeutic agent for infectious, inflammatory, and autoimmune diseases.
10.1016/j.celrep.2020.108297
Deficiency for SAMHD1 activates MDA5 in a cGAS/STING-dependent manner.
The Journal of experimental medicine
Defects in nucleic acid metabolizing enzymes can lead to spontaneous but selective activation of either cGAS/STING or RIG-like receptor (RLR) signaling, causing type I interferon-driven inflammatory diseases. In these pathophysiological conditions, activation of the DNA sensor cGAS and IFN production are linked to spontaneous DNA damage. Physiological, or tonic, IFN signaling on the other hand is essential to functionally prime nucleic acid sensing pathways. Here, we show that low-level chronic DNA damage in mice lacking the Aicardi-Goutières syndrome gene SAMHD1 reduced tumor-free survival when crossed to a p53-deficient, but not to a DNA mismatch repair-deficient background. Increased DNA damage did not result in higher levels of type I interferon. Instead, we found that the chronic interferon response in SAMHD1-deficient mice was driven by the MDA5/MAVS pathway but required functional priming through the cGAS/STING pathway. Our work positions cGAS/STING upstream of tonic IFN signaling in Samhd1-deficient mice and highlights an important role of the pathway in physiological and pathophysiological innate immune priming.
10.1084/jem.20220829
Interfaces between cellular responses to DNA damage and cancer immunotherapy.
Genes & development
The DNA damage response (DDR) fulfils essential roles to preserve genome integrity. Targeting the DDR in tumors has had remarkable success over the last decade, exemplified by the licensing of PARP inhibitors for cancer therapy. Recent studies suggest that the application of DDR inhibitors impacts on cellular innate and adaptive immune responses, wherein key DNA repair factors have roles in limiting chronic inflammatory signaling. Antitumor immunity plays an emerging part in cancer therapy, and extensive efforts have led to the development of immune checkpoint inhibitors overcoming immune suppressive signals in tumors. Here, we review the current understanding of the molecular mechanisms underlying DNA damage-triggered immune responses, including cytosolic DNA sensing via the cGAS/STING pathway. We highlight the implications of DDR components for therapeutic outcomes of immune checkpoint inhibitors or their use as biomarkers. Finally, we discuss the rationale for novel combinations of DDR inhibitors with antagonists of immune checkpoints and current hindrances limiting their broader therapeutic applications.
10.1101/gad.348314.121
Enhanced cGAS-STING-dependent interferon signaling associated with mutations in ATAD3A.
The Journal of experimental medicine
Mitochondrial DNA (mtDNA) has been suggested to drive immune system activation, but the induction of interferon signaling by mtDNA has not been demonstrated in a Mendelian mitochondrial disease. We initially ascertained two patients, one with a purely neurological phenotype and one with features suggestive of systemic sclerosis in a syndromic context, and found them both to demonstrate enhanced interferon-stimulated gene (ISG) expression in blood. We determined each to harbor a previously described de novo dominant-negative heterozygous mutation in ATAD3A, encoding ATPase family AAA domain-containing protein 3A (ATAD3A). We identified five further patients with mutations in ATAD3A and recorded up-regulated ISG expression and interferon α protein in four of them. Knockdown of ATAD3A in THP-1 cells resulted in increased interferon signaling, mediated by cyclic GMP-AMP synthase (cGAS) and stimulator of interferon genes (STING). Enhanced interferon signaling was abrogated in THP-1 cells and patient fibroblasts depleted of mtDNA. Thus, mutations in the mitochondrial membrane protein ATAD3A define a novel type I interferonopathy.
10.1084/jem.20201560
H3.3-G34 mutations impair DNA repair and promote cGAS/STING-mediated immune responses in pediatric high-grade glioma models.
The Journal of clinical investigation
Pediatric high-grade gliomas (pHGGs) are the leading cause of cancer-related deaths in children in the USA. Sixteen percent of hemispheric pediatric and young adult HGGs encode Gly34Arg/Val substitutions in the histone H3.3 (H3.3-G34R/V). The mechanisms by which H3.3-G34R/V drive malignancy and therapeutic resistance in pHGGs remain unknown. Using a syngeneic, genetically engineered mouse model (GEMM) and human pHGG cells encoding H3.3-G34R, we demonstrate that this mutation led to the downregulation of DNA repair pathways. This resulted in enhanced susceptibility to DNA damage and inhibition of the DNA damage response (DDR). We demonstrate that genetic instability resulting from improper DNA repair in G34R-mutant pHGG led to the accumulation of extrachromosomal DNA, which activated the cyclic GMP-AMP synthase/stimulator of IFN genes (cGAS/STING) pathway, inducing the release of immune-stimulatory cytokines. We treated H3.3-G34R pHGG-bearing mice with a combination of radiotherapy (RT) and DNA damage response inhibitors (DDRi) (i.e., the blood-brain barrier-permeable PARP inhibitor pamiparib and the cell-cycle checkpoint CHK1/2 inhibitor AZD7762), and these combinations resulted in long-term survival for approximately 50% of the mice. Moreover, the addition of a STING agonist (diABZl) enhanced the therapeutic efficacy of these treatments. Long-term survivors developed immunological memory, preventing pHGG growth upon rechallenge. These results demonstrate that DDRi and STING agonists in combination with RT induced immune-mediated therapeutic efficacy in G34-mutant pHGG.
10.1172/JCI154229
PARP Inhibitor Efficacy Depends on CD8 T-cell Recruitment via Intratumoral STING Pathway Activation in BRCA-Deficient Models of Triple-Negative Breast Cancer.
Pantelidou Constantia,Sonzogni Olmo,De Oliveria Taveira Mateus,Mehta Anita K,Kothari Aditi,Wang Dan,Visal Tanvi,Li Michelle K,Pinto Jocelin,Castrillon Jessica A,Cheney Emily M,Bouwman Peter,Jonkers Jos,Rottenberg Sven,Guerriero Jennifer L,Wulf Gerburg M,Shapiro Geoffrey I
Cancer discovery
Combinatorial clinical trials of PARP inhibitors with immunotherapies are ongoing, yet the immunomodulatory effects of PARP inhibition have been incompletely studied. Here, we sought to dissect the mechanisms underlying PARP inhibitor-induced changes in the tumor microenvironment of BRCA1-deficient triple-negative breast cancer (TNBC). We demonstrate that the PARP inhibitor olaparib induces CD8 T-cell infiltration and activation , and that CD8 T-cell depletion severely compromises antitumor efficacy. Olaparib-induced T-cell recruitment is mediated through activation of the cGAS/STING pathway in tumor cells with paracrine activation of dendritic cells and is more pronounced in HR-deficient compared with HR-proficient TNBC cells and models. CRISPR-mediated knockout of STING in cancer cells prevents proinflammatory signaling and is sufficient to abolish olaparib-induced T-cell infiltration . These findings elucidate an additional mechanism of action of PARP inhibitors and provide a rationale for combining PARP inhibition with immunotherapies for the treatment of TNBC. SIGNIFICANCE: This work demonstrates cross-talk between PARP inhibition and the tumor microenvironment related to STING/TBK1/IRF3 pathway activation in cancer cells that governs CD8 T-cell recruitment and antitumor efficacy. The data provide insight into the mechanism of action of PARP inhibitors in -associated breast cancer..
10.1158/2159-8290.CD-18-1218
CRIg Macrophages Prevent Gut Microbial DNA-Containing Extracellular Vesicle-Induced Tissue Inflammation and Insulin Resistance.
Luo Zhenlong,Ji Yudong,Gao Hong,Gomes Dos Reis Felipe Castellani,Bandyopadhyay Gautam,Jin Zhongmou,Ly Crystal,Chang Ya-Ju,Zhang Dinghong,Kumar Deepak,Ying Wei
Gastroenterology
BACKGROUND & AIMS:Liver CRIg (complement receptor of the immunoglobulin superfamily) macrophages play a critical role in filtering bacteria and their products from circulation. Translocation of microbiota-derived products from an impaired gut barrier contributes to the development of obesity-associated tissue inflammation and insulin resistance. However, the critical role of CRIg macrophages in clearing microbiota-derived products from the bloodstream in the context of obesity is largely unknown. METHODS:We performed studies with CRIg, C3, cGAS, and their wild-type littermate mice. The CRIg macrophage population and bacterial DNA abundance were examined in both mouse and human liver by either flow cytometric or immunohistochemistry analysis. Gut microbial DNA-containing extracellular vesicles (mEVs) were adoptively transferred into CRIg, C3, or wild-type mice, and tissue inflammation and insulin sensitivity were measured in these mice. After coculture with gut mEVs, cellular insulin responses and cGAS/STING-mediated inflammatory responses were evaluated. RESULTS:Gut mEVs can reach metabolic tissues in obesity. Liver CRIg macrophages efficiently clear mEVs from the bloodstream through a C3-dependent opsonization mechanism, whereas obesity elicits a marked reduction in the CRIg macrophage population. Depletion of CRIg cells results in the spread of mEVs into distant metabolic tissues, subsequently exacerbating tissue inflammation and metabolic disorders. Additionally, in vitro treatment of obese mEVs directly triggers inflammation and insulin resistance of insulin target cells. Depletion of microbial DNA blunts the pathogenic effects of intestinal EVs. Furthermore, the cGAS/STING pathway is crucial for microbial DNA-mediated inflammatory responses. CONCLUSIONS:Deficiency of CRIg macrophages and leakage of intestinal EVs containing microbial DNA contribute to the development of obesity-associated tissue inflammation and metabolic diseases.
10.1053/j.gastro.2020.10.042
Apoptosis-derived membrane vesicles drive the cGAS-STING pathway and enhance type I IFN production in systemic lupus erythematosus.
Annals of the rheumatic diseases
OBJECTIVE:Despite the importance of type I interferon (IFN-I) in systemic lupus erythematosus (SLE) pathogenesis, the mechanisms of IFN-I production have not been fully elucidated. Recognition of nucleic acids by DNA sensors induces IFN-I and interferon-stimulated genes (ISGs), but the involvement of cyclic guanosine monophosphate (GMP)-AMP synthase (cGAS) and stimulator of interferon genes (STING) in SLE remains unclear. We studied the role of the cGAS-STING pathway in the IFN-I-producing cascade driven by SLE serum. METHODS:We collected sera from patients with SLE (n=64), patients with other autoimmune diseases (n=31) and healthy controls (n=35), and assayed them using a cell-based reporter system that enables highly sensitive detection of IFN-I and ISG-inducing activity. We used Toll-like receptor-specific reporter cells and reporter cells harbouring knockouts of cGAS, STING and IFNAR2 to evaluate signalling pathway-dependent ISG induction. RESULTS:IFN-I bioactivity and ISG-inducing activities of serum were higher in patients with SLE than in patients with other autoimmune diseases or healthy controls. ISG-inducing activity of SLE sera was significantly reduced in STING-knockout reporter cells, and STING-dependent ISG-inducing activity correlated with disease activity. Double-stranded DNA levels were elevated in SLE. Apoptosis-derived membrane vesicles (AdMVs) from SLE sera had high ISG-inducing activity, which was diminished in cGAS-knockout or STING-knockout reporter cells. CONCLUSIONS:AdMVs in SLE serum induce IFN-I production through activation of the cGAS-STING pathway. Thus, blockade of the cGAS-STING axis represents a promising therapeutic target for SLE. Moreover, our cell-based reporter system may be useful for stratifying patients with SLE with high ISG-inducing activity.
10.1136/annrheumdis-2018-212988
Induced phase separation of mutant NF2 imprisons the cGAS-STING machinery to abrogate antitumor immunity.
Molecular cell
Missense mutations of the tumor suppressor Neurofibromin 2 (NF2/Merlin/schwannomin) result in sporadic to frequent occurrences of tumorigenesis in multiple organs. However, the underlying pathogenicity of NF2-related tumorigenesis remains mostly unknown. Here we found that NF2 facilitated innate immunity by regulating YAP/TAZ-mediated TBK1 inhibition. Unexpectedly, patient-derived individual mutations in the FERM domain of NF2 (NF2m) converted NF2 into a potent suppressor of cGAS-STING signaling. Mechanistically, NF2m gained extreme associations with IRF3 and TBK1 and, upon innate nucleic acid sensing, was directly induced by the activated IRF3 to form cellular condensates, which contained the PP2A complex, to eliminate TBK1 activation. Accordingly, NF2m robustly suppressed STING-initiated antitumor immunity in cancer cell-autonomous and -nonautonomous murine models, and NF2m-IRF3 condensates were evident in human vestibular schwannomas. Our study reports phase separation-mediated quiescence of cGAS-STING signaling by a mutant tumor suppressor and reveals gain-of-function pathogenesis for NF2-related tumors by regulating antitumor immunity.
10.1016/j.molcel.2021.07.040
ATG16L1 orchestrates interleukin-22 signaling in the intestinal epithelium via cGAS-STING.
The Journal of experimental medicine
A coding variant of the inflammatory bowel disease (IBD) risk gene has been associated with defective autophagy and deregulation of endoplasmic reticulum (ER) function. IL-22 is a barrier protective cytokine by inducing regeneration and antimicrobial responses in the intestinal mucosa. We show that ATG16L1 critically orchestrates IL-22 signaling in the intestinal epithelium. IL-22 stimulation physiologically leads to transient ER stress and subsequent activation of STING-dependent type I interferon (IFN-I) signaling, which is augmented in intestinal organoids. IFN-I signals amplify epithelial TNF production downstream of IL-22 and contribute to necroptotic cell death. In vivo IL-22 treatment in and / mice potentiates endogenous ileal inflammation and causes widespread necroptotic epithelial cell death. Therapeutic blockade of IFN-I signaling ameliorates IL-22-induced ileal inflammation in mice. Our data demonstrate an unexpected role of in coordinating the outcome of IL-22 signaling in the intestinal epithelium.
10.1084/jem.20171029
The interplay between BAX and BAK tunes apoptotic pore growth to control mitochondrial-DNA-mediated inflammation.
Molecular cell
BAX and BAK are key apoptosis regulators that mediate the decisive step of mitochondrial outer membrane permeabilization. However, the mechanism by which they assemble the apoptotic pore remains obscure. Here, we report that BAX and BAK present distinct oligomerization properties, with BAK organizing into smaller structures with faster kinetics than BAX. BAK recruits and accelerates BAX assembly into oligomers that continue to grow during apoptosis. As a result, BAX and BAK regulate each other as they co-assemble into the same apoptotic pores, which we visualize. The relative availability of BAX and BAK molecules thereby determines the growth rate of the apoptotic pore and the relative kinetics by which mitochondrial contents, most notably mtDNA, are released. This feature of BAX and BAK results in distinct activation kinetics of the cGAS/STING pathway with implications for mtDNA-mediated paracrine inflammatory signaling.
10.1016/j.molcel.2022.01.008
LL-37 transports immunoreactive cGAMP to activate STING signaling and enhance interferon-mediated host antiviral immunity.
Cell reports
Cyclic 2',3'-GMP-AMP (cGAMP) binds to and activates stimulator of interferon genes (STING), which then induces interferons to drive immune responses against tumors and pathogens. Exogenous cGAMP produced by infected and malignant cells and synthetic cGAMP used in immunotherapy must traverse the cell membrane to activate STING in target cells. However, as an anionic hydrophilic molecule, cGAMP is not inherently membrane permeable. Here, we show that LL-37, a human host defense peptide, can function as a transporter of cGAMP. LL-37 specifically binds cGAMP and efficiently delivers cGAMP into target cells. cGAMP transferred by LL-37 activates robust interferon responses and host antiviral immunity in a STING-dependent manner. Furthermore, we report that LL-37 inducers vitamin D and sodium butyrate promote host immunity by enhancing endogenous LL-37 expression and its mediated cGAMP immune response. Collectively, our data uncover an essential role of LL-37 in innate immune activation and suggest new strategies for immunotherapy.
10.1016/j.celrep.2022.110880
Golgi apparatus-synthesized sulfated glycosaminoglycans mediate polymerization and activation of the cGAMP sensor STING.
Fang Run,Jiang Qifei,Guan Yukun,Gao Pengfei,Zhang Rui,Zhao Zhen,Jiang Zhengfan
Immunity
Activation of the cyclic guanosine monophosphate (GMP)-AMP (cGAMP) sensor STING requires its translocation from the endoplasmic reticulum to the Golgi apparatus and subsequent polymerization. Using a genome-wide CRISPR-Cas9 screen to define factors critical for STING activation in cells, we identified proteins critical for biosynthesis of sulfated glycosaminoglycans (sGAGs) in the Golgi apparatus. Binding of sGAGs promoted STING polymerization through luminal, positively charged, polar residues. These residues are evolutionarily conserved, and selective mutation of specific residues inhibited STING activation. Purified or chemically synthesized sGAGs induced STING polymerization and activation of the kinase TBK1. The chain length and O-linked sulfation of sGAGs directly affected the level of STING polymerization and, therefore, its activation. Reducing the expression of Slc35b2 to inhibit GAG sulfation in mice impaired responses to vaccinia virus infection. Thus, sGAGs in the Golgi apparatus are necessary and sufficient to drive STING polymerization, providing a mechanistic understanding of the requirement for endoplasmic reticulum (ER)-to-Golgi apparatus translocation for STING activation.
10.1016/j.immuni.2021.03.011
Driving axon regeneration by orchestrating neuronal and non-neuronal innate immune responses via the IFNγ-cGAS-STING axis.
Neuron
The coordination mechanism of neural innate immune responses for axon regeneration is not well understood. Here, we showed that neuronal deletion of protein tyrosine phosphatase non-receptor type 2 sustains the IFNγ-STAT1 activity in retinal ganglion cells (RGCs) to promote axon regeneration after injury, independent of mTOR or STAT3. DNA-damage-induced cGAMP synthase (cGAS)-stimulator of interferon genes (STINGs) activation is the functional downstream signaling. Directly activating neuronal STING by cGAMP promotes axon regeneration. In contrast to the central axons, IFNγ is locally translated in the injured peripheral axons and upregulates cGAS expression in Schwann cells and infiltrating blood cells to produce cGAMP, which promotes spontaneous axon regeneration as an immunotransmitter. Our study demonstrates that injured peripheral nervous system (PNS) axons can direct the environmental innate immune response for self-repair and that the neural antiviral mechanism can be harnessed to promote axon regeneration in the central nervous system (CNS).
10.1016/j.neuron.2022.10.028
Human DNA-PK activates a STING-independent DNA sensing pathway.
Burleigh Katelyn,Maltbaek Joanna H,Cambier Stephanie,Green Richard,Gale Michael,James Richard C,Stetson Daniel B
Science immunology
Detection of intracellular DNA by the cGAS-STING pathway activates a type I interferon-mediated innate immune response that protects from virus infection. Whether there are additional DNA sensing pathways, and how such pathways might function, remains controversial. We show here that humans-but not laboratory mice-have a second, potent, STING-independent DNA sensing pathway (SIDSP). We identify human DNA-dependent protein kinase (DNA-PK) as the sensor of this pathway and demonstrate that DNA-PK activity drives a robust and broad antiviral response. We show that the E1A oncoprotein of human adenovirus 5 and the ICP0 protein of herpes simplex virus 1 block this response. We found heat shock protein HSPA8/HSC70 as a target for inducible phosphorylation in the DNA-PK antiviral pathway. Last, we demonstrate that DNA damage and detection of foreign DNA trigger distinct modalities of DNA-PK activity. These findings reveal the existence, sensor, a specific downstream target, and viral antagonists of a SIDSP in human cells.
10.1126/sciimmunol.aba4219
Melatonin inhibits cytosolic mitochondrial DNA-induced neuroinflammatory signaling in accelerated aging and neurodegeneration.
Jauhari Abhishek,Baranov Sergei V,Suofu Yalikun,Kim Jinho,Singh Tanisha,Yablonska Svitlana,Li Fang,Wang Xiaomin,Oberly Patrick,Minnigh M Beth,Poloyac Samuel M,Carlisle Diane L,Friedlander Robert M
The Journal of clinical investigation
Chronic inflammation is a pathologic feature of neurodegeneration and aging; however, the mechanism regulating this process is not understood. Melatonin, an endogenous free radical scavenger synthesized by neuronal mitochondria, decreases with aging and neurodegeneration. We proposed that insufficient melatonin levels impair mitochondrial homeostasis, resulting in mitochondrial DNA (mtDNA) release and activation of cytosolic DNA-mediated inflammatory response in neurons. We found increased mitochondrial oxidative stress and decreased mitochondrial membrane potential, with higher mtDNA release in brain and primary cerebro-cortical neurons of melatonin-deficient aralkylamine N-acetyltransferase (AANAT) knockout mice. Cytosolic mtDNA activated the cGAS/STING/IRF3 pathway, stimulating inflammatory cytokine generation. We found that Huntington's disease mice had increased mtDNA release, cGAS activation, and inflammation, all inhibited by exogenous melatonin. Thus, we demonstrated that cytosolic mtDNA activated the inflammatory response in aging and neurodegeneration, a process modulated by melatonin. Furthermore, our data suggest that AANAT knockout mice are a model of accelerated aging.
10.1172/JCI135026
Mitochondrial inner membrane permeabilisation enables mtDNA release during apoptosis.
The EMBO journal
During apoptosis, pro-apoptotic BAX and BAK are activated, causing mitochondrial outer membrane permeabilisation (MOMP), caspase activation and cell death. However, even in the absence of caspase activity, cells usually die following MOMP Such caspase-independent cell death is accompanied by inflammation that requires mitochondrial DNA (mtDNA) activation of cGAS-STING signalling. Because the mitochondrial inner membrane is thought to remain intact during apoptosis, we sought to address how matrix mtDNA could activate the cytosolic cGAS-STING signalling pathway. Using super-resolution imaging, we show that mtDNA is efficiently released from mitochondria following MOMP In a temporal manner, we find that following MOMP, BAX/BAK-mediated mitochondrial outer membrane pores gradually widen. This allows extrusion of the mitochondrial inner membrane into the cytosol whereupon it permeablises allowing mtDNA release. Our data demonstrate that mitochondrial inner membrane permeabilisation (MIMP) can occur during cell death following BAX/BAK-dependent MOMP Importantly, by enabling the cytosolic release of mtDNA, inner membrane permeabilisation underpins the immunogenic effects of caspase-independent cell death.
10.15252/embj.201899238
cGAS/STING axis mediates a topoisomerase II inhibitor-induced tumor immunogenicity.
Wang Zining,Chen Jiemin,Hu Jie,Zhang Hongxia,Xu Feifei,He Wenzhuo,Wang Xiaojuan,Li Mengyun,Lu Wenhua,Zeng Gucheng,Zhou Penghui,Huang Peng,Chen Siyu,Li Wende,Xia Liang-Ping,Xia Xiaojun
The Journal of clinical investigation
Checkpoint blockade antibodies have been approved as immunotherapy for multiple types of cancer, but the response rate and efficacy are still limited. There are few immunogenic cell death (ICD)-inducing drugs available that can kill cancer cells, enhance tumor immunogenicity, increase the in vivo immune infiltration, and thereby boosting a tumor response to immunotherapy. So far, the ICD markers have been identified as the few immuno-stimulating characteristics of dead cells, but whether the presence of such ICD markers on tumor cells translates into enhanced antitumor immunity in vivo is still investigational. To identify anticancer drugs that could induce tumor cell death and boost T cell response, we performed drug screenings based on both an ICD reporter assay and T cell activation assay. We identified that teniposide, a DNA topoisomerase II inhibitor, could induce high mobility group box 1 (HMGB1) release and type I interferon signaling in tumor cells, and teniposide-treated tumor cells could activate antitumor T cell response both in vitro and in vivo. Mechanistically, teniposide induced tumor cell DNA damage and innate immune signaling including NF-κB activation and STING-dependent type I interferon signaling, both of which contribute to the activation of dendritic cells and subsequent T cells. Furthermore, teniposide potentiated the antitumor efficacy of anti-PD1 on multiple types of mouse tumor models. Our findings showed that teniposide could trigger tumor immunogenicity, and enabled a potential chemo-immunotherapeutic approach to potentiate the therapeutic efficacy of anti-PD1 immunotherapy.
10.1172/JCI127471
Mitochondrial cristae architecture protects against mtDNA release and inflammation.
Cell reports
Mitochondrial damage causes mitochondrial DNA (mtDNA) release to activate the type I interferon (IFN-I) response via the cGAS-STING pathway. mtDNA-induced inflammation promotes autoimmune- and aging-related degenerative disorders. However, the global picture of inflammation-inducing mitochondrial damages remains obscure. Here, we have performed a mitochondria-targeted CRISPR knockout screen for regulators of the IFN-I response. Strikingly, our screen reveals dozens of hits enriched with key regulators of cristae architecture, including phospholipid cardiolipin and protein complexes such as OPA1, mitochondrial contact site and cristae organization (MICOS), sorting and assembly machinery (SAM), mitochondrial intermembrane space bridging (MIB), prohibitin (PHB), and the FF-ATP synthase. Disrupting these cristae organizers consistently induces mtDNA release and the STING-dependent IFN-I response. Furthermore, knocking out MTX2, a subunit of the SAM complex whose null mutations cause progeria in humans, induces a robust STING-dependent IFN-I response in mouse liver. Taken together, beyond revealing the central role of cristae architecture to prevent mtDNA release and inflammation, our results mechanistically link mitochondrial cristae disorganization and inflammation, two emerging hallmarks of aging and aging-related degenerative diseases.
10.1016/j.celrep.2022.111774
PARP inhibition enhances tumor cell-intrinsic immunity in ERCC1-deficient non-small cell lung cancer.
The Journal of clinical investigation
The cyclic GMP-AMP synthase/stimulator of IFN genes (cGAS/STING) pathway detects cytosolic DNA to activate innate immune responses. Poly(ADP-ribose) polymerase inhibitors (PARPi) selectively target cancer cells with DNA repair deficiencies such as those caused by BRCA1 mutations or ERCC1 defects. Using isogenic cell lines and patient-derived samples, we showed that ERCC1-defective non-small cell lung cancer (NSCLC) cells exhibit an enhanced type I IFN transcriptomic signature and that low ERCC1 expression correlates with increased lymphocytic infiltration. We demonstrated that clinical PARPi, including olaparib and rucaparib, have cell-autonomous immunomodulatory properties in ERCC1-defective NSCLC and BRCA1-defective triple-negative breast cancer (TNBC) cells. Mechanistically, PARPi generated cytoplasmic chromatin fragments with characteristics of micronuclei; these were found to activate cGAS/STING, downstream type I IFN signaling, and CCL5 secretion. Importantly, these effects were suppressed in PARP1-null TNBC cells, suggesting that this phenotype resulted from an on-target effect of PARPi on PARP1. PARPi also potentiated IFN-γ-induced PD-L1 expression in NSCLC cell lines and in fresh patient tumor cells; this effect was enhanced in ERCC1-deficient contexts. Our data provide a preclinical rationale for using PARPi as immunomodulatory agents in appropriately molecularly selected populations.
10.1172/JCI123319
Targeting KDM4A epigenetically activates tumor-cell-intrinsic immunity by inducing DNA replication stress.
Molecular cell
Developing strategies to activate tumor-cell-intrinsic immune response is critical for improving tumor immunotherapy by exploiting tumor vulnerability. KDM4A, as a histone H3 lysine 9 trimethylation (H3K9me3) demethylase, has been found to play a critical role in squamous cell carcinoma (SCC) growth and metastasis. Here we report that KDM4A inhibition promoted heterochromatin compaction and induced DNA replication stress, which elicited antitumor immunity in SCC. Mechanistically, KDM4A inhibition promoted the formation of liquid-like HP1γ puncta on heterochromatin and stall DNA replication, which activated tumor-cell-intrinsic cGAS-STING signaling through replication-stress-induced cytosolic DNA accumulation. Moreover, KDM4A inhibition collaborated with PD1 blockade to inhibit SCC growth and metastasis by recruiting and activating CD8 T cells. In vivo lineage tracing demonstrated that KDM4A inhibition plus PD1 blockade efficiently eliminated cancer stem cells. Altogether, our results demonstrate that targeting KDM4A can activate anti-tumor immunity and enable PD1 blockade immunotherapy by aggravating replication stress in SCC cells.
10.1016/j.molcel.2021.02.038
The Race between Host Antiviral Innate Immunity and the Immune Evasion Strategies of Herpes Simplex Virus 1.
Microbiology and molecular biology reviews : MMBR
Herpes simplex virus 1 (HSV-1) is very successful in establishing acute and latent infections in humans by counteracting host antiviral innate immune responses. HSV-1 has evolved various strategies to evade host antiviral innate immunity and some cellular survival-associated pathways. Since there is still no vaccine available for HSV-1, a continuous update of information regarding the interaction between HSV-1 infection and the host antiviral innate immunity will provide novel insights to develop new therapeutic strategies for HSV-1 infection and its associated diseases. Here, we update recent studies about how HSV-1 evades the host antiviral innate immunity, specifically how HSV-1 proteins directly or indirectly target the adaptors in the antiviral innate immunity signaling pathways to downregulate the signal transduction. Additionally, some classical intracellular stress responses, which also play important roles in defense of viral invasion, will be discussed here. With a comprehensive review of evasion mechanisms of antiviral innate immunity by HSV-1, we will be able to develop potential new targets for therapies and a possible vaccine against HSV-1 infections.
10.1128/MMBR.00099-20
The inhibitory receptor TIM-3 limits activation of the cGAS-STING pathway in intra-tumoral dendritic cells by suppressing extracellular DNA uptake.
Immunity
Blockade of the inhibitory receptor TIM-3 shows efficacy in cancer immunotherapy clinical trials. TIM-3 inhibits production of the chemokine CXCL9 by XCR1 classical dendritic cells (cDC1), thereby limiting antitumor immunity in mammary carcinomas. We found that increased CXCL9 expression by splenic cDC1s upon TIM-3 blockade required type I interferons and extracellular DNA. Chemokine expression as well as combinatorial efficacy of TIM-3 blockade and paclitaxel chemotherapy were impaired by deletion of Cgas and Sting. TIM-3 blockade increased uptake of extracellular DNA by cDC1 through an endocytic process that resulted in cytoplasmic localization. DNA uptake and efficacy of TIM-3 blockade required DNA binding by HMGB1, while galectin-9-induced cell surface clustering of TIM-3 was necessary for its suppressive function. Human peripheral blood cDC1s also took up extracellular DNA upon TIM-3 blockade. Thus, TIM-3 regulates endocytosis of extracellular DNA and activation of the cytoplasmic DNA sensing cGAS-STING pathway in cDC1s, with implications for understanding the mechanisms underlying TIM-3 immunotherapy.
10.1016/j.immuni.2021.04.019
HER2 recruits AKT1 to disrupt STING signalling and suppress antiviral defence and antitumour immunity.
Wu Shiying,Zhang Qian,Zhang Fei,Meng Fansen,Liu Shengduo,Zhou Ruyuan,Wu Qingzhe,Li Xinran,Shen Li,Huang Jun,Qin Jun,Ouyang Songying,Xia Zongping,Song Hai,Feng Xin-Hua,Zou Jian,Xu Pinglong
Nature cell biology
Sensing cytosolic DNA through the cGAS-STING pathway constitutes a widespread innate immune mechanism to monitor cellular damage and microbial invasion. Evading this surveillance is crucial in tumorigenesis, but the process remains largely unexplored. Here, we show that the receptor tyrosine kinase HER2 (also known as ErbB-2 or Neu) potently inhibits cGAS-STING signalling and prevents cancer cells from producing cytokines, entering senescence and undergoing apoptosis. HER2, but not EGFR, associates strongly with STING and recruits AKT1 (also known as PKB) to directly phosphorylate TBK1, which prevents the TBK1-STING association and TBK1 K63-linked ubiquitination, thus attenuating STING signalling. Unexpectedly, we observed that DNA sensing robustly activates the HER2-AKT1 axis, resulting in negative feedback. Accordingly, genetic or pharmacological targeting of the HER2-AKT1 cascade augments damage-induced cellular senescence and apoptosis, and enhances STING-mediated antiviral and antitumour immunity. Thus, our findings reveal a critical function of the oncogenic pathway in innate immune regulation and unexpectedly connect HER2-AKT1 signalling to the surveillance of cellular damage and antitumour immunity.
10.1038/s41556-019-0352-z
Cyclic GMP-AMP signalling protects bacteria against viral infection.
Cohen Daniel,Melamed Sarah,Millman Adi,Shulman Gabriela,Oppenheimer-Shaanan Yaara,Kacen Assaf,Doron Shany,Amitai Gil,Sorek Rotem
Nature
The cyclic GMP-AMP synthase (cGAS)-STING pathway is a central component of the cell-autonomous innate immune system in animals. The cGAS protein is a sensor of cytosolic viral DNA and, upon sensing DNA, it produces a cyclic GMP-AMP (cGAMP) signalling molecule that binds to the STING protein and activates the immune response. The production of cGAMP has also been detected in bacteria, and has been shown, in Vibrio cholerae, to activate a phospholipase that degrades the inner bacterial membrane. However, the biological role of cGAMP signalling in bacteria remains unknown. Here we show that cGAMP signalling is part of an antiphage defence system that is common in bacteria. This system is composed of a four-gene operon that encodes the bacterial cGAS and the associated phospholipase, as well as two enzymes with the eukaryotic-like domains E1, E2 and JAB. We show that this operon confers resistance against a wide variety of phages. Phage infection triggers the production of cGAMP, which-in turn-activates the phospholipase, leading to a loss of membrane integrity and to cell death before completion of phage reproduction. Diverged versions of this system appear in more than 10% of prokaryotic genomes, and we show that variants with effectors other than phospholipase also protect against phage infection. Our results suggest that the eukaryotic cGAS-STING antiviral pathway has ancient evolutionary roots that stem from microbial defences against phages.
10.1038/s41586-019-1605-5
Viral tegument proteins restrict cGAS-DNA phase separation to mediate immune evasion.
Xu Guangjun,Liu Chong,Zhou Sheng,Li Quanjin,Feng Yun,Sun Panpan,Feng Han,Gao Yina,Zhu Jingpeng,Luo Xiu,Zhan Qi,Liu Songqing,Zhu Shu,Deng Hongyu,Li Dong,Gao Pu
Molecular cell
DNA-induced liquid-liquid phase separation of cyclic GMP-AMP synthase (cGAS) triggers a potent response to detect pathogen infection and promote innate immune signaling. Whether and how pathogens manipulate cGAS-DNA condensation to mediate immune evasion is unknown. We report the identification of a structurally related viral tegument protein family, represented by ORF52 and VP22 from gamma- and alpha-herpesvirinae, respectively, that employs a conserved mechanism to restrict cGAS-DNA phase separation. ORF52/VP22 proteins accumulate into, and effectively disrupt, the pre-formed cGAS-DNA condensation both in vitro and in cells. The inhibition process is dependent on DNA-induced liquid-liquid phase separation of the viral protein rather than a direct interaction with cGAS. Moreover, highly abundant ORF52 proteins carried within viral particles are able to target cGAS-DNA phase separation in early infection stage. Our results define ORF52/VP22-type tegument proteins as a family of inhibitors targeting cGAS-DNA phase separation and demonstrate a mechanism for how viruses overcome innate immunity.
10.1016/j.molcel.2021.05.002
STING cyclic dinucleotide sensing originated in bacteria.
Morehouse Benjamin R,Govande Apurva A,Millman Adi,Keszei Alexander F A,Lowey Brianna,Ofir Gal,Shao Sichen,Sorek Rotem,Kranzusch Philip J
Nature
Stimulator of interferon genes (STING) is a receptor in human cells that senses foreign cyclic dinucleotides that are released during bacterial infection and in endogenous cyclic GMP-AMP signalling during viral infection and anti-tumour immunity. STING shares no structural homology with other known signalling proteins, which has limited attempts at functional analysis and prevented explanation of the origin of cyclic dinucleotide signalling in mammalian innate immunity. Here we reveal functional STING homologues encoded within prokaryotic defence islands, as well as a conserved mechanism of signal activation. Crystal structures of bacterial STING define a minimal homodimeric scaffold that selectively responds to cyclic di-GMP synthesized by a neighbouring cGAS/DncV-like nucleotidyltransferase (CD-NTase) enzyme. Bacterial STING domains couple the recognition of cyclic dinucleotides with the formation of protein filaments to drive oligomerization of TIR effector domains and rapid NAD cleavage. We reconstruct the evolutionary events that followed the acquisition of STING into metazoan innate immunity, and determine the structure of a full-length TIR-STING fusion from the Pacific oyster Crassostrea gigas. Comparative structural analysis demonstrates how metazoan-specific additions to the core STING scaffold enabled a switch from direct effector function to regulation of antiviral transcription. Together, our results explain the mechanism of STING-dependent signalling and reveal the conservation of a functional cGAS-STING pathway in prokaryotic defence against bacteriophages.
10.1038/s41586-020-2719-5
Manganese-Based Nanoactivator Optimizes Cancer Immunotherapy Enhancing Innate Immunity.
Hou Lin,Tian Chunyu,Yan Yingshan,Zhang Lewen,Zhang Huijuan,Zhang Zhenzhong
ACS nano
Cyclic GMP-AMP synthase (cGAS) and stimulator of interferon genes (STING) are essential components of the innate immune sensors to cytosolic DNA and elicit type I interferon (IFN). Recent studies have revealed that manganese (Mn) can enhance cGAS and STING activation to viral infection. However, the role of Mn in antitumor immunity has not been explored. Here, we designed a nanoactivator, which can induce the presence of DNA in cytoplasm and simultaneously elevate Mn accumulation within tumor cells. In detail, amorphous porous manganese phosphate (APMP) NPs that are highly responsive to tumor microenvironment were employed to construct doxorubicin (DOX)-loaded and phospholipid (PL)-coated hybrid nanoparticles (PL/APMP-DOX NPs). PL/APMP-DOX NPs were stably maintained during systemic circulation, but triggered to release DOX for inducing DNA damage and Mn to augment cGAS/STING activity. We found that PL/APMP-DOX NPs with superior tumor-targeting capacity boosted dendritic cell maturation and increased cytotoxic T lymphocyte infiltration as well as natural killer cell recruitment into the tumor site. Furthermore, the NPs increased production of type I IFN and secretion of pro-inflammatory cytokines (for example, TNF-α and IL-6). Consequently, PL/APMP-DOX NPs exhibited excellent antitumor efficacy and prolonged the lifespan of the tumor-bearing mice. Collectively, we developed a PL-decorated Mn-based hybrid nanoactivator to intensify immune activation and that might provide therapeutic potential for caner immunotherapy.
10.1021/acsnano.9b06111
Stalled replication fork protection limits cGAS-STING and P-body-dependent innate immune signalling.
Nature cell biology
Protection of stalled replication forks is crucial for cells to respond to replication stress and maintain genome stability. Genome instability and replication stress have been linked to immune activation. Here we show that Abro1 and FANCD2 protect replication forks, which is linked with the restriction of innate immune responses. We reveal that stalled replication fork degradation induced by Abro1 or FANCD2 deficiency leads to accumulation of cytosolic single-stranded DNA and activation of a cGAS-STING-dependent innate immune response that is dependent on DNA2 nuclease. We further show that the increased cytosolic single-stranded DNA contains ribosomal DNA that can bind to cGAS. In addition, Abro1 and FANCD2 limit the formation of replication stress-induced P-bodies, and P-bodies are capable of modulating activation of the innate immune response after prolonged replication stress. Our study demonstrates a connection between replication stress and activation of the innate immune response that may be targeted for therapeutic purpose.
10.1038/s41556-022-00950-8
WEE1 inhibition induces anti-tumor immunity by activating ERV and the dsRNA pathway.
The Journal of experimental medicine
Targeted therapies represent attractive combination partners with immune checkpoint blockade (ICB) to increase the population of patients who benefit or to interdict the emergence of resistance. We demonstrate that targeting WEE1 up-regulates immune signaling through the double-stranded RNA (dsRNA) viral defense pathway with subsequent responsiveness to immune checkpoint blockade even in cGAS/STING-deficient tumors, which is a typical phenotype across multiple cancer types. WEE1 inhibition increases endogenous retroviral elements (ERVs) expression by relieving SETDB1/H3K9me3 repression through down-regulating FOXM1. ERVs trigger dsRNA stress and interferon response, increasing recruitment of anti-tumor T cells with concurrent PD-L1 elevation in multiple tumor models. Furthermore, combining WEE1 inhibition and PD-L1 blockade induced striking tumor regression in a CD8+ T cell-dependent manner. A WEE1 inhibition-induced viral defense signature provides a potentially informative biomarker for patient selection for combination therapy with WEE1 and ICB. WEE1 inhibition stimulates anti-tumor immunity and enhances sensitivity to ICB, providing a rationale for the combination of WEE1 inhibitors and ICB in clinical trials.
10.1084/jem.20210789
ZBP1-MLKL necroptotic signaling potentiates radiation-induced antitumor immunity via intratumoral STING pathway activation.
Yang Yuanqin,Wu Meng,Cao Dongqing,Yang Chao,Jin Jingsi,Wu Lingling,Hong Xiaochuan,Li Wenwen,Lu Lu,Li Jinmei,Wang Xinran,Meng Xiangjiao,Zhang Zhen,Cheng Jinke,Ye Youqiong,Xiao Hui,Yu Jinming,Deng Liufu
Science advances
Necroptosis, a form of regulated necrosis, participates in tumor development and dying cell immunogenicity. However, it remains unclear how tumor cell–intrinsic necroptotic signaling contributes to radiation-induced antitumor immunity. Here, we found that the ZBP1-MLKL necroptotic cascade in irradiated tumor cells was essential for antitumor immunity. ZBP1-dependent activation of MLKL potentiated type I interferon responses following tumor cell irradiation. Mechanistically, the ZBP1-MLKL necroptotic cascade induced cytoplasmic DNA accumulation in irradiated tumor cells and, in turn, autonomously activated cGAS-STING signaling, thus creating a positive feedback loop between those two pathways to drive persistent inflammation. Accordingly, ablation of caspase-8 enhanced STING pathway activation and the antitumor effects of radiation by activating MLKL. These findings reveal that ZBP1-MLKL necroptosis signaling maximized radiation-induced antitumor immunity through mutual interaction with the tumor cell–intrinsic STING pathway. This study provides insight into how radiotherapy bridges tumor cell damage to antitumor immune responses and an alternative strategy to improve radiotherapy.
10.1126/sciadv.abf6290
BAK/BAX macropores facilitate mitochondrial herniation and mtDNA efflux during apoptosis.
McArthur Kate,Whitehead Lachlan W,Heddleston John M,Li Lucy,Padman Benjamin S,Oorschot Viola,Geoghegan Niall D,Chappaz Stephane,Davidson Sophia,San Chin Hui,Lane Rachael M,Dramicanin Marija,Saunders Tahnee L,Sugiana Canny,Lessene Romina,Osellame Laura D,Chew Teng-Leong,Dewson Grant,Lazarou Michael,Ramm Georg,Lessene Guillaume,Ryan Michael T,Rogers Kelly L,van Delft Mark F,Kile Benjamin T
Science (New York, N.Y.)
Mitochondrial apoptosis is mediated by BAK and BAX, two proteins that induce mitochondrial outer membrane permeabilization, leading to cytochrome c release and activation of apoptotic caspases. In the absence of active caspases, mitochondrial DNA (mtDNA) triggers the innate immune cGAS/STING pathway, causing dying cells to secrete type I interferon. How cGAS gains access to mtDNA remains unclear. We used live-cell lattice light-sheet microscopy to examine the mitochondrial network in mouse embryonic fibroblasts. We found that after BAK/BAX activation and cytochrome c loss, the mitochondrial network broke down and large BAK/BAX pores appeared in the outer membrane. These BAK/BAX macropores allowed the inner mitochondrial membrane to herniate into the cytosol, carrying with it mitochondrial matrix components, including the mitochondrial genome. Apoptotic caspases did not prevent herniation but dismantled the dying cell to suppress mtDNA-induced innate immune signaling.
10.1126/science.aao6047
Come on mtDNA, light my fire.
Immunity
Oxidized mitochondrial DNA (ox-mtDNA) activates NLRP3 inflammasome signaling through an ill-defined mechanism. In this issue of Immunity, Xian et al. reveal FEN1 endonuclease cleaves ox-mtDNA into fragments that escape mitochondria, igniting NLRP3 and cGAS-STING signaling and inflammation.
10.1016/j.immuni.2022.07.011
The mechanism of STING autoinhibition and activation.
Molecular cell
2',3'-cGAMP, produced by the DNA sensor cGAS, activates stimulator of interferon genes (STING) and triggers immune response during infection. Tremendous effort has been placed on unraveling the mechanism of STING activation. However, little is known about STING inhibition. Here, we found that apo-STING exhibits a bilayer with head-to-head as well as side-by-side packing, mediated by its ligand-binding domain (LBD). This type of assembly holds two endoplasmic reticulum (ER) membranes together not only to prevent STING ER exit but also to eliminate the recruitment of TBK1, representing the autoinhibited state of STING. Additionally, we obtained the filament structure of the STING/2',3'-cGAMP complex, which adopts a bent monolayer assembly mediated by LBD and transmembrane domain (TMD). The active, curved STING polymer could deform ER membrane to support its ER exit and anterograde transportation. Our data together provide a panoramic vision regarding STING autoinhibition and activation, which adds substantially to current understanding of the cGAS-STING pathway.
10.1016/j.molcel.2023.03.029
p53 engages the cGAS/STING cytosolic DNA sensing pathway for tumor suppression.
Molecular cell
Tumor suppression by TP53 involves cell-autonomous and non-cell-autonomous mechanisms. TP53 can suppress tumor growth by modulating immune system functions; however, the mechanistic basis for this activity is not well understood. We report that p53 promotes the degradation of the DNA exonuclease TREX1, resulting in cytosolic dsDNA accumulation. We demonstrate that p53 requires the ubiquitin ligase TRIM24 to induce TREX1 degradation. The cytosolic DNA accumulation resulting from TREX1 degradation activates the cytosolic DNA-sensing cGAS/STING pathway, resulting in induction of type I interferons. TREX1 overexpression sufficed to block p53 activation of the cGAS/STING pathway. p53-mediated induction of type I interferon (IFNB1) is suppressed by cGAS/STING knockout, and p53's tumor suppressor activities are compromised by the loss of signaling through the cGAS/STING pathway. Thus, our study reveals that p53 utilizes the cGAS/STING innate immune system pathway for both cell-intrinsic and cell-extrinsic tumor suppressor activities.
10.1016/j.molcel.2022.12.023
Cancer immunotherapy based on image-guided STING activation by nucleotide nanocomplex-decorated ultrasound microbubbles.
Nature nanotechnology
The cytosolic innate immune sensor cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) pathway is crucial for priming adaptive antitumour immunity through antigen-presenting cells (APCs). Natural agonists, such as cyclic dinucleotides (CDNs), activate the cGAS-STING pathway, but their clinical translation is impeded by poor cytosolic entry and serum stability, low specificity and rapid tissue clearance. Here we developed an ultrasound (US)-guided cancer immunotherapy platform using nanocomplexes composed of 2'3'-cyclic guanosine monophosphate-adenosine monophosphate (cGAMP) electrostatically bound to biocompatible branched cationic biopolymers that are conjugated onto APC-targeting microbubbles (MBs). The nanocomplex-conjugated MBs engaged with APCs and efficiently delivered cGAMP into the cytosol via sonoporation, resulting in activation of cGAS-STING and downstream proinflammatory pathways that efficiently prime antigen-specific T cells. This bridging of innate and adaptive immunity inhibited tumour growth in both localized and metastatic murine cancer models. Our findings demonstrate that targeted local activation of STING in APCs under spatiotemporal US stimulation results in systemic antitumour immunity and improves the therapeutic efficacy of checkpoint blockade, thus paving the way towards novel image-guided strategies for targeted immunotherapy of cancer.
10.1038/s41565-022-01134-z
Translation stress and collided ribosomes are co-activators of cGAS.
Molecular cell
The cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) pathway senses cytosolic DNA and induces interferon-stimulated genes (ISGs) to activate the innate immune system. Here, we report the unexpected discovery that cGAS also senses dysfunctional protein production. Purified ribosomes interact directly with cGAS and stimulate its DNA-dependent activity in vitro. Disruption of the ribosome-associated protein quality control (RQC) pathway, which detects and resolves ribosome collision during translation, results in cGAS-dependent ISG expression and causes re-localization of cGAS from the nucleus to the cytosol. Indeed, cGAS preferentially binds collided ribosomes in vitro, and orthogonal perturbations that result in elevated levels of collided ribosomes and RQC activation cause sub-cellular re-localization of cGAS and ribosome binding in vivo as well. Thus, translation stress potently increases DNA-dependent cGAS activation. These findings have implications for the inflammatory response to viral infection and tumorigenesis, both of which substantially reprogram cellular protein synthesis.
10.1016/j.molcel.2021.05.018
Interleukin-1β Induces mtDNA Release to Activate Innate Immune Signaling via cGAS-STING.
Aarreberg Lauren D,Esser-Nobis Katharina,Driscoll Connor,Shuvarikov Andrey,Roby Justin A,Gale Michael
Molecular cell
Interleukin-1 beta (IL-1β) is a pleiotropic mediator of inflammation and is produced in response to a wide range of stimuli. During infection, IL-1β production occurs in parallel with the onset of innate antimicrobial defenses, but the contribution of IL-1β signaling to cell-intrinsic immunity is not defined. Here, we report that exogenous IL-1β induces interferon regulatory factor 3 (IRF3) activation in human myeloid, fibroblast, and epithelial cells. IRF3 activation by IL-1β is dependent upon the DNA-sensing pathway adaptor, stimulator of interferon genes (STING), through the recognition of cytosolic mtDNA by cyclic guanosine monophosphate (GMP)-AMP synthase (cGAS). IL-1β treatment results in interferon (IFN) production and activation of IFN signaling to direct a potent innate immune response that restricts dengue virus infection. This study identifies a new function for IL-1β in the onset or enhancement of cell-intrinsic immunity, with important implications for cGAS-STING in integrating inflammatory and microbial cues for host defense.
10.1016/j.molcel.2019.02.038
Regulation of cGAS- and RLR-mediated immunity to nucleic acids.
Nature immunology
Pathogen-derived nucleic acids are crucial signals for innate immunity. Despite the structural similarity between those and host nucleic acids, mammalian cells have been able to evolve powerful innate immune signaling pathways that originate from the detection of cytosolic nucleic acid species, one of the most prominent being the cGAS-STING pathway for DNA and the RLR-MAVS pathway for RNA, respectively. Recent advances have revealed a plethora of regulatory mechanisms that are crucial for balancing the activity of nucleic acid sensors for the maintenance of overall cellular homeostasis. Elucidation of the various mechanisms that enable cells to maintain control over the activity of cytosolic nucleic acid sensors has provided new insight into the pathology of human diseases and, at the same time, offers a rich and largely unexplored source for new therapeutic targets. This Review addresses the emerging literature on regulation of the sensing of cytosolic DNA and RNA via cGAS and RLRs.
10.1038/s41590-019-0556-1
DDX41 is required for cGAS-STING activation against DNA virus infection.
Cell reports
Upon binding double-stranded DNA (dsDNA), cyclic GMP-AMP synthase (cGAS) is activated and initiates the cGAS-stimulator of IFN genes (STING)-type I interferon pathway. DEAD-box helicase 41 (DDX41) is a DEAD-box helicase, and mutations in DDX41 cause myelodysplastic syndromes (MDSs) and acute myeloid leukemia (AML). Here, we show that DDX41-knockout (KO) cells have reduced type I interferon production after DNA virus infection. Unexpectedly, activations of cGAS and STING are affected in DDX41 KO cells, suggesting that DDX41 functions upstream of cGAS. The recombinant DDX41 protein exhibits ATP-dependent DNA-unwinding activity and ATP-independent strand-annealing activity. The MDS/AML-derived mutant R525H has reduced unwinding activity but retains normal strand-annealing activity and stimulates greater cGAS dinucleotide-synthesis activity than wild-type DDX41. Overexpression of R525H in either DDX41-deficient or -proficient cells results in higher type I interferon production. Our results have led to the hypothesis that DDX41 utilizes its unwinding and annealing activities to regulate the homeostasis of dsDNA and single-stranded DNA (ssDNA), which, in turn, regulates cGAS-STING activation.
10.1016/j.celrep.2022.110856
The Cytoplasmic DNA Sensor cGAS Promotes Mitotic Cell Death.
Cell
Pathogenic and other cytoplasmic DNAs activate the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway to induce inflammation via transcriptional activation by IRF3 and nuclear factor κB (NF-κB), but the functional consequences of exposing cGAS to chromosomes upon mitotic nuclear envelope breakdown are unknown. Here, we show that nucleosomes competitively inhibit DNA-dependent cGAS activation and that the cGAS-STING pathway is not effectively activated during normal mitosis. However, during mitotic arrest, low level cGAS-dependent IRF3 phosphorylation slowly accumulates without triggering inflammation. Phosphorylated IRF3, independently of its DNA-binding domain, stimulates apoptosis through alleviating Bcl-xL-dependent suppression of mitochondrial outer membrane permeabilization. We propose that slow accumulation of phosphorylated IRF3, normally not sufficient for inducing inflammation, can trigger transcription-independent induction of apoptosis upon mitotic aberrations. Accordingly, expression of cGAS and IRF3 in cancer cells makes mouse xenograft tumors responsive to the anti-mitotic agent Taxol. The Cancer Genome Atlas (TCGA) datasets for non-small cell lung cancer patients also suggest an effect of cGAS expression on taxane response.
10.1016/j.cell.2019.05.035
DNA Sensing in Mismatch Repair-Deficient Tumor Cells Is Essential for Anti-tumor Immunity.
Cancer cell
Increased neoantigens in hypermutated cancers with DNA mismatch repair deficiency (dMMR) are proposed as the major contributor to the high objective response rate in anti-PD-1 therapy. However, the mechanism of drug resistance is not fully understood. Using tumor models defective in the MMR gene Mlh1 (dMLH1), we show that dMLH1 tumor cells accumulate cytosolic DNA and produce IFN-β in a cGAS-STING-dependent manner, which renders dMLH1 tumors slowly progressive and highly sensitive to checkpoint blockade. In neoantigen-fixed models, dMLH1 tumors potently induce T cell priming and lose resistance to checkpoint therapy independent of tumor mutational burden. Accordingly, loss of STING or cGAS in tumor cells decreases tumor infiltration of T cells and endows resistance to checkpoint blockade. Clinically, downregulation of cGAS/STING in human dMMR cancers correlates with poor prognosis. We conclude that DNA sensing within tumor cells is essential for dMMR-triggered anti-tumor immunity. This study provides new mechanisms and biomarkers for anti-dMMR-cancer immunotherapy.
10.1016/j.ccell.2020.11.006
ATM inhibition enhances cancer immunotherapy by promoting mtDNA leakage and cGAS/STING activation.
The Journal of clinical investigation
Novel approaches are needed to boost the efficacy of immune checkpoint blockade (ICB) therapy. Ataxia telangiectasia mutated (ATM) protein plays a central role in sensing DNA double-stranded breaks (DSBs) and coordinating their repair. Recent data indicated that ATM might be a promising target to enhance ICB therapy. However, the molecular mechanism involved has not been clearly elucidated. Here, we show that ATM inhibition could potentiate ICB therapy by promoting cytoplasmic leakage of mitochondrial DNA (mtDNA) and activation of the cGAS/STING pathway. We show that genetic depletion of ATM in murine cancer cells delayed tumor growth in syngeneic mouse hosts in a T cell-dependent manner. Furthermore, chemical inhibition of ATM potentiated anti-PD-1 therapy of mouse tumors. ATM inhibition potently activated the cGAS/STING pathway and enhanced lymphocyte infiltration into the tumor microenvironment by downregulating mitochondrial transcription factor A (TFAM), which led to mtDNA leakage into the cytoplasm. Moreover, our analysis of data from a large patient cohort indicated that ATM mutations, especially nonsense mutations, predicted for clinical benefits of ICB therapy. Our study therefore provides strong evidence that ATM may serve as both a therapeutic target and a biomarker to enable ICB therapy.
10.1172/JCI139333
Monocyte-derived macrophages aggravate pulmonary vasculitis via cGAS/STING/IFN-mediated nucleic acid sensing.
The Journal of experimental medicine
Autoimmune vasculitis is a group of life-threatening diseases, whose underlying pathogenic mechanisms are incompletely understood, hampering development of targeted therapies. Here, we demonstrate that patients suffering from anti-neutrophil cytoplasmic antibodies (ANCA)-associated vasculitis (AAV) showed increased levels of cGAMP and enhanced IFN-I signature. To identify disease mechanisms and potential therapeutic targets, we developed a mouse model for pulmonary AAV that mimics severe disease in patients. Immunogenic DNA accumulated during disease onset, triggering cGAS/STING/IRF3-dependent IFN-I release that promoted endothelial damage, pulmonary hemorrhages, and lung dysfunction. Macrophage subsets played dichotomic roles in disease. While recruited monocyte-derived macrophages were major disease drivers by producing most IFN-β, resident alveolar macrophages contributed to tissue homeostasis by clearing red blood cells and limiting infiltration of IFN-β-producing macrophages. Moreover, pharmacological inhibition of STING, IFNAR-I, or its downstream JAK/STAT signaling reduced disease severity and accelerated recovery. Our study unveils the importance of STING/IFN-I axis in promoting pulmonary AAV progression and identifies cellular and molecular targets to ameliorate disease outcomes.
10.1084/jem.20220759
Mitochondrial Integrity Regulated by Lipid Metabolism Is a Cell-Intrinsic Checkpoint for Treg Suppressive Function.
Field Cameron S,Baixauli Francesc,Kyle Ryan L,Puleston Daniel J,Cameron Alanna M,Sanin David E,Hippen Keli L,Loschi Michael,Thangavelu Govindarajan,Corrado Mauro,Edwards-Hicks Joy,Grzes Katarzyna M,Pearce Edward J,Blazar Bruce R,Pearce Erika L
Cell metabolism
Regulatory T cells (Tregs) subdue immune responses. Central to Treg activation are changes in lipid metabolism that support their survival and function. Fatty acid binding proteins (FABPs) are a family of lipid chaperones required to facilitate uptake and intracellular lipid trafficking. One family member, FABP5, is expressed in T cells, but its function remains unclear. We show that in Tregs, genetic or pharmacologic inhibition of FABP5 function causes mitochondrial changes underscored by decreased OXPHOS, impaired lipid metabolism, and loss of cristae structure. FABP5 inhibition in Tregs triggers mtDNA release and consequent cGAS-STING-dependent type I IFN signaling, which induces heightened production of the regulatory cytokine IL-10 and promotes Treg suppressive activity. We find evidence of this pathway, along with correlative mitochondrial changes in tumor infiltrating Tregs, which may underlie enhanced immunosuppression in the tumor microenvironment. Together, our data reveal that FABP5 is a gatekeeper of mitochondrial integrity that modulates Treg function.
10.1016/j.cmet.2019.11.021
ZnS@BSA Nanoclusters Potentiate Efficacy of Cancer Immunotherapy.
Advanced materials (Deerfield Beach, Fla.)
Although immunotherapy such as immune checkpoint inhibitors has shown promising efficacy in cancer treatment, the responsiveness among patients is relatively limited. Activation of the cyclic guanosine monophosphate-adenosine monophosphate synthase/interferon gene stimulator (cGAS/STING) signaling pathway to upregulate innate immunity has become an emerging strategy for enhancing tumor immunotherapy. Herein, ZnS@BSA (bovine serum albumin) nanoclusters synthesized via a self-assembly approach are reported, where the released zinc ions under acidic tumor microenvironment significantly enhance cGAS/STING signals. Meanwhile, intracellular zinc ions can produce reactive oxygen species, which is further facilitated by the generated H S gas from ZnS@BSA via specifically inhibiting catalase in hepatocellular carcinoma cells. It is found that the nanoclusters activate the cGAS/STING signals in mice, which promotes the infiltration of CD8 T cells at the tumor site and cross-presentation of dendritic cells, leading to an improved immunotherapy efficacy against hepatocellular carcinoma.
10.1002/adma.202104037
Blocking CD47 promotes antitumour immunity through CD103 dendritic cell-NK cell axis in murine hepatocellular carcinoma model.
Journal of hepatology
BACKGROUND & AIMS:The CD47-signal regulatory protein α (SIRPα) axis inhibits dendritic cell (DC) phagocytosis and contributes to immune evasion. However, the behaviour of DCs and the potential crosstalk between DCs and natural killer (NK) cells in the hepatocellular carcinoma (HCC) microenvironment after CD47 blockade remain unclear. METHODS:The infiltration of CD103 DCs and NK cells were analysed by immunohistochemistry and immunofluorescence in both human and murine HCC specimens. An orthotopic liver tumour model was used to evaluate the function of the CD103 DC-NK cell axis after CD47 blockade in vivo in wild-type, Rag1, Batf3, and STING1 mice. Phagocytosis assays were performed in CD103 DC and HCC cell lines. CD103 DC-derived cytokines were analysed by chemokine array. Spleen-derived NK cells in C57BL/6J mice were used to evaluate cytotoxic functions in vitro. RESULTS:Higher CD47 expression was associated with worse prognosis in patients with HCC. CD47 blockade enhanced antitumour efficacy by stimulating the CD103 DC-NK cell axis. The hypoxic microenvironment promoted CD47 blockade-induced tumour DNA phagocytosis by CD103 DCs. By releasing IL-12 and CXCL9, activated CD103 DCs induced the recruitment of NK cells with upregulated expression of granzyme B, NKG2D, interferon-γ, and tumour necrosis factor-α and downregulated expression of NKG2A. The antitumour effects of CD47 blockade could be abolished by cyclic GMP-AMP synthase (cGAS)-STING pathway inhibition. CONCLUSIONS:In addition to the classical DC-T cell axis, CD47 blockade significantly enhanced the ability of CD103 DCs to take up tumour DNA, resulting in the stimulation of the cGAS-STING pathway, which promoted the infiltration and activation of NK cells in liver cancer. LAY SUMMARY:Hypoxia (low oxygen levels) is prevalent in the hepatocellular carcinoma microenvironment and promotes the phagocytosis (ingestion and elimination) of tumour DNA by CD103 dendritic cells (a type of immune cell). Blockade of the cell surface protein CD47 resulted in activation of CD103 dendritic cells which led to the recruitment and activation of natural killer cells (a different immune cell). When activated, these cells exhibit an antitumour effect.
10.1016/j.jhep.2022.03.011
MLH1 Deficiency-Triggered DNA Hyperexcision by Exonuclease 1 Activates the cGAS-STING Pathway.
Guan Junhong,Lu Changzheng,Jin Qihuang,Lu Huiming,Chen Xiang,Tian Lei,Zhang Yanbin,Ortega Janice,Zhang Junqiu,Siteni Silvia,Chen Mingyi,Gu Liya,Shay Jerry W,Davis Anthony J,Chen Zhijian J,Fu Yang-Xin,Li Guo-Min
Cancer cell
Tumors with defective mismatch repair (dMMR) are responsive to immunotherapy because of dMMR-induced neoantigens and activation of the cGAS-STING pathway. While neoantigens result from the hypermutable nature of dMMR, it is unknown how dMMR activates the cGAS-STING pathway. We show here that loss of the MutLα subunit MLH1, whose defect is responsible for ~50% of dMMR cancers, results in loss of MutLα-specific regulation of exonuclease 1 (Exo1) during DNA repair. This leads to unrestrained DNA excision by Exo1, which causes increased single-strand DNA formation, RPA exhaustion, DNA breaks, and aberrant DNA repair intermediates. Ultimately, this generates chromosomal abnormalities and the release of nuclear DNA into the cytoplasm, activating the cGAS-STING pathway. In this study, we discovered a hitherto unknown MMR mechanism that modulates genome stability and has implications for cancer therapy.
10.1016/j.ccell.2020.11.004
GG induces cGAS/STING- dependent type I interferon and improves response to immune checkpoint blockade.
Si Wei,Liang Hua,Bugno Jason,Xu Qi,Ding Xingchen,Yang Kaiting,Fu Yanbin,Weichselbaum Ralph R,Zhao Xin,Wang Liangliang
Gut
OBJECTIVE:Our goals were to evaluate the antitumour efficacy of GG (LGG) in combination with immune checkpoint blockade (ICB) immunotherapies on tumour growth and to investigate the underlying mechanisms. DESIGN:We used murine models of colorectal cancer and melanoma to evaluate whether oral administration of LGG improves the efficacy of ICB therapies. We performed the whole genome shotgun metagenome sequencing of intestinal contents and RNA sequencing of dendritic cells (DCs). In a series of in vitro and in vivo experiments, we further defined the immunological and molecular mechanisms of LGG-mediated antitumour immunity. RESULTS:We demonstrate that oral administration of live LGG augmented the antitumour activity of anti-programmed cell death 1 (PD-1) immunotherapy by increasing tumour-infiltrating DCs and T cells. Moreover, the combination treatment shifted the gut microbial community towards enrichment in and , that are known to increase DC activation and CD8tumour recruitment. Mechanistically, treatment with live LGG alone or in combination with anti-PD-1 antibody triggered type I interferon (IFN) production in DCs, enhancing the cross-priming of antitumour CD8 T cells. In DCs, cyclic GMP-AMP synthase (cGAS)/stimulator of IFN genes (STING) was required for IFN-β induction in response to LGG, as evidenced by the significant decrease in IFN-β levels in cGAS or STING-deficient DCs. LGG induces IFN-β production via the cGAS/STING/TANK binding kinase 1/interferon regulatory factor 7 axis in DCs. CONCLUSION:Our findings have offered valuable insight into the molecular mechanisms of live LGG-mediated antitumour immunity and establish an empirical basis for developing oral administration of live LGG as a combination agent with ICB for cancer therapies.
10.1136/gutjnl-2020-323426
Manganese Increases the Sensitivity of the cGAS-STING Pathway for Double-Stranded DNA and Is Required for the Host Defense against DNA Viruses.
Wang Chenguang,Guan Yukun,Lv Mengze,Zhang Rui,Guo Zhaoying,Wei Xiaoming,Du Xiaoxia,Yang Jing,Li Tong,Wan Yi,Su Xiaodong,Huang Xiaojun,Jiang Zhengfan
Immunity
Manganese (Mn) is essential for many physiological processes, but its functions in innate immunity remain undefined. Here, we found that Mn was required for the host defense against DNA viruses by increasing the sensitivity of the DNA sensor cGAS and its downstream adaptor protein STING. Mn was released from membrane-enclosed organelles upon viral infection and accumulated in the cytosol where it bound directly to cGAS. Mn enhanced the sensitivity of cGAS to double-stranded DNA (dsDNA) and its enzymatic activity, enabling cGAS to produce secondary messenger cGAMP in the presence of low concentrations of dsDNA that would otherwise be non-stimulatory. Mn also enhanced STING activity by augmenting cGAMP-STING binding affinity. Mn-deficient mice showed diminished cytokine production and were more vulnerable to DNA viruses, and Mn-deficient STING-deficient mice showed no increased susceptibility. These findings indicate that Mn is critically involved and required for the host defense against DNA viruses.
10.1016/j.immuni.2018.03.017
Cytoplasmic chromatin triggers inflammation in senescence and cancer.
Dou Zhixun,Ghosh Kanad,Vizioli Maria Grazia,Zhu Jiajun,Sen Payel,Wangensteen Kirk J,Simithy Johayra,Lan Yemin,Lin Yanping,Zhou Zhuo,Capell Brian C,Xu Caiyue,Xu Mingang,Kieckhaefer Julia E,Jiang Tianying,Shoshkes-Carmel Michal,Tanim K M Ahasan Al,Barber Glen N,Seykora John T,Millar Sarah E,Kaestner Klaus H,Garcia Benjamin A,Adams Peter D,Berger Shelley L
Nature
Chromatin is traditionally viewed as a nuclear entity that regulates gene expression and silencing. However, we recently discovered the presence of cytoplasmic chromatin fragments that pinch off from intact nuclei of primary cells during senescence, a form of terminal cell-cycle arrest associated with pro-inflammatory responses. The functional significance of chromatin in the cytoplasm is unclear. Here we show that cytoplasmic chromatin activates the innate immunity cytosolic DNA-sensing cGAS-STING (cyclic GMP-AMP synthase linked to stimulator of interferon genes) pathway, leading both to short-term inflammation to restrain activated oncogenes and to chronic inflammation that associates with tissue destruction and cancer. The cytoplasmic chromatin-cGAS-STING pathway promotes the senescence-associated secretory phenotype in primary human cells and in mice. Mice deficient in STING show impaired immuno-surveillance of oncogenic RAS and reduced tissue inflammation upon ionizing radiation. Furthermore, this pathway is activated in cancer cells, and correlates with pro-inflammatory gene expression in human cancers. Overall, our findings indicate that genomic DNA serves as a reservoir to initiate a pro-inflammatory pathway in the cytoplasm in senescence and cancer. Targeting the cytoplasmic chromatin-mediated pathway may hold promise in treating inflammation-related disorders.
10.1038/nature24050
PRMT5 control of cGAS/STING and NLRC5 pathways defines melanoma response to antitumor immunity.
Kim Hyungsoo,Kim Heejung,Feng Yongmei,Li Yan,Tamiya Hironari,Tocci Stefania,Ronai Ze'ev A
Science translational medicine
Protein arginine methyltransferase 5 (PRMT5) controls diverse cellular processes and is implicated in cancer development and progression. Here, we report an inverse correlation between PRMT5 function and antitumor immunity. expression was associated with an antitumor immune gene signature in human melanoma tissue. Reducing PRMT5 activity antagonized melanoma growth in immunocompetent but not immunocompromised mice. PRMT5 methylation of IFI16 [interferon-γ (IFN-γ)-inducible protein 16] or its murine homolog IFI204, which are components of the cGAS/STING (stimulator of IFN genes) pathway, attenuated cytosolic DNA-induced IFN and chemokine expression in melanoma cells. PRMT5 also inhibited transcription of the gene encoding NLRC5 (nucleotide-binding oligomerization domain-like receptor family caspase recruitment domain containing 5), a protein that promotes the expression of genes implicated in major histocompatibility complex class I (MHCI) antigen presentation. PRMT5 knockdown augmented IFN and chemokine production and increased MHCI abundance in melanoma. Increased expression of and was associated with decreased melanoma growth in murine models, and increased expression of and correlated with prolonged survival of patients with melanoma. Combination of pharmacological (GSK3326595) or genetic (shRNA) inhibition of PRMT5 with immune checkpoint therapy limited growth of murine melanoma tumors (B16F10 and YUMM1.7) and enhanced therapeutic efficacy, compared with the effect of either treatment alone. Overall, our findings provide a rationale to test PRMT5 inhibitors in immunotherapy-based clinical trials as a means to enhance an antitumor immune response.
10.1126/scitranslmed.aaz5683
Targeting STING to promote antitumor immunity.
Trends in cell biology
Pharmacology-based methods that promote antitumor immunity have the potential to be highly efficacious while avoiding the systemic cytotoxicity associated with traditional chemotherapies. Activation of type I interferon (IFN) signaling in antigen-presenting cell types [e.g., macrophages and dendritic cells (DCs)] is critical, if not essential, for inducing a tumor-specific adaptive immune response, including the activation of cytolytic CD8 T cells. In the context of promoting antitumor immunity, the cyclic GMP-AMP synthase/stimulator of IFN genes (cGAS/STING) pathway has emerged as a principal regulator of essential type I IFN signaling. As such, STING represents a highly attractive target for developing a first-in-class immunotherapy, albeit one with a potential for significant cell type- and downstream pathway-dependent on-target toxicities, as well as conceivable pharmacogenomic liabilities.
10.1016/j.tcb.2022.06.010
Organellar homeostasis and innate immune sensing.
Nature reviews. Immunology
A cell is delimited by numerous borders that define specific organelles. The walls of some organelles are particularly robust, such as in mitochondria or endoplasmic reticulum, but some are more fluid such as in phase-separated stress granules. Either way, all organelles can be damaged at times, leading their contents to leak out into the surrounding environment. Therefore, an elegant way to construct an innate immune defence system is to recognize host molecules that do not normally reside within a particular compartment. Here, we provide several examples where organellar homeostasis is lost, leading to the activation of a specific innate immune sensor; these include NLRP3 activation owing to a disrupted trans-Golgi network, Pyrin activation due to cytoskeletal damage, and cGAS-STING activation following the leakage of nuclear or mitochondrial DNA. Frequently, organelle damage is observed downstream of pathogenic infection but it can also occur in sterile settings as associated with auto-inflammatory disease. Therefore, understanding organellar homeostasis is central to efforts that will identify new innate immune pathways, and therapeutics that balance organellar homeostasis, or target the breakdown pathways that trigger innate immune sensors, could be useful treatments for infection and chronic inflammatory diseases.
10.1038/s41577-022-00682-8
Chromosomal instability drives metastasis through a cytosolic DNA response.
Nature
Chromosomal instability is a hallmark of cancer that results from ongoing errors in chromosome segregation during mitosis. Although chromosomal instability is a major driver of tumour evolution, its role in metastasis has not been established. Here we show that chromosomal instability promotes metastasis by sustaining a tumour cell-autonomous response to cytosolic DNA. Errors in chromosome segregation create a preponderance of micronuclei whose rupture spills genomic DNA into the cytosol. This leads to the activation of the cGAS-STING (cyclic GMP-AMP synthase-stimulator of interferon genes) cytosolic DNA-sensing pathway and downstream noncanonical NF-κB signalling. Genetic suppression of chromosomal instability markedly delays metastasis even in highly aneuploid tumour models, whereas continuous chromosome segregation errors promote cellular invasion and metastasis in a STING-dependent manner. By subverting lethal epithelial responses to cytosolic DNA, chromosomally unstable tumour cells co-opt chronic activation of innate immune pathways to spread to distant organs.
10.1038/nature25432
Attenuation of cGAS-STING signaling is mediated by a p62/SQSTM1-dependent autophagy pathway activated by TBK1.
Prabakaran Thaneas,Bodda Chiranjeevi,Krapp Christian,Zhang Bao-Cun,Christensen Maria H,Sun Chenglong,Reinert Line,Cai Yujia,Jensen Søren B,Skouboe Morten K,Nyengaard Jens R,Thompson Craig B,Lebbink Robert Jan,Sen Ganes C,van Loo Geert,Nielsen Rikke,Komatsu Masaaki,Nejsum Lene N,Jakobsen Martin R,Gyrd-Hansen Mads,Paludan Søren R
The EMBO journal
Negative regulation of immune pathways is essential to achieve resolution of immune responses and to avoid excess inflammation. DNA stimulates type I IFN expression through the DNA sensor cGAS, the second messenger cGAMP, and the adaptor molecule STING Here, we report that STING degradation following activation of the pathway occurs through autophagy and is mediated by p62/SQSTM1, which is phosphorylated by TBK1 to direct ubiquitinated STING to autophagosomes. Degradation of STING was impaired in p62-deficient cells, which responded with elevated IFN production to foreign DNA and DNA pathogens. In the absence of p62, STING failed to traffic to autophagy-associated vesicles. Thus, DNA sensing induces the cGAS-STING pathway to activate TBK1, which phosphorylates IRF3 to induce IFN expression, but also phosphorylates p62 to stimulate STING degradation and attenuation of the response.
10.15252/embj.201797858
AMPK directly phosphorylates TBK1 to integrate glucose sensing into innate immunity.
Molecular cell
Nutrient sensing and damage sensing are two fundamental processes in living organisms. While hyperglycemia is frequently linked to diabetes-related vulnerability to microbial infection, how body glucose levels affect innate immune responses to microbial invasion is not fully understood. Here, we surprisingly found that viral infection led to a rapid and dramatic decrease in blood glucose levels in rodents, leading to robust AMPK activation. AMPK, once activated, directly phosphorylates TBK1 at S511, which triggers IRF3 recruitment and the assembly of MAVS or STING signalosomes. Consistently, ablation or inhibition of AMPK, knockin of TBK1-S511A, or increased glucose levels compromised nucleic acid sensing, while boosting AMPK-TBK1 cascade by AICAR or TBK1-S511E knockin improves antiviral immunity substantially in various animal models. Thus, we identify TBK1 as an AMPK substrate, reveal the molecular mechanism coupling a dual sensing of glucose and nuclei acids, and report its physiological necessity in antiviral defense.
10.1016/j.molcel.2022.10.026
Telomere-to-mitochondria signalling by ZBP1 mediates replicative crisis.
Nature
Cancers arise through the accumulation of genetic and epigenetic alterations that enable cells to evade telomere-based proliferative barriers and achieve immortality. One such barrier is replicative crisis-an autophagy-dependent program that eliminates checkpoint-deficient cells with unstable telomeres and other cancer-relevant chromosomal aberrations. However, little is known about the molecular events that regulate the onset of this important tumour-suppressive barrier. Here we identified the innate immune sensor Z-DNA binding protein 1 (ZBP1) as a regulator of the crisis program. A crisis-associated isoform of ZBP1 is induced by the cGAS-STING DNA-sensing pathway, but reaches full activation only when associated with telomeric-repeat-containing RNA (TERRA) transcripts that are synthesized from dysfunctional telomeres. TERRA-bound ZBP1 oligomerizes into filaments on the outer mitochondrial membrane of a subset of mitochondria, where it activates the innate immune adapter protein mitochondrial antiviral-signalling protein (MAVS). We propose that these oligomerization properties of ZBP1 serve as a signal amplification mechanism, where few TERRA-ZBP1 interactions are sufficient to launch a detrimental MAVS-dependent interferon response. Our study reveals a mechanism for telomere-mediated tumour suppression, whereby dysfunctional telomeres activate innate immune responses through mitochondrial TERRA-ZBP1 complexes to eliminate cells destined for neoplastic transformation.
10.1038/s41586-023-05710-8
cGAS-STING-mediated DNA sensing maintains CD8 T cell stemness and promotes antitumor T cell therapy.
Li Wenwen,Lu Lu,Lu Juanjuan,Wang Xinran,Yang Chao,Jin Jingsi,Wu Lingling,Hong Xiaochuan,Li Fanlin,Cao Dongqing,Yang Yuanqin,Wu Meng,Su Bing,Cheng Jinke,Yang Xuanming,Di Wen,Deng Liufu
Science translational medicine
Although cGAS-STING-mediated DNA sensing in tumor cells or phagocytes is central for launching antitumor immunity, the role of intrinsic cGAS-STING activation in T cells remains unknown. Here, we observed that peripheral blood CD8 T cells from patients with cancer showed remarkably compromised expression of the cGAS-STING cascade. We demonstrated that the cGAS-STING cascade in adoptively transferred CD8 T cells was essential for antitumor immune responses in the context of T cell therapy in mice. Mechanistically, cell-autonomous cGAS and STING promoted the maintenance of stem cell-like CD8 T cells, in part, by regulating the transcription factor TCF1 expression. Moreover, autocrine cGAS-STING-mediated type I interferon signaling augmented stem cell-like CD8 T cell differentiation program mainly by restraining Akt activity. In addition, genomic DNA was selectively enriched in the cytosol of mouse CD8 T cells upon in vitro and in vivo stimulation. STING agonism enhanced the formation of stem-like central memory CD8 T cells from patients with cancer and potentiated antitumor responses of CAR-T cell therapy in a xenograft model. These findings advance our understanding of inherent cGAS-STING activation in T cells and provide insight into the development of improved T cell therapy by harnessing the cGAS-STING pathway for cancer immunotherapy.
10.1126/scitranslmed.aay9013
The Multifaceted Role of Chromosomal Instability in Cancer and Its Microenvironment.
Cell
Chromosomal instability (CIN) is a hallmark of human cancer, and it is associated with poor prognosis, metastasis, and therapeutic resistance. CIN results from errors in chromosome segregation during mitosis, leading to structural and numerical chromosomal abnormalities. In addition to generating genomic heterogeneity that acts as a substrate for natural selection, CIN promotes inflammatory signaling by introducing double-stranded DNA into the cytosol, engaging the cGAS-STING anti-viral pathway. These multipronged effects distinguish CIN as a central driver of tumor evolution and as a genomic source for the crosstalk between the tumor and its microenvironment, in the course of immune editing and evasion.
10.1016/j.cell.2018.08.027
TNF leads to mtDNA release and cGAS/STING-dependent interferon responses that support inflammatory arthritis.
Willemsen Joschka,Neuhoff Marie-Therese,Hoyler Thomas,Noir Emma,Tessier Clemence,Sarret Sophie,Thorsen Tara N,Littlewood-Evans Amanda,Zhang Juan,Hasan Maroof,Rush James S,Guerini Danilo,Siegel Richard M
Cell reports
Tumor necrosis factor (TNF) is a key driver of several inflammatory diseases, such as rheumatoid arthritis, inflammatory bowel disease, and psoriasis, in which affected tissues show an interferon-stimulated gene signature. Here, we demonstrate that TNF triggers a type-I interferon response that is dependent on the cyclic guanosine monophosphate-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway. We show that TNF inhibits PINK1-mediated mitophagy and leads to altered mitochondrial function and to an increase in cytosolic mtDNA levels. Using cGAS-chromatin immunoprecipitation (ChIP), we demonstrate that cytosolic mtDNA binds to cGAS after TNF treatment. Furthermore, TNF induces a cGAS-STING-dependent transcriptional response that mimics that of macrophages from rheumatoid arthritis patients. Finally, in an inflammatory arthritis mouse model, cGAS deficiency blocked interferon responses and reduced inflammatory cell infiltration and joint swelling. These findings elucidate a molecular mechanism linking TNF to type-I interferon signaling and suggest a potential benefit for therapeutic targeting of cGAS/STING in TNF-driven diseases.
10.1016/j.celrep.2021.109977
Manganese-Based Tumor Immunotherapy.
Advanced materials (Deerfield Beach, Fla.)
As an essential micronutrient, manganese (Mn) participates in various physiological processes and plays important roles in host immune system, hematopoiesis, endocrine function, and oxidative stress regulation. Mn-based nanoparticles are considered to be biocompatible and show versatile applications in nanomedicine, in particular utilized in tumor immunotherapy in the following ways: 1) acting as a biocompatible nanocarrier to deliver immunotherapeutic agents for tumor immunotherapy; 2) serving as an adjuvant to regulate tumor immune microenvironment and enhance immunotherapy; 3) activating host's immune system through the cGAS-STING pathway to trigger tumor immunotherapy; 4) real-time monitoring tumor immunotherapy effect by magnetic resonance imaging (MRI) since Mn ions are ideal MRI contrast agent which can significantly enhance the T -weighted MRI signal after binding to proteins. This comprehensive review focuses on the most recent progress of Mn-based nanoplatforms in tumor immunotherapy. The characteristics of Mn are first discussed to guide the design of Mn-based multifunctional nanoplatforms. Then the biomedical applications of Mn-based nanoplatforms, including immunotherapy alone, immunotherapy-involved multimodal synergistic therapy, and imaging-guided immunotherapy are discussed in detail. Finally, the challenges and future developments of Mn-based tumor immunotherapy are highlighted.
10.1002/adma.202205409
cGAS in action: Expanding roles in immunity and inflammation.
Ablasser Andrea,Chen Zhijian J
Science (New York, N.Y.)
DNA is highly immunogenic. It represents a key pathogen-associated molecular pattern (PAMP) during infection. Host DNA can, however, also act as a danger-associated molecular pattern (DAMP) and elicit strong inflammatory responses. The cGAS-STING pathway has emerged as a major pathway that detects intracellular DNA. Here, we highlight recent advances on how cGAS and STING mediate inflammatory responses and how these are regulated, allowing cells to readily respond to infections and noxious agents while avoiding the inappropriate sensing of self-DNA. A particular focus is placed on the role of cGAS in the context of sterile inflammatory conditions. Manipulating cGAS or STING may open the door for new therapeutic strategies for the treatment of acute and chronic inflammation relevant to many human diseases.
10.1126/science.aat8657
Metastasis and Immune Evasion from Extracellular cGAMP Hydrolysis.
Cancer discovery
Cytosolic DNA is characteristic of chromosomally unstable metastatic cancer cells, resulting in constitutive activation of the cGAS-STING innate immune pathway. How tumors co-opt inflammatory signaling while evading immune surveillance remains unknown. Here, we show that the ectonucleotidase ENPP1 promotes metastasis by selectively degrading extracellular cGAMP, an immune-stimulatory metabolite whose breakdown products include the immune suppressor adenosine. ENPP1 loss suppresses metastasis, restores tumor immune infiltration, and potentiates response to immune checkpoint blockade in a manner dependent on tumor cGAS and host STING. Conversely, overexpression of wild-type ENPP1, but not an enzymatically weakened mutant, promotes migration and metastasis, in part through the generation of extracellular adenosine, and renders otherwise sensitive tumors completely resistant to immunotherapy. In human cancers, ENPP1 expression correlates with reduced immune cell infiltration, increased metastasis, and resistance to anti-PD-1/PD-L1 treatment. Thus, cGAMP hydrolysis by ENPP1 enables chromosomally unstable tumors to transmute cGAS activation into an immune-suppressive pathway. SIGNIFICANCE: Chromosomal instability promotes metastasis by generating chronic tumor inflammation. ENPP1 facilitates metastasis and enables tumor cells to tolerate inflammation by hydrolyzing the immunotransmitter cGAMP, preventing its transfer from cancer cells to immune cells..
10.1158/2159-8290.CD-20-0387
DNA Damage and Cancer Immunotherapy: A STING in the Tale.
Molecular cell
Cancer immunotherapies enhance anti-tumor immune responses using checkpoint inhibitors, such as PD-1 or PD-L1 inhibitors. Recent studies, however, have extended the scope of immunotherapeutics by unveiling DNA damage-induced innate immunity as a novel target for cancer treatment. Elucidating the interplay among the DNA damage response (DDR), cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) pathway activation, and anti-tumoral immunity is critical for the development of effective cancer immunotherapies. Here, we discuss the current understanding of the mechanisms by which DNA damage activates immune responses that target and eradicate cancer cells. Yet, understanding how cancer cells can escape this immune surveillance and promote tumor progression represents an outstanding challenge. We highlight the most recent clinical advances, in particular how pharmacological fine-tuning of innate/adaptive immunity and its combination with DDR inhibitors, ionizing radiation (IR), and chemotherapy can be exploited to improve cancer treatment.
10.1016/j.molcel.2020.07.026
Mutant p53 suppresses innate immune signaling to promote tumorigenesis.
Cancer cell
Mutant p53 (mtp53) proteins can exert cancer-promoting gain-of-function activities. We report a mechanism by which mtp53 suppresses both cell-autonomous and non-cell-autonomous signaling to promote cancer cell survival and evasion of tumor immune surveillance. Mtp53 interferes with the function of the cytoplasmic DNA sensing machinery, cGAS-STING-TBK1-IRF3, that activates the innate immune response. Mtp53, but not wild-type p53, binds to TANK-binding protein kinase 1 (TBK1) and prevents the formation of a trimeric complex between TBK1, STING, and IRF3, which is required for activation, nuclear translocation, and transcriptional activity of IRF3. Inactivation of innate immune signaling by mtp53 alters cytokine production, resulting in immune evasion. Restoring TBK1 signaling is sufficient to bypass mtp53 and lead to restored immune cell function and cancer cell eradication. This work is of translational interest because therapeutic approaches that restore TBK1 function could potentially reactivate immune surveillance and eliminate mtp53 tumors.
10.1016/j.ccell.2021.01.003
DNA damage and repair in age-related inflammation.
Nature reviews. Immunology
Genomic instability is an important driver of ageing. The accumulation of DNA damage is believed to contribute to ageing by inducing cell death, senescence and tissue dysfunction. However, emerging evidence shows that inflammation is another major consequence of DNA damage. Inflammation is a hallmark of ageing and the driver of multiple age-related diseases. Here, we review the evidence linking DNA damage, inflammation and ageing, highlighting how premature ageing syndromes are associated with inflammation. We discuss the mechanisms by which DNA damage induces inflammation, such as through activation of the cGAS-STING axis and NF-κB activation by ATM. The triggers for activation of these signalling cascades are the age-related accumulation of DNA damage, activation of transposons, cellular senescence and the accumulation of persistent R-loops. We also discuss how epigenetic changes triggered by DNA damage can lead to inflammation and ageing via redistribution of heterochromatin factors. Finally, we discuss potential interventions against age-related inflammation.
10.1038/s41577-022-00751-y
The cGAS-STING pathway drives type I IFN immunopathology in COVID-19.
Nature
COVID-19, which is caused by infection with SARS-CoV-2, is characterized by lung pathology and extrapulmonary complications. Type I interferons (IFNs) have an essential role in the pathogenesis of COVID-19 (refs ). Although rapid induction of type I IFNs limits virus propagation, a sustained increase in the levels of type I IFNs in the late phase of the infection is associated with aberrant inflammation and poor clinical outcome. Here we show that the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway, which controls immunity to cytosolic DNA, is a critical driver of aberrant type I IFN responses in COVID-19 (ref. ). Profiling COVID-19 skin manifestations, we uncover a STING-dependent type I IFN signature that is primarily mediated by macrophages adjacent to areas of endothelial cell damage. Moreover, cGAS-STING activity was detected in lung samples from patients with COVID-19 with prominent tissue destruction, and was associated with type I IFN responses. A lung-on-chip model revealed that, in addition to macrophages, infection with SARS-CoV-2 activates cGAS-STING signalling in endothelial cells through mitochondrial DNA release, which leads to cell death and type I IFN production. In mice, pharmacological inhibition of STING reduces severe lung inflammation induced by SARS-CoV-2 and improves disease outcome. Collectively, our study establishes a mechanistic basis of pathological type I IFN responses in COVID-19 and reveals a principle for the development of host-directed therapeutics.
10.1038/s41586-022-04421-w
The gut microbiota prime systemic antiviral immunity via the cGAS-STING-IFN-I axis.
Immunity
The microbiota are vital for immune homeostasis and provide a competitive barrier to bacterial and fungal pathogens. Here, we investigated how gut commensals modulate systemic immunity and response to viral infection. Antibiotic suppression of the gut microbiota reduced systemic tonic type I interferon (IFN-I) and antiviral priming. The microbiota-driven tonic IFN-I-response was dependent on cGAS-STING but not on TLR signaling or direct host-bacteria interactions. Instead, membrane vesicles (MVs) from extracellular bacteria activated the cGAS-STING-IFN-I axis by delivering bacterial DNA into distal host cells. DNA-containing MVs from the gut microbiota were found in circulation and promoted the clearance of both DNA (herpes simplex virus type 1) and RNA (vesicular stomatitis virus) viruses in a cGAS-dependent manner. In summary, this study establishes an important role for the microbiota in peripheral cGAS-STING activation, which promotes host resistance to systemic viral infections. Moreover, it uncovers an underappreciated risk of antibiotic use during viral infections.
10.1016/j.immuni.2022.04.006
Mitochondrial Damage Causes Inflammation via cGAS-STING Signaling in Acute Kidney Injury.
Maekawa Hiroshi,Inoue Tsuyoshi,Ouchi Haruki,Jao Tzu-Ming,Inoue Reiko,Nishi Hiroshi,Fujii Rie,Ishidate Fumiyoshi,Tanaka Tetsuhiro,Tanaka Yosuke,Hirokawa Nobutaka,Nangaku Masaomi,Inagi Reiko
Cell reports
Acute kidney injury (AKI) is characterized by mitochondrial dysfunction and activation of the innate immune system. The cyclic GMP-AMP synthase (cGAS) stimulator of interferon genes (STING) pathway detects cytosolic DNA and induces innate immunity. Here, we investigate the role of mitochondrial damage and subsequent activation of the cGAS-STING pathway using a genetically engineered animal model of cisplatin-induced AKI and cultured tubular cells. Cisplatin induced mtDNA leakage into the cytosol-probably through BCL-2-like protein 4 (BAX) pores in the mitochondrial outer membrane-in tubules, with subsequent activation of the cGAS-STING pathway, thereby triggering inflammation and AKI progression, which is improved in STING-deficient mice. STING knockdown in cultured tubular cells ameliorates inflammatory responses induced by cisplatin. mtDNA depletion and repletion studies support tubular inflammatory responses via the cGAS-STING signal activation by cytosolic mtDNA. Therefore, we conclude that mitochondrial dysfunction and subsequent activation of the mtDNA-cGAS-STING pathway is a critical regulator of kidney injury.
10.1016/j.celrep.2019.09.050
Redox homeostasis maintained by GPX4 facilitates STING activation.
Jia Mutian,Qin Danhui,Zhao Chunyuan,Chai Li,Yu Zhongxia,Wang Wenwen,Tong Li,Lv Lin,Wang Yuanyuan,Rehwinkel Jan,Yu Jinming,Zhao Wei
Nature immunology
Stimulator-of-interferon genes (STING) is vital for sensing cytosolic DNA and initiating innate immune responses against microbial infection and tumors. Redox homeostasis is the balance of oxidative and reducing reactions present in all living systems. Yet, how the intracellular redox state controls STING activation is unclear. Here, we show that cellular redox homeostasis maintained by glutathione peroxidase 4 (GPX4) is required for STING activation. GPX4 deficiency enhanced cellular lipid peroxidation and thus specifically inhibited the cGAS-STING pathway. Concordantly, GPX4 deficiency inhibited herpes simplex virus-1 (HSV-1)-induced innate antiviral immune responses and promoted HSV-1 replication in vivo. Mechanistically, GPX4 inactivation increased production of lipid peroxidation, which led to STING carbonylation at C88 and inhibited its trafficking from the endoplasmic reticulum (ER) to the Golgi complex. Thus, cellular stress-induced lipid peroxidation specifically attenuates the STING DNA-sensing pathway, suggesting that GPX4 facilitates STING activation by maintaining redox homeostasis of lipids.
10.1038/s41590-020-0699-0
Mitochondrial Damage and Activation of the STING Pathway Lead to Renal Inflammation and Fibrosis.
Cell metabolism
Fibrosis is the final common pathway leading to end-stage renal failure. By analyzing the kidneys of patients and animal models with fibrosis, we observed a significant mitochondrial defect, including the loss of the mitochondrial transcription factor A (TFAM) in kidney tubule cells. Here, we generated mice with tubule-specific deletion of TFAM (Ksp-Cre/Tfam). While these mice developed severe mitochondrial loss and energetic deficit by 6 weeks of age, kidney fibrosis, immune cell infiltration, and progressive azotemia causing death were only observed around 12 weeks of age. In renal cells of TFAM KO (knockout) mice, aberrant packaging of the mitochondrial DNA (mtDNA) resulted in its cytosolic translocation, activation of the cytosolic cGAS-stimulator of interferon genes (STING) DNA sensing pathway, and thus cytokine expression and immune cell recruitment. Ablation of STING ameliorated kidney fibrosis in mouse models of chronic kidney disease, demonstrating how TFAM sequesters mtDNA to limit the inflammation leading to fibrosis.
10.1016/j.cmet.2019.08.003
Interferon-dependent SLC14A1 cancer-associated fibroblasts promote cancer stemness via WNT5A in bladder cancer.
Cancer cell
Cancer-associated fibroblasts (CAFs) play a role in response to cancer treatment and patient prognosis. CAFs show phenotypic and functional heterogeneity and differ widely in tumors of different tissue origin. Here, we use single-cell RNA sequencing of bladder cancer (BC) patient samples and report a CAF subpopulation characterized by overexpression of the urea transporter SLC14A1. This population is induced by interferon signaling and confers stemness to BC cells via the WNT5A paracrine pathway. Activation of cGAS-STING signaling in tumor cells drives interferon production, thereby revealing a link between cGAS-STING signaling and SLC14A1 CAF differentiation. Furthermore, the inhibition of SLC14A1 CAF formation via targeting of STAT1 or STING sensitizes tumor cells to chemotherapy. More important, BC patients with high proportions of intratumoral SLC14A1 CAFs show cancer stage-independent poor outcome and a worse response rate to neoadjuvant chemotherapy or immunotherapy.
10.1016/j.ccell.2022.11.005
Cellular functions of cGAS-STING signaling.
Trends in cell biology
Cyclic GMP-AMP (cGAMP) synthase (cGAS) senses misplaced genomic, mitochondrial, and microbial double-stranded DNA (dsDNA) to synthesize 2'3'-cGAMP that mobilizes stimulator of interferon genes (STING) to unleash innate immune responses, constituting a ubiquitous and effective surveillance system against tissue damage and pathogen invasion. However, imbalanced cGAS-STING signaling tethers considerably in infectious, autoimmune, malignant, fibrotic, and neurodegenerative diseases. Recently, multifaceted roles for cGAS-STING signaling at the cellular scale have emerged; these include autophagy, translation, metabolism homeostasis, cellular condensation, DNA damage repair, senescence, and cell death. These dominances adaptively shape cellular physiologies and impact disease pathogenesis. However, understanding how DNA sensing-initiated responses trigger these diverse cellular processes remains an outstanding challenge. In this review we discuss recent developments of cellular physiological states controlled by cGAS-STING machinery, as well as their disease relevance and underlying mechanisms, canonical or noncanonical. Ultimately, exploiting these cellular functions and mechanisms may represent promising targets for disease therapeutics.
10.1016/j.tcb.2022.11.001
Autophagy induction via STING trafficking is a primordial function of the cGAS pathway.
Nature
Cyclic GMP-AMP (cGAMP) synthase (cGAS) detects infections or tissue damage by binding to microbial or self DNA in the cytoplasm. Upon binding DNA, cGAS produces cGAMP that binds to and activates the adaptor protein STING, which then activates the kinases IKK and TBK1 to induce interferons and other cytokines. Here we report that STING also activates autophagy through a mechanism that is independent of TBK1 activation and interferon induction. Upon binding cGAMP, STING translocates to the endoplasmic reticulum-Golgi intermediate compartment (ERGIC) and the Golgi in a process that is dependent on the COP-II complex and ARF GTPases. STING-containing ERGIC serves as a membrane source for LC3 lipidation, which is a key step in autophagosome biogenesis. cGAMP induced LC3 lipidation through a pathway that is dependent on WIPI2 and ATG5 but independent of the ULK and VPS34-beclin kinase complexes. Furthermore, we show that cGAMP-induced autophagy is important for the clearance of DNA and viruses in the cytosol. Interestingly, STING from the sea anemone Nematostella vectensis induces autophagy but not interferons in response to stimulation by cGAMP, which suggests that induction of autophagy is a primordial function of the cGAS-STING pathway.
10.1038/s41586-019-1006-9
TDP-43 Triggers Mitochondrial DNA Release via mPTP to Activate cGAS/STING in ALS.
Yu Chien-Hsiung,Davidson Sophia,Harapas Cassandra R,Hilton James B,Mlodzianoski Michael J,Laohamonthonkul Pawat,Louis Cynthia,Low Ronnie Ren Jie,Moecking Jonas,De Nardo Dominic,Balka Katherine R,Calleja Dale J,Moghaddas Fiona,Ni Erya,McLean Catriona A,Samson Andre L,Tyebji Shiraz,Tonkin Christopher J,Bye Christopher R,Turner Bradley J,Pepin Genevieve,Gantier Michael P,Rogers Kelly L,McArthur Kate,Crouch Peter J,Masters Seth L
Cell
Cytoplasmic accumulation of TDP-43 is a disease hallmark for many cases of amyotrophic lateral sclerosis (ALS), associated with a neuroinflammatory cytokine profile related to upregulation of nuclear factor κB (NF-κB) and type I interferon (IFN) pathways. Here we show that this inflammation is driven by the cytoplasmic DNA sensor cyclic guanosine monophosphate (GMP)-AMP synthase (cGAS) when TDP-43 invades mitochondria and releases DNA via the permeability transition pore. Pharmacologic inhibition or genetic deletion of cGAS and its downstream signaling partner STING prevents upregulation of NF-κB and type I IFN induced by TDP-43 in induced pluripotent stem cell (iPSC)-derived motor neurons and in TDP-43 mutant mice. Finally, we document elevated levels of the specific cGAS signaling metabolite cGAMP in spinal cord samples from patients, which may be a biomarker of mtDNA release and cGAS/STING activation in ALS. Our results identify mtDNA release and cGAS/STING activation as critical determinants of TDP-43-associated pathology and demonstrate the potential for targeting this pathway in ALS.
10.1016/j.cell.2020.09.020
DNA sensing by the cGAS-STING pathway in health and disease.
Motwani Mona,Pesiridis Scott,Fitzgerald Katherine A
Nature reviews. Genetics
The detection of pathogens through nucleic acid sensors is a defining principle of innate immunity. RNA-sensing and DNA-sensing receptors sample subcellular compartments for foreign nucleic acids and, upon recognition, trigger immune signalling pathways for host defence. Over the past decade, our understanding of how the recognition of nucleic acids is coupled to immune gene expression has advanced considerably, particularly for the DNA-sensing receptor cyclic GMP-AMP synthase (cGAS) and its downstream signalling effector stimulator of interferon genes (STING), as well as the molecular components and regulation of this pathway. Moreover, the ability of self-DNA to engage cGAS has emerged as an important mechanism fuelling the development of inflammation and implicating the cGAS-STING pathway in human inflammatory diseases and cancer. This detailed mechanistic and biological understanding is paving the way for the development and clinical application of pharmacological agonists and antagonists in the treatment of chronic inflammation and cancer.
10.1038/s41576-019-0151-1
A non-canonical cGAS-STING-PERK pathway facilitates the translational program critical for senescence and organ fibrosis.
Nature cell biology
Innate DNA sensing via the cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) mechanism surveys microbial invasion and cellular damage and thus participates in various human infectious diseases, autoimmune diseases and cancers. However, how DNA sensing rapidly and adaptively shapes cellular physiology is incompletely known. Here we identify the STING-PKR-like endoplasmic reticulum kinase (PERK)-eIF2α pathway, a previously unknown cGAS-STING mechanism, enabling an innate immunity control of cap-dependent messenger RNA translation. Upon cGAMP binding, STING at the ER binds and directly activates the ER-located kinase PERK via their intracellular domains, which precedes TBK1-IRF3 activation and is irrelevant to the unfolded protein response. The activated PERK phosphorylates eIF2α, forming an inflammatory- and survival-preferred translation program. Notably, this STING-PERK-eIF2α pathway is evolutionarily primitive and physiologically critical to cellular senescence and organ fibrosis. Pharmacologically or genetically targeting this non-canonical cGAS-STING pathway attenuated lung and kidney fibrosis. Collectively, the findings identify an alternative innate immune pathway and its critical role in organ fibrosis, report an innate immunity-directed translation program and suggest the therapeutic potential for targeting the STING-PERK pathway in treating fibrotic diseases.
10.1038/s41556-022-00894-z
cGAS-STING drives the IL-6-dependent survival of chromosomally instable cancers.
Nature
Chromosomal instability (CIN) drives cancer cell evolution, metastasis and therapy resistance, and is associated with poor prognosis. CIN leads to micronuclei that release DNA into the cytoplasm after rupture, which triggers activation of inflammatory signalling mediated by cGAS and STING. These two proteins are considered to be tumour suppressors as they promote apoptosis and immunosurveillance. However, cGAS and STING are rarely inactivated in cancer, and, although they have been implicated in metastasis, it is not known why loss-of-function mutations do not arise in primary tumours. Here we show that inactivation of cGAS-STING signalling selectively impairs the survival of triple-negative breast cancer cells that display CIN. CIN triggers IL-6-STAT3-mediated signalling, which depends on the cGAS-STING pathway and the non-canonical NF-κB pathway. Blockade of IL-6 signalling by tocilizumab, a clinically used drug that targets the IL-6 receptor (IL-6R), selectively impairs the growth of cultured triple-negative breast cancer cells that exhibit CIN. Moreover, outgrowth of chromosomally instable tumours is significantly delayed compared with tumours that do not display CIN. Notably, this targetable vulnerability is conserved across cancer types that express high levels of IL-6 and/or IL-6R in vitro and in vivo. Together, our work demonstrates pro-tumorigenic traits of cGAS-STING signalling and explains why the cGAS-STING pathway is rarely inactivated in primary tumours. Repurposing tocilizumab could be a strategy to treat cancers with CIN that overexpress IL-6R.
10.1038/s41586-022-04847-2
Structures and Mechanisms in the cGAS-STING Innate Immunity Pathway.
Immunity
Besides its role as the blueprint of life, DNA can also alert the cell to the presence of microbial pathogens as well as damaged or malignant cells. A major sensor of DNA that triggers the innate immune response is cyclic guanosine monophosphate (GMP)-adenosine monophosphate (AMP) (cGAMP) synthase (cGAS), which produces the second messenger cGAMP. cGAMP activates stimulator of interferon genes (STING), which activates a signaling cascade leading to the production of type I interferons and other immune mediators. Recent research has demonstrated an expanding role of the cGAS-cGAMP-STING pathway in many physiological and pathological processes, including host defense against microbial infections, anti-tumor immunity, cellular senescence, autophagy, and autoimmune and inflammatory diseases. Biochemical and structural studies have elucidated the mechanism of signal transduction in the cGAS pathway at the atomic resolution. This review focuses on the structural and mechanistic insights into the roles of cGAS and STING in immunity and diseases revealed by these recent studies.
10.1016/j.immuni.2020.05.013
Manganese is critical for antitumor immune responses via cGAS-STING and improves the efficacy of clinical immunotherapy.
Cell research
CD8 T cell-mediated cancer clearance is often suppressed by the interaction between inhibitory molecules like PD-1 and PD-L1, an interaction acts like brakes to prevent T cell overreaction under normal conditions but is exploited by tumor cells to escape the immune surveillance. Immune checkpoint inhibitors have revolutionized cancer therapeutics by removing such brakes. Unfortunately, only a minority of cancer patients respond to immunotherapies presumably due to inadequate immunity. Antitumor immunity depends on the activation of the cGAS-STING pathway, as STING-deficient mice fail to stimulate tumor-infiltrating dendritic cells (DCs) to activate CD8 T cells. STING agonists also enhance natural killer (NK) cells to mediate the clearance of CD8 T cell-resistant tumors. Therefore STING agonists have been intensively sought after. We previously discovered that manganese (Mn) is indispensable for the host defense against cytosolic dsDNA by activating cGAS-STING. Here we report that Mn is also essential in innate immune sensing of tumors and enhances adaptive immune responses against tumors. Mn-insufficient mice had significantly enhanced tumor growth and metastasis, with greatly reduced tumor-infiltrating CD8 T cells. Mechanically, Mn promoted DC and macrophage maturation and tumor-specific antigen presentation, augmented CD8 T cell differentiation, activation and NK cell activation, and increased memory CD8 T cells. Combining Mn with immune checkpoint inhibition synergistically boosted antitumor efficacies and reduced the anti-PD-1 antibody dosage required in mice. Importantly, a completed phase 1 clinical trial with the combined regimen of Mn and anti-PD-1 antibody showed promising efficacy, exhibiting type I IFN induction, manageable safety and revived responses to immunotherapy in most patients with advanced metastatic solid tumors. We propose that this combination strategy warrants further clinical translation.
10.1038/s41422-020-00395-4
Oxidized DNA fragments exit mitochondria via mPTP- and VDAC-dependent channels to activate NLRP3 inflammasome and interferon signaling.
Immunity
Mitochondrial DNA (mtDNA) escaping stressed mitochondria provokes inflammation via cGAS-STING pathway activation and, when oxidized (Ox-mtDNA), it binds cytosolic NLRP3, thereby triggering inflammasome activation. However, it is unknown how and in which form Ox-mtDNA exits stressed mitochondria in non-apoptotic macrophages. We found that diverse NLRP3 inflammasome activators rapidly stimulated uniporter-mediated calcium uptake to open mitochondrial permeability transition pores (mPTP) and trigger VDAC oligomerization. This occurred independently of mtDNA or reactive oxygen species, which induce Ox-mtDNA generation. Within mitochondria, Ox-mtDNA was either repaired by DNA glycosylase OGG1 or cleaved by the endonuclease FEN1 to 500-650 bp fragments that exited mitochondria via mPTP- and VDAC-dependent channels to initiate cytosolic NLRP3 inflammasome activation. Ox-mtDNA fragments also activated cGAS-STING signaling and gave rise to pro-inflammatory extracellular DNA. Understanding this process will advance the development of potential treatments for chronic inflammatory diseases, exemplified by FEN1 inhibitors that suppressed interleukin-1β (IL-1β) production and mtDNA release in mice.
10.1016/j.immuni.2022.06.007
YAP/TAZ activity in stromal cells prevents ageing by controlling cGAS-STING.
Nature
Ageing is intimately connected to the induction of cell senescence, but why this is so remains poorly understood. A key challenge is the identification of pathways that normally suppress senescence, are lost during ageing and are functionally relevant to oppose ageing. Here we connected the structural and functional decline of ageing tissues to attenuated function of the master effectors of cellular mechanosignalling YAP and TAZ. YAP/TAZ activity declines during physiological ageing in stromal cells, and mimicking such decline through genetic inactivation of YAP/TAZ in these cells leads to accelerated ageing. Conversely, sustaining YAP function rejuvenates old cells and opposes the emergence of ageing-related traits associated with either physiological ageing or accelerated ageing triggered by a mechano-defective extracellular matrix. Ageing traits induced by inactivation of YAP/TAZ are preceded by induction of tissue senescence. This occurs because YAP/TAZ mechanotransduction suppresses cGAS-STING signalling, to the extent that inhibition of STING prevents tissue senescence and premature ageing-related tissue degeneration after YAP/TAZ inactivation. Mechanistically, YAP/TAZ-mediated control of cGAS-STING signalling relies on the unexpected role of YAP/TAZ in preserving nuclear envelope integrity, at least in part through direct transcriptional regulation of lamin B1 and ACTR2, the latter of which is involved in building the peri-nuclear actin cap. The findings demonstrate that declining YAP/TAZ mechanotransduction drives ageing by unleashing cGAS-STING signalling, a pillar of innate immunity. Thus, sustaining YAP/TAZ mechanosignalling or inhibiting STING may represent promising approaches for limiting senescence-associated inflammation and improving healthy ageing.
10.1038/s41586-022-04924-6
The Cytosolic DNA-Sensing cGAS-STING Pathway in Cancer.
Cancer discovery
The recognition of DNA as an immune-stimulatory molecule is an evolutionarily conserved mechanism to initiate rapid innate immune responses against microbial pathogens. The cGAS-STING pathway was discovered as an important DNA-sensing machinery in innate immunity and viral defense. Recent advances have now expanded the roles of cGAS-STING to cancer. Highly aggressive, unstable tumors have evolved to co-opt this program to drive tumorigenic behaviors. In this review, we discuss the link between the cGAS-STING DNA-sensing pathway and antitumor immunity as well as cancer progression, genomic instability, the tumor microenvironment, and pharmacologic strategies for cancer therapy. SIGNIFICANCE: The cGAS-STING pathway is an evolutionarily conserved defense mechanism against viral infections. Given its role in activating immune surveillance, it has been assumed that this pathway primarily functions as a tumor suppressor. Yet, mounting evidence now suggests that depending on the context, cGAS-STING signaling can also have tumor and metastasis-promoting functions, and its chronic activation can paradoxically induce an immune-suppressive tumor microenvironment.
10.1158/2159-8290.CD-19-0761
Molecular mechanisms and cellular functions of cGAS-STING signalling.
Hopfner Karl-Peter,Hornung Veit
Nature reviews. Molecular cell biology
The cGAS-STING signalling axis, comprising the synthase for the second messenger cyclic GMP-AMP (cGAS) and the cyclic GMP-AMP receptor stimulator of interferon genes (STING), detects pathogenic DNA to trigger an innate immune reaction involving a strong type I interferon response against microbial infections. Notably however, besides sensing microbial DNA, the DNA sensor cGAS can also be activated by endogenous DNA, including extranuclear chromatin resulting from genotoxic stress and DNA released from mitochondria, placing cGAS-STING as an important axis in autoimmunity, sterile inflammatory responses and cellular senescence. Initial models assumed that co-localization of cGAS and DNA in the cytosol defines the specificity of the pathway for non-self, but recent work revealed that cGAS is also present in the nucleus and at the plasma membrane, and such subcellular compartmentalization was linked to signalling specificity of cGAS. Further confounding the simple view of cGAS-STING signalling as a response mechanism to infectious agents, both cGAS and STING were shown to have additional functions, independent of interferon response. These involve non-catalytic roles of cGAS in regulating DNA repair and signalling via STING to NF-κB and MAPK as well as STING-mediated induction of autophagy and lysosome-dependent cell death. We have also learnt that cGAS dimers can multimerize and undergo liquid-liquid phase separation to form biomolecular condensates that could importantly regulate cGAS activation. Here, we review the molecular mechanisms and cellular functions underlying cGAS-STING activation and signalling, particularly highlighting the newly emerging diversity of this signalling pathway and discussing how the specificity towards normal, damage-induced and infection-associated DNA could be achieved.
10.1038/s41580-020-0244-x
The cGAS-STING pathway as a therapeutic target in inflammatory diseases.
Nature reviews. Immunology
The cGAS-STING signalling pathway has emerged as a key mediator of inflammation in the settings of infection, cellular stress and tissue damage. Underlying this broad involvement of the cGAS-STING pathway is its capacity to sense and regulate the cellular response towards microbial and host-derived DNAs, which serve as ubiquitous danger-associated molecules. Insights into the structural and molecular biology of the cGAS-STING pathway have enabled the development of selective small-molecule inhibitors with the potential to target the cGAS-STING axis in a number of inflammatory diseases in humans. Here, we outline the principal elements of the cGAS-STING signalling cascade and discuss the general mechanisms underlying the association of cGAS-STING activity with various autoinflammatory, autoimmune and degenerative diseases. Finally, we outline the chemical nature of recently developed cGAS and STING antagonists and summarize their potential clinical applications.
10.1038/s41577-021-00524-z