加载中

    Extracellular vesicles derived from MSCs activates dermal papilla cell in vitro and promotes hair follicle conversion from telogen to anagen in mice. Rajendran Ramya Lakshmi,Gangadaran Prakash,Bak Soon Sun,Oh Ji Min,Kalimuthu Senthilkumar,Lee Ho Won,Baek Se Hwan,Zhu Liya,Sung Young Kwan,Jeong Shin Young,Lee Sang-Woo,Lee Jaetae,Ahn Byeong-Cheol Scientific reports Hair loss is a common medical problem. In this study, we investigated the proliferation, migration, and growth factor expression of human dermal papilla (DP) cells in the presence or absence of treatment with mesenchymal stem cell extracellular vesicles (MSC-EVs). In addition, we tested the efficacy of MSC-EV treatment on hair growth in an animal model. MSC-EV treatment increased DP cell proliferation and migration, and elevated the levels of Bcl-2, phosphorylated Akt and ERK. In addition; DP cells treated with MSC-EVs displayed increased expression and secretion of VEGF and IGF-1. Intradermal injection of MSC-EVs into C57BL/6 mice promoted the conversion from telogen to anagen and increased expression of wnt3a, wnt5a and versican was demonstrated. The first time our results suggest that MSC-EVs have a potential to activate DP cells, prolonged survival, induce growth factor activation in vitro, and promotes hair growth in vivo. 10.1038/s41598-017-15505-3
    Follicular dermal papilla structures by organization of epithelial and mesenchymal cells in interfacial polyelectrolyte complex fibers. Lim Tze Chiun,Leong Meng Fatt,Lu Hongfang,Du Chan,Gao Shujun,Wan Andrew C A,Ying Jackie Y Biomaterials The hair follicle is a regenerating organ that produces a new hair shaft during each growth cycle. Development and cycling of the hair follicle is governed by interactions between the epithelial and mesenchymal components. Therefore, development of an engineered 3D hair follicle would be useful for studying these interactions to identify strategies for treatment of hair loss. We have developed a technique suitable for assembly of different cell types in close proximity in fibrous hydrogel scaffolds with resolutions of ∼50 μm. By assembly of dermal papilla (DP) and keratinocytes, structures similar to the native hair bulb arrangement are formed. Gene expression of these constructs showed up-regulation of molecules involved in epithelial-mesenchymal interactions of the hair follicle. Implantation of the follicular structures in SCID mice led to the formation of hair follicle-like structures, thus demonstrating their hair inductive ability. The transparency of the fiber matrix and the small dimensions of the follicular structures allowed the direct quantitation of DP cell proliferation by confocal microscopy, clearly illustrating the promoting or inhibitory effects of hair growth regulating agents. Collectively, our results suggested a promising application of these 3D engineered follicular structures for in vitro screening and testing of drugs for hair growth therapy. 10.1016/j.biomaterials.2013.05.068
    Skin mesenchymal stem cells: prospects for clinical dermatology. Sellheyer Klaus,Krahl Dieter Journal of the American Academy of Dermatology Stem cell-based therapies are expected to have a great impact on the medicine of the 21st century. The focus of dermatologic stem cell research is on the epidermis and the hair follicle. In contrast, the characterization of stem cells in the mesenchymal compartments of the skin has largely escaped the attention of the dermatologic community. This is surprising because the dermis may represent a larger reservoir for adult stem cells than the epidermis and the hair follicle together. In 2001, mesenchymal stem cells residing within the dermis were first isolated. They have the capacity to differentiate into adipocytes, smooth muscle cells, osteocytes, chondrocytes, and even neurons and glia as well as hematopoietic cells of myeloid and erythroid lineage. The perifollicular connective tissue sheath and the papilla crystallize as the likely anatomic niche for these multipotent dermal cells. These previously unidentified mesenchymal stem cells have the potential to function as an easily accessible, autologous source for future stem cell transplantation. Potential therapeutic applications include the treatment of acute and steroid-refractory graft-versus-host disease, systemic lupus erythematosus resistant to currently available therapies, or idiopathic pulmonary fibrosis. The neuronal differentiation potential of cutaneous mesenchymal stem cells may also be exploited in the treatment of neurodegenerative disorders. The most immediate impact can be expected in the field of wound healing. In line with the cancer stem cell hypothesis, the potential contributions to dermatopathology include a conceptual understanding of mesenchymal skin-based neoplasms as evolving from a genetically altered dermal stem cell clone. 10.1016/j.jaad.2009.09.022
    Androgens modify Wnt agonists/antagonists expression balance in dermal papilla cells preventing hair follicle stem cell differentiation in androgenetic alopecia. Leirós Gustavo José,Ceruti Julieta María,Castellanos María Lía,Kusinsky Ana Gabriela,Balañá María Eugenia Molecular and cellular endocrinology In androgenetic alopecia, androgens impair dermal papilla-induced hair follicle stem cell (HFSC) differentiation inhibiting Wnt signaling. Wnt agonists/antagonists balance was analyzed after dihydrotestosterone (DHT) stimulation in androgen-sensitive dermal papilla cells (DPC) cultured as spheroids or monolayer. In both culture conditions, DHT stimulation downregulated Wnt5a and Wnt10b mRNA while the Wnt antagonist Dkk-1 was upregulated. Notably, tissue architecture of DPC-spheroids lowers Dkk-1 and enhances Wnt agonists' basal expression; probably contributing to DPC inductivity. The role of Wnt agonists/antagonists as mediators of androgen inhibition of DPC-induced HFSC differentiation was evaluated. Inductive DPC-conditioned medium supplemented with DKK-1 impaired HFSC differentiation mimicking androgens' action. This effect was associated with inactivation of Wnt/β-catenin pathway in differentiating HFSC by both DPC-conditioned media. Moreover, addition of WNT10b to DPC-medium conditioned with DHT, overcame androgen inhibition of HFSC differentiation. Our results identify DKK1 and WNT10b as paracrine factors which modulate the HFSC differentiation inhibition involved in androgen-driven balding. 10.1016/j.mce.2016.10.018
    The Mesenchymal Niche of the Hair Follicle Induces Regeneration by Releasing Primed Progenitors from Inhibitory Effects of Quiescent Stem Cells. Avigad Laron Efrat,Aamar Emil,Enshell-Seijffers David Cell reports The mechanisms by which stem cell (SC) quiescence is regulated to allow normal regeneration are poorly understood. Here, we show that the mesenchymal niche of the hair follicle, the dermal papilla (DP), governs the properties of quiescent SCs in the bulge despite its relatively distant location. The DP induces regeneration by downregulating bulge-dependent inhibitory effects that restrain the intrinsic proliferation features of primed progenitors. Once regeneration initiates, the DP orchestrates Shh expression in primed-progenitor descendants by an autoregulatory circuit to restrict Shh expression to the DP vicinity and to confine Shh levels to act only on nearby cells. As the DP moves away from the bulge, quiescent SCs are exposed to Shh transiently. This ensures a short period of quiescent SC activation required for normal regeneration. Furthermore, our findings show that Shh signaling in the DP fine-tunes Wnt signaling activity and reveal the importance of signaling cross talk in coordinating regeneration pace. 10.1016/j.celrep.2018.06.084
    Comparative analysis of paracrine factor expression in human adult mesenchymal stem cells derived from bone marrow, adipose, and dermal tissue. Hsiao Sarah Tzu-Feng,Asgari Azar,Lokmic Zerina,Sinclair Rodney,Dusting Gregory James,Lim Shiang Yong,Dilley Rodney James Stem cells and development Human adult mesenchymal stem cells (MSCs) support the engineering of functional tissue constructs by secreting angiogenic and cytoprotective factors, which act in a paracrine fashion to influence cell survival and vascularization. MSCs have been isolated from many different tissue sources, but little is known about how paracrine factor secretion varies between different MSC populations. We evaluated paracrine factor expression patterns in MSCs isolated from adipose tissue (ASCs), bone marrow (BMSCs), and dermal tissues [dermal sheath cells (DSCs) and dermal papilla cells (DPCs)]. Specifically, mRNA expression analysis identified insulin-like growth factor-1 (IGF-1), vascular endothelial growth factor-D (VEGF-D), and interleukin-8 (IL-8) to be expressed at higher levels in ASCs compared with other MSC populations whereas VEGF-A, angiogenin, basic fibroblast growth factor (bFGF), and nerve growth factor (NGF) were expressed at comparable levels among the MSC populations examined. Analysis of conditioned media (CM) protein confirmed the comparable level of angiogenin and VEGF-A secretion in all MSC populations and showed that DSCs and DPCs produced significantly higher concentrations of leptin. Functional assays examining in vitro angiogenic paracrine activity showed that incubation of endothelial cells in ASC(CM) resulted in increased tubulogenic efficiency compared with that observed in DPC(CM). Using neutralizing antibodies we concluded that VEGF-A and VEGF-D were 2 of the major growth factors secreted by ASCs that supported endothelial tubulogenesis. The variation in paracrine factors of different MSC populations contributes to different levels of angiogenic activity and ASCs maybe preferred over other MSC populations for augmenting therapeutic approaches dependent upon angiogenesis. 10.1089/scd.2011.0674
    Human Mesenchymal Stem Cell-Derived Conditioned Media for Hair Regeneration Applications. Ramdasi Sushilkumar,Tiwari Shashi Kant Journal of stem cells Hair loss can have major psychological impact on affected population belonging to varied ethnic background. Hair is a mini organ in itself and serves many distinguishing functions ranging from maintaining body temperature to promoting social interactions. Major cause of hair loss is androgenic alopecia. Hair follicles possess receptor for androgen. However, DHT (Dihydrotestosterone) in excess results into shrinkage of hair follicle affecting hair growth adversely. The present review is focused on etiology of hair loss, traditional treatment approach and their limitations with side effects with special emphasis on unique properties of stem cells, favourable growth factors secreted by stem cells and strategies to enhance favourable growth factor/cytokine production for hair loss therapeutics. We discussed in details the present available treatment options for hair loss like drugs (Finasteride and Minoxidil), follicular hair transplant, laser therapy and serum therapy. These treatment options have their own disadvantages and side effects with appropriate alerts from regulatory authorities. The side effects of these modalities cannot be ignored and demands alternate therapy approach with less or no side effects. We feel that the stem cell therapy is advancing and is a promising modality in near future owing to its advantages and promising outcomes. This review article discusses possible stem cell therapy for hair regrowth and its advantages. We focused on use of conditioned media derived from stem cells instead of using stem cells directly for the therapy.
    Adult bone-marrow-derived mesenchymal stem cells contribute to wound healing of skin appendages. Li Haihong,Fu Xiaobing,Ouyang Yunshu,Cai Cunliang,Wang Jun,Sun Tongzhu Cell and tissue research Adult bone-marrow-derived mesenchymal stem cells (MSCs) are well-established as having the capacity to differentiate into cells with mesodermal, ectodermal, and endodermal characteristics and can leave their niche to home toward and engraft within foreign tissues. To investigate whether adult MSCs contribute to the repair of skin appendages after injury, BrdU-labeled MSCs were co-cultured with heat-shocked confluent sweat gland cells (SGCs) in vitro and later intravenously injected into full-thickness skin wounds in rats. When adult MSCs were co-cultured with heat-shocked SGCs, a subset of adult MSCs differentiated into SGCs, the percentage of differentiation being enhanced by epidermal growth factor and the injured microenviroment, but weakened by PD98059. The ERK (extracellular signal-regulated kinase) pathway, especially pERK, was involved in the phenotype conversion of human MSCs into human SGC. Labeled MSCs were noted in hair follicles, sebaceous glands, blood vessels, and dermis in full-thickness wounds, and the incorporated cells in hair follicles and sebaceous glands were also positive for pan-cytokeratin. After wound healing, some labeled MSCs returned to the bone marrow, whereas other were retained in the dermis. We conclude that adult MSCs have the capacity to dock at specific sites, to contribute to wound healing of skin appendages, and to home toward marrow, and that engraftment of bone-marrow-derived cells is a functional event. 10.1007/s00441-006-0270-9
    LL-37 stimulates the functions of adipose-derived stromal/stem cells via early growth response 1 and the MAPK pathway. Yang Yoolhee,Choi Hyunju,Seon Mira,Cho Daeho,Bang Sa Ik Stem cell research & therapy BACKGROUND:LL-37 is a naturally occurring antimicrobial peptide found in the wound bed and assists wound repair. No published study has characterized the role of LL-37 in the function(s) of human mesenchymal stem cells (MSCs). This study investigated the functions of adipose-derived stromal/stem cells (ASCs) activated by LL-37 by performing both in vitro assays with cultured cells and in vivo assays with C57BL/6 mice with hair loss. METHODS:Human ASCs were isolated from healthy donors with written informed consent. To examine the effects of LL-37 on ASC function, cell proliferation and migration were measured by a cell counting kit (CCK-8) and a Transwell migration assay. Early growth response 1 (EGR1) mRNA expression was determined by microarray and real-time PCR analyses. The protein levels of EGR1 and regenerative factors were analyzed by specific enzyme-linked immunosorbent assays and western blotting. RESULTS:LL-37 treatment enhanced the proliferation and migration of human ASCs expressing formyl peptide receptor like-1. Microarray and real-time PCR data showed that EGR1 expression was rapidly and significantly increased by LL-37 treatment. LL-37 treatment also enhanced the production of EGR1. Moreover, small interfering RNA-mediated knockdown of EGR1 inhibited LL-37-enhanced ASC proliferation and migration. Activation of mitogen-activated protein kinases (MAPKs) was essential not only for LL-37-enhanced ASC proliferation and migration but also EGR1 expression; treatment with a specific inhibitor of extracellular signal-regulated kinase, p38, or c-Jun N-terminal kinase blocked the stimulatory effect of LL-37. EGR1 has a strong paracrine capability and can influence angiogenic factors in ASCs; therefore, we evaluated the secretion levels of vascular endothelial growth factor, thymosin beta-4, monocyte chemoattractant protein-1, and stromal cell-derived factor-1. LL-37 treatment increased the secretion of these regenerative factors. Moreover, treatment with the conditioned medium of ASCs pre-activated with LL-37 strongly promoted hair growth in vivo. CONCLUSIONS:These findings show that LL-37 increases EGR1 expression and MAPK activation, and that preconditioning of ASCs with LL-37 has a strong potential to promote hair growth in vivo. This study correlates LL-37 with MSC functions (specifically those of ASCs), including cell expansion, cell migration, and paracrine actions, which may be useful in terms of implantation for tissue regeneration. 10.1186/s13287-016-0313-4
    VEGF165 induces differentiation of hair follicle stem cells into endothelial cells and plays a role in in vivo angiogenesis. Quan Renfu,Du Weibin,Zheng Xuan,Xu Shichao,Li Qiang,Ji Xing,Wu Ximei,Shao Rongxue,Yang Disheng Journal of cellular and molecular medicine Within the vascular endothelial growth factor (VEGF) family of five subtypes, VEGF165 secreted by endothelial cells has been identified to be the most active and widely distributed factor that plays a vital role in courses of angiogenesis, vascularization and mesenchymal cell differentiation. Hair follicle stem cells (HFSCs) can be harvested from the bulge region of the outer root sheath of the hair follicle and are adult stem cells that have multi-directional differentiation potential. Although the research on differentiation of stem cells (such as fat stem cells and bone marrow mesenchymal stem cells) to the endothelial cells has been extensive, but the various mechanisms and functional forms are unclear. In particular, study on HFSCs' directional differentiation into vascular endothelial cells using VEGF165 has not been reported. In this study, VEGF165 was used as induction factor to induce the differentiation from HFSCs into vascular endothelial cells, and the results showed that Notch signalling pathway might affect the differentiation efficiency of vascular endothelial cells. In addition, the in vivo transplantation experiment provided that HFSCs could promote angiogenesis, and the main function is to accelerate host-derived neovascularization. Therefore, HFSCs could be considered as an ideal cell source for vascular tissue engineering and cell transplantation in the treatment of ischaemic diseases. 10.1111/jcmm.13089
    Explant culture: An advantageous method for isolation of mesenchymal stem cells from human tissues. Hendijani Fatemeh Cell proliferation Mesenchymal stem cell (MSC) research progressively moves towards clinical phases. Accordingly, a wide range of different procedures were presented in the literature for MSC isolation from human tissues; however, there is not yet any close focus on the details to offer precise information for best method selection. Choosing a proper isolation method is a critical step in obtaining cells with optimal quality and yield in companion with clinical and economical considerations. In this concern, current review widely discusses advantages of omitting proteolysis step in isolation process and presence of tissue pieces in primary culture of MSCs, including removal of lytic stress on cells, reduction of in vivo to in vitro transition stress for migrated/isolated cells, reduction of price, processing time and labour, removal of viral contamination risk, and addition of supporting functions of extracellular matrix and released growth factors from tissue explant. In next sections, it provides an overall report of technical highlights and molecular events of explant culture method for isolation of MSCs from human tissues including adipose tissue, bone marrow, dental pulp, hair follicle, cornea, umbilical cord and placenta. Focusing on informative collection of molecular and methodological data about explant methods can make it easy for researchers to choose an optimal method for their experiments/clinical studies and also stimulate them to investigate and optimize more efficient procedures according to clinical and economical benefits. 10.1111/cpr.12334
    Application of mesenchymal stem cells derived from bone marrow and umbilical cord in human hair multiplication. Yoo Bo-Young,Shin Youn-Ho,Yoon Hee-Hoon,Seo Young-Kwon,Song Kye-Yong,Park Jung-Keug Journal of dermatological science BACKGROUND:The methods currently used for treating alopecia have some limitations. The drug treatment is so temporary that medication discontinuance may progress depilation immediately. The number of hair transplantation restricts because total transplantable hair number is no increase. To overcome these problems, researchers have attempted the in vitro culturing of hair follicle cells and implanting these cells in the treatment area. OBJECTIVES:In the present study, culture-expanded mesenchymal stem cells (MSCs) that do not possess aggregative activity were used to produce self-aggregated cell-aggregated spheroidal dermal papilla like tissues (DPLTs) with the aid of a special culture condition in vitro, and hair bulb structure inductive capacity pertinent to the aggregative activity was then evaluated. Then hair inducing activity of self-aggregated DPLTs employing MSCs was tested in athymic mice. METHODS:We isolated and cultivated MSCs from bone marrow and umbilical cord in vitro. After propagated MSCs underwent preconditioning in dermal papilla forming medium (DPFM), then subcultured MSCs formed self-aggregated DPLTs. We compared real human scalp dermal papilla cells (hDPCs) with DPLTs employing DPCs, DPLTs employing hBM-MSCs and DPLTs employing hUC-MSCs. RESULTS:Light microscopy and immunohistochemical staining were used to confirm that reconstructed DPLTs generated by this procedure had the size, shape, and expression of protein similar to actual DP. CONCLUSIONS:The DPLTs have the same hair bulb structure inductive ability as natural DPLTs in vitro. Transplanted DPLTs can induce new hair follicle in athymic mice. As a result, UC-MSCs and BM-MSCs may be an applicable and novel cell source for the generation of human hair cell therapy. 10.1016/j.jdermsci.2010.08.017
    Comparative characterization of hair follicle dermal stem cells and bone marrow mesenchymal stem cells. Hoogduijn Martin J,Gorjup Erwin,Genever Paul G Stem cells and development We compared the growth and differentiation characteristics of hair follicle-derived dermal stem cells with bone marrow mesenchymal stem cells (MSCs). Follicular dermal cells were isolated from whisker hairs of Wistar rats and bone marrow MSCs were isolated from femora of the same animals. The adherent hair follicle dermal cells showed a fibroblastic morphology in serum-containing culture medium, were CD44(+), CD73(+), CD90(+), and CD34(), and had a population doubling time of 27 h. MSCs isolated from the bone marrow showed a similar morphology and population doubling time and expressed the same cell-surface markers. Following exposure to appropriate induction stimuli, both cell populations had the capacity to differentiate into various mesenchymal lineages, such as osteoblasts, adipocytes, chondrocytes, and myocytes and expressed neuroprogenitor cell markers. The rate and extent of differentiation were remarkably similar for both hair follicleand bone marrow-derived cells, whereas interfollicular dermal cells failed to differentiate. We identified telomerase activity in follicle dermal stem cells and marrow MSCs and demonstrated that they were capable of clonal expansion. In ex vivo analyses, we identified the presence of putative dermal stem cells in the dermal sheath and dermal papillae of the hair follicle. Consequently, the hair follicle may represent a suitable, accessible source for MSCs. 10.1089/scd.2006.15.49
    DLX3 promotes bone marrow mesenchymal stem cell proliferation through H19/miR-675 axis. Zhao Na,Zeng Li,Liu Yang,Han Dong,Liu Haochen,Xu Jian,Jiang Yuxi,Li Cuiying,Cai Tao,Feng Hailan,Wang Yixiang Clinical science (London, England : 1979) The underlying molecular mechanism of the increased bone mass phenotype in Tricho-dento-osseous (TDO) syndrome remains largely unknown. Our previous study has shown that the TDO point mutation c.533A>G, Q178R in DLX3 could increase bone density in a TDO patient and transgenic mice partially through delaying senescence in bone marrow mesenchymal stem cells (BMSCs). In the present study, we provided a new complementary explanation for TDO syndrome: the (Q178R) mutation increased BMSCs proliferation through H19/miR-675 axis. We found that BMSCs derived from the TDO patient (TDO-BMSCs) had stronger proliferation ability than controls by clonogenic and CCK-8 assays. Next, experiments of overexpression and knockdown of wild-type DLX3 via lentiviruses in normal BMSCs confirmed the results by showing its negative role in cell proliferation. Through validated high-throughput data, we found that the mutation reduced the expression of H19 and its coexpression product miR-675 in BMSCs. Function and rescue assays suggested that , long noncoding RNA H19, and miR-675 are negative factors in modulation of BMSCs proliferation as well as NOMO1 expression. The original higher proliferation rate and the expression of in TDO-BMSCs were suppressed after H19 restoration. Collectively, it indicates that DLX3 regulates BMSCs proliferation through H19/miR-675 axis. Moreover, the increased expression of NOMO1 and decreased H19/miR-675 expression in (Q178R) transgenic mice, accompanying with accrual bone mass and density detected by micro-CT, further confirmed our hypothesis. In summary, we, for the first time, demonstrate that DLX3 mutation interferes with bone formation partially through H19/miR-675/NOMO1 axis in TDO syndrome. 10.1042/CS20171231
    [Experimental study on the effect of desferrioxamine on targeted homing and angiogenesis of bone marrow mesenchymal stem cells]. Zheng Shengwu,Du Zijing,Huang Xiongmei,Zhuang Jing,Lin Genhui,Yang Yu,Ding Xin,Zan Tao Zhongguo xiu fu chong jian wai ke za zhi = Zhongguo xiufu chongjian waike zazhi = Chinese journal of reparative and reconstructive surgery Objective:To investigate whether desferrioxamine (DFO) can enhance the homing of bone marrow mesenchymal stem cells (BMSCs) and improve neovascularization in random flaps of rats. Methods:BMSCs and fibroblasts (FB) of luciferase transgenic Lewis rats were isolated and cultured. Forty 4-week-old Lewis male rats were used to form a 10 cm×3 cm rectangular flap on their back. The experimental animals were randomly divided into 4 groups with 10 rats in each group: in group A, 200 μL PBS were injected through retrobulbar venous plexus; in group B, 200 μL FB with a concentration of 1×10 cells/mL were injected; in group C, 200 μL BMSCs with a concentration of 1×10 cells/mL were injected; in group D, cells transplantation was the same as that in group C, after cells transplantation, DFO [100 mg/(kg·d)] were injected intraperitoneally for 7 days. On the 7th day after operation, the survival rate of flaps in each group was observed and calculated; the blood perfusion was observed by laser speckle imaging. Bioluminescence imaging was used to detect the distribution of transplanted cells in rats at 30 minutes and 1, 4, 7, and 14 days after operation. Immunofluorescence staining was performed at 7 days after operation to observe CD31 staining and count capillary density under 200-fold visual field and to detect the expressions of stromal cell derived factor 1 (SDF-1), epidermal growth factor (EGF), fibroblast growth factor (FGF), and Ki67. Transplanted BMSCs were labeled with luciferase antibody and observed by immunofluorescence staining whether they participated in the repair of injured tissues. Results:The necrosis boundary of ischemic flaps in each group was clear at 7 days after operation. The survival rate of flaps in groups C and D was significantly higher than that in groups A and B, and in group D than in group C ( <0.05). Laser speckle imaging showed that the blood perfusion units of flaps in groups C and D was significantly higher than that in groups A and B, and in group D than in group C ( <0.05). Bioluminescence imaging showed that BMSCs gradually migrated to the ischemia and hypoxia area and eventually distributed to the ischemic tissues. The photon signal of group D was significantly stronger than that of other groups at 14 days after operation ( <0.05). CD31 immunofluorescence staining showed that capillary density in groups C and D was significantly higher than that in groups A and B, and in group D than in group C ( <0.05). The expressions of SDF-1, EGF, FGF, and Ki67 in groups C and D were significantly stronger than those in groups A and B, and in group D than in group C. Luciferase-labeled BMSCs were expressed in the elastic layer of arteries, capillaries, and hair follicles at 7 days after transplantation. Conclusion:DFO can enhance the migration and homing of BMSCs to the hypoxic area of random flap, accelerate the differentiation of BMSCs in ischemic tissue, and improve the neovascularization of ischemic tissue. 10.7507/1002-1892.201809065
    Differentiation of Human Bone Marrow Mesenchymal Stem Cells to Hair Cells Using Growth Factors. Mahmoudian-Sani Mohammad-Reza,Hashemzadeh-Chaleshtori Morteza,Jami Mohammad-Saeid,Saidijam Massoud The international tinnitus journal OBJECTIVE:In this study, we attempted to differentiated human bone marrow-derived mesenchymal stem cells (hBMSCs) to auditory hair cells using growth factors. METHODS:Retinoic acid (RA), basic fibroblast growth factor (bFGF), and epidermal growth factor (EGF) were added to hBMSCs cell culture medium. The cells were evaluated morphologically and the expression of SOX2, POU4F3, MYO7A, and Calretinin at mRNA level and ATOH1 mRNA and protein expression. RESULTS:After treatment with the growth factors, the morphology of the cells did not change, but evaluation of gene expression at the mRNA level increased the expression of the ATOH1, SOX2, and POU4F3 markers. Growth factors increased the expression of ATOH1 at the protein level. The expression of calretinin showed decreased and MYO7A no significant change in expression. CONCLUSION:hBMSCs have the potential to differentiate to hair cell-like using the RA, bFGF, and EGF. 10.5935/0946-5448.20170030
    Paracrine TGF-β signaling counterbalances BMP-mediated repression in hair follicle stem cell activation. Oshimori Naoki,Fuchs Elaine Cell stem cell Hair follicle (HF) regeneration begins when communication between quiescent epithelial stem cells (SCs) and underlying mesenchymal dermal papillae (DP) generates sufficient activating cues to overcome repressive BMP signals from surrounding niche cells. Here, we uncover a hitherto unrecognized DP transmitter, TGF-β2, which activates Smad2/3 transiently in HFSCs concomitant with entry into tissue regeneration. This signaling is critical: HFSCs that cannot sense TGF-β exhibit significant delays in HF regeneration, whereas exogenous TGF-β2 stimulates HFSCs in vivo and in vitro. By engineering TGF-β- and BMP-reporter mice, we show that TGF-β2 signaling antagonizes BMP signaling in HFSCs but not through competition for limiting Smad4-coactivator. Rather, our microarray, molecular, and genetic studies unveil Tmeff1 as a direct TGF-β2/Smad2/3 target gene, expressed by activated HFSCs and physiologically relevant in restricting and lowering BMP thresholds in the niche. Connecting BMP activity to an SC's response to TGF-βs may explain why these signaling factors wield such diverse cellular effects. 10.1016/j.stem.2011.11.005
    TSA restores hair follicle-inductive capacity of skin-derived precursors. Guo Ling,Wang Xiaoxiao,Yuan Jifan,Zhu Meishu,Fu Xiaobing,Xu Ren-He,Wu Chuanyue,Wu Yaojiong Scientific reports The genesis of the hair follicle relies on signals derived from mesenchymal cells in the dermis during skin morphogenesis and regeneration. Multipotent skin-derived precursors (SKPs), which exhibit long term proliferation potential when being cultured in spheroids, have been shown to induce hair genesis and hair follicle regeneration in mice, implying a therapeutic potential of SKPs in hair follicle regeneration and bioengineering. However, the hair-inductive property of SKPs declines progressively upon ex vivo culture expansion, suggesting that the expressions of the genes responsible for hair induction are epigenetically unstable. In this study, we found that TSA markedly alleviated culture expansion induced SKP senescence, increased the expression and activity of alkaline phosphatase (AP) in the cells and importantly restored the hair inductive capacity of SKPs. TSA increased the acetylation level of histone H3, including the K19/14 sites in the promoter regions of bone morphogenetic proteins (BMPs) genes, which were associated with elevated gene expression and BMP signaling activity, suggesting a potential attribution of BMP pathway in TSA induced recovery of the hair inductive capacity of SKPs. 10.1038/s41598-019-39394-w
    Therapeutic potential of stem cells in skin repair and regeneration. Zhang Cui-ping,Fu Xiao-bing Chinese journal of traumatology = Zhonghua chuang shang za zhi Stem cells are defined by their capacity of self-renewal and multilineage differentiation, which make them uniquely situated to treat a broad spectrum of human diseases. Based on a series of remarkable studies in several fields of regenerative medicine, their application is not too far from the clinical practice. Full-thickness burns and severe traumas can injure skin and its appendages, which protect animals from water loss, temperature change, radiation, trauma and infection. In adults, the normal outcome of repair of massive full-thickness burns is fibrosis and scarring without any appendages, such as hair follicles, sweat and sebaceous glands. Perfect skin regeneration has been considered impossible due to the limited regenerative capacity of epidermal keratinocytes, which are generally thought to be the key source of the epidermis and skin appendages. Currently, researches on stem cells, such as epidermal stem cells, dermal stem cells, mesenchymal stem cells from bone marrow, and embryonic stem cells, bring promise to functional repair of skin after severe burn injury, namely, complete regeneration of skin and its appendages. In this study, we present an overview of the most recent advances in skin repair and regeneration by using stem cells. 10.1016/s1008-1275(08)60045-0
    Human umbilical cord blood mesenchymal stem cells engineered to overexpress growth factors accelerate outcomes in hair growth. Bak Dong Ho,Choi Mi Ji,Kim Soon Re,Lee Byung Chul,Kim Jae Min,Jeon Eun Su,Oh Wonil,Lim Ee Seok,Park Byung Cheol,Kim Moo Joong,Na Jungtae,Kim Beom Joon The Korean journal of physiology & pharmacology : official journal of the Korean Physiological Society and the Korean Society of Pharmacology Human umbilical cord blood mesenchymal stem cells (hUCB-MSCs) are used in tissue repair and regeneration; however, the mechanisms involved are not well understood. We investigated the hair growth-promoting effects of hUCB-MSCs treatment to determine whether hUCB-MSCs enhance the promotion of hair growth. Furthermore, we attempted to identify the factors responsible for hair growth. The effects of hUCB-MSCs on hair growth were investigated , and hUCB-MSCs advanced anagen onset and hair follicle neogeneration. We found that hUCB-MSCs co-culture increased the viability and up-regulated hair induction-related proteins of human dermal papilla cells (hDPCs) . A growth factor antibody array revealed that secretory factors from hUCB-MSCs are related to hair growth. Insulin-like growth factor binding protein-1 (IGFBP-1) and vascular endothelial growth factor (VEGF) were increased in co-culture medium. Finally, we found that IGFBP-1, through the co-localization of an IGF-1 and IGFBP-1, had positive effects on cell viability; VEGF secretion; expression of alkaline phosphatase (ALP), CD133, and β-catenin; and formation of hDPCs 3D spheroids. Taken together, these data suggest that hUCB-MSCs promote hair growth via a paracrine mechanism. 10.4196/kjpp.2018.22.5.555
    Sericin hydrogels promote skin wound healing with effective regeneration of hair follicles and sebaceous glands after complete loss of epidermis and dermis. Qi Chao,Xu Luming,Deng Yan,Wang Guobin,Wang Zheng,Wang Lin Biomaterials science Full-thickness skin injury affects millions of people worldwide each year. It often leads to scar formation and loss of skin appendages even after clinical treatment. The majority of wound dressings currently used cannot achieve scarless skin regeneration with complete recovery of appendages such as hair follicles and sebaceous glands. Functional regeneration of these skin appendages is a great challenge. However, we achieved this goal by the successful development and utilization of a photo-crosslinkable sericin hydrogel (SMH) as a new type of wound dressing for repairing full-thickness skin injury. SMH implanted in a mouse full-thickness skin injury model promoted scarless wound healing with effective regeneration of hair follicles and sebaceous glands. By employing techniques of molecular biology, biochemistry, and in vivo cell tracing, we revealed the underlying repair mechanisms: SMH inhibited inflammation, stimulated angiogenesis during healing process, prevented scar tissue formation via regulating the expressions of TGF-β1 and TGF-β3, and recruited mesenchymal stem cells to injury sites for regeneration of skin appendages. Collectively, in this study, we developed a sericin-based hydrogel as a wound dressing for full-thickness skin injury repair, uncovered the functional roles of sericin hydrogels in promoting scarless skin regeneration along with effective recovery of skin appendages, and thus unveiled sericin's potential for skin wound healing. 10.1039/c8bm00934a
    Therapeutic strategy for hair regeneration: hair cycle activation, niche environment modulation, wound-induced follicle neogenesis, and stem cell engineering. Chueh Shan-Chang,Lin Sung-Jan,Chen Chih-Chiang,Lei Mingxing,Wang Ling Mei,Widelitz Randall,Hughes Michael W,Jiang Ting-Xin,Chuong Cheng Ming Expert opinion on biological therapy INTRODUCTION:There are major new advancements in the fields of stem cell biology, developmental biology, regenerative hair cycling, and tissue engineering. The time is ripe to integrate, translate, and apply these findings to tissue engineering and regenerative medicine. Readers will learn about new progress in cellular and molecular aspects of hair follicle development, regeneration, and potential therapeutic opportunities these advances may offer. AREAS COVERED:Here, we use hair follicle formation to illustrate this progress and to identify targets for potential strategies in therapeutics. Hair regeneration is discussed in four different categories: i) Intra-follicle regeneration (or renewal) is the basic production of hair fibers from hair stem cells and dermal papillae in existing follicles. ii) Chimeric follicles via epithelial-mesenchymal recombination to identify stem cells and signaling centers. iii) Extra-follicular factors including local dermal and systemic factors can modulate the regenerative behavior of hair follicles, and may be relatively easy therapeutic targets. iv) Follicular neogenesis means the de novo formation of new follicles. In addition, scientists are working to engineer hair follicles, which require hair-forming competent epidermal cells and hair-inducing dermal cells. EXPERT OPINION:Ideally self-organizing processes similar to those occurring during embryonic development should be elicited with some help from biomaterials. 10.1517/14712598.2013.739601
    Enhanced cutaneous wound healing by functional injectable thermo-sensitive chitosan-based hydrogel encapsulated human umbilical cord-mesenchymal stem cells. Xu Hongjie,Huang Shanghui,Wang Jingjing,Lan Yong,Feng Longbao,Zhu Meishu,Xiao Yang,Cheng Biao,Xue Wei,Guo Rui International journal of biological macromolecules Human umbilical cord-mesenchymal stem cells (hUCMSCs) can secrete a variety of cytokines and growth factors promoting wound repair. Hydrogel is suitable biomaterial to supply niche for cells adhesion and survival. This study constructed a functional injectable thermo-sensitive hydrogel (chitosan/glycerol phosphate sodium/cellulose nanocrystals, CS/GP/CNC) encapsulated hUCMSCs to repair full-thickness cutaneous wound. Addition of CNC to the CS/GP system not only accelerated the gel speed, but also greatly improved the mechanical properties of the gel and decreased degradation rate. The novel hydrogel was injectable and low toxicity. Histological detection showed that hydrogel-hUCMSCs combination significantly accelerated wound closure, microcirculation, tissue remodeling, re-epithelialization and hair follicle regeneration, and inhibited over-inflammation in the central and surrounding wounds. The hydrogel-hUCMSCs combination promoted collagen deposition and keratinocyte mature marker K1 expression, decreased inflammatory factors secretion namely TNF-α and IL-1β. The present data provides a potential strategy for treatment of non-healing chronic cutaneous wounds. 10.1016/j.ijbiomac.2019.06.246
    CXCL12/CXCR4 axis promotes mesenchymal stem cell mobilization to burn wounds and contributes to wound repair. Hu Changjiang,Yong Xin,Li Changzhu,Lü Muhan,Liu Dengqun,Chen Lin,Hu Jiongyu,Teng Miao,Zhang Dongxia,Fan Yahan,Liang Guangping The Journal of surgical research BACKGROUND:Bone marrow-derived mesenchymal stem cells (BM-MSCs) play a crucial role in tissue repair. Their role in thermal burn wound regeneration and the relevant mechanism, however, is rarely studied. METHODS:BM-MSCs from green fluorescent protein transgenic male mice were transfused to irradiated recipient female C57BL/6 mice. Twenty-one days later, the female mice were inflicted with burn wounds. The size of the burned area was measured by an in vivo fluorescence imaging system, and BM-MSC chemotaxis and epithelialization were estimated by fluorescence in situ hybridization and immunofluorescence technology. The expression of CXCL12 and CXCR4 in the wound margin was detected by enzyme-linked immunosorbent assay and immunohistochemistry. The importance of CXCL12/CXCR4 signaling in BM-MSC chemotaxis was further estimated by blocking CXCR4 in vivo and in vitro. RESULTS:In vivo imaging results showed that BM-MSCs migrated to the injured margins. Fluorescence in situ hybridization and immunofluorescence technology revealed that Y chromosome-positive cells derived from green fluorescent protein transgenic mice were detected to be colocalized with keratin protein. Enzyme-linked immunosorbent assay revealed increased levels of CXCL12 and CXCR4 protein in the wound sites of BM-MSC-treated chimeric mice after burn. Immunohistochemistry also disclosed that CXCL12 levels were elevated at postburn day 7 compared with day 0. Furthermore, pretreatment of the BM-MSCs with the CXCR4 antagonist AMD3100 significantly inhibited the mobilization of BM-MSCs in vitro and in vivo, which attenuated wound closure. CONCLUSION:BM-MSC migration to the burned margins promotes the epithelialization of the wound, and mobilization of BM-MSCs is mediated by CXCL12/CXCR4 signaling. 10.1016/j.jss.2013.01.019
    Human induced pluripotent stem cell-derived ectodermal precursor cells contribute to hair follicle morphogenesis in vivo. Veraitch Ophelia,Kobayashi Tetsuro,Imaizumi Yoichi,Akamatsu Wado,Sasaki Takashi,Yamanaka Shinya,Amagai Masayuki,Okano Hideyuki,Ohyama Manabu The Journal of investigative dermatology Well-orchestrated epithelial-mesenchymal interactions are crucial for hair follicle (HF) morphogenesis. In this study, ectodermal precursor cells (EPCs) with the capacity to cross talk with hair-inductive dermal cells were generated from human induced pluripotent stem cells (hiPSCs) and assessed for HF-forming ability in vivo. EPCs derived from three hiPSC lines generated with 4 or 3 factors (POU5F1, SOX2, KLF4 +/- MYC) mostly expressed keratin 18, a marker of epithelial progenitors. When cocultured with human dermal papilla (DP) cells, a 4 factor 201B7 hiPSC-EPC line upregulated follicular keratinocyte (KC) markers more significantly than normal human adult KCs (NHKCs) and other hiPSC-EPC lines. DP cells preferentially increased DP biomarker expression in response to this line. Interestingly, 201B7 hiPSCs were shown to be ectodermal/epithelial prone, and the derived EPCs were putatively in a wingless-type MMTV integration site family (WNT)-activated state. Importantly, co-transplantation of 201B7 hiPSC-EPCs, but not NHKCs, with trichogenic mice dermal cells into immunodeficient mice resulted in HF formation. Human HF stem cell markers were detected in reconstituted HFs; however, a low frequency of human-derived cells implied that hiPSC-EPCs contributed to HF morphogenesis via direct repopulation and non-cell autonomous activities. The current study suggests a, to our knowledge, previously unrecognized advantage of using hiPSCs to enhance epithelial-mesenchymal interactions in HF bioengineering. 10.1038/jid.2013.7
    PDGF signalling in the dermis and in dermal condensates is dispensable for hair follicle induction and formation. Rezza Amélie,Sennett Rachel,Tanguy Manon,Clavel Carlos,Rendl Michael Experimental dermatology Embryonic hair follicle (HF) induction and formation is dependent on signalling crosstalk between the dermis and specialized dermal condensates on the mesenchymal side and epidermal cells and incipient placodes on the epithelial side, but the precise nature and succession of signals remain unclear. Platelet-derived growth factor (PDGF) signalling is involved in the development of several organs and the maintenance of adult tissues, including HF regeneration in the hair cycle. As both PDGF receptors, PDGFRα and PDGFRβ, are expressed in embryonic dermis and dermal condensates, we explored in this study the role of PDGF signalling in HF induction and formation in the developing skin mesenchyme. We conditionally ablated both PDGF receptors with Tbx18(Cre) in early dermal condensates before follicle formation, and with Prx1-Cre broadly in the ventral dermis prior to HF induction. In both PDGFR double mutants, HF induction and formation ensued normally, and the pattern of HF formation and HF numbers were unaffected. These data demonstrate that mesenchymal PDGF signalling, either in the specialized niche or broadly in the dermis, is dispensable for HF induction and formation. 10.1111/exd.12672
    Mesenchymal-epithelial interactions during hair follicle morphogenesis and cycling. Sennett Rachel,Rendl Michael Seminars in cell & developmental biology Embryonic hair follicle induction and formation are regulated by mesenchymal-epithelial interactions between specialized dermal cells and epidermal stem cells that switch to a hair fate. Similarly, during postnatal hair growth, communication between mesenchymal dermal papilla cells and surrounding epithelial matrix cells coordinates hair shaft production. Adult hair follicle regeneration in the hair cycle again is thought to be controlled by activating signals originating from the mesenchymal compartment and acting on hair follicle stem cells. Although many signaling pathways are implicated in hair follicle formation and growth, the precise nature, timing, and intersection of these inductive and regulatory signals remains elusive. The goal of this review is to summarize our current understanding and to discuss recent new insights into mesenchymal-epithelial interactions during hair follicle morphogenesis and cycling. 10.1016/j.semcdb.2012.08.011
    Hair Follicle Morphogenesis in the Treatment of Mouse Full-Thickness Skin Defects Using Composite Human Acellular Amniotic Membrane and Adipose Derived Mesenchymal Stem Cells. Minjuan Wu,Jun Xiong,Shiyun Shao,Sha Xu,Haitao Ni,Yue Wang,Kaihong Ji Stem cells international Early repair of skin injury and maximal restoration of the function and appearance have become important targets of clinical treatment. In the present study, we observed the healing process of skin defects in nude mice and structural characteristics of the new skin after transplantation of isolated and cultured adipose derived mesenchymal stem cells (ADMSCs) onto the human acellular amniotic membrane (AAM). The result showed that ADMSCs were closely attached to the surface of AAM and grew well 24 h after seeding. Comparison of the wound healing rate at days 7, 14, and 28 after transplantation showed that ADMSCs seeded on AAM facilitated the healing of full-thickness skin wounds more effectively as compared with either hAM or AAM alone, indicating that ADMSCs participated in skin regeneration. More importantly, we noticed a phenomenon of hair follicle development during the process of skin repair. Composite ADMSCs and AAM not only promoted the healing of the mouse full-thickness defects but also facilitated generation of the appendages of the affected skin, thus promoting restoration of the skin function. Our results provide a new possible therapy idea for the treatment of skin wounds with respect to both anatomical regeneration and functional restoration. 10.1155/2016/8281235
    Epidermal stem cells and skin tissue engineering in hair follicle regeneration. Balañá María Eugenia,Charreau Hernán Eduardo,Leirós Gustavo José World journal of stem cells The reconstitution of a fully organized and functional hair follicle from dissociated cells propagated under defined tissue culture conditions is a challenge still pending in tissue engineering. The loss of hair follicles caused by injuries or pathologies such as alopecia not only affects the patients' psychological well-being, but also endangers certain inherent functions of the skin. It is then of great interest to find different strategies aiming to regenerate or neogenerate the hair follicle under conditions proper of an adult individual. Based upon current knowledge on the epithelial and dermal cells and their interactions during the embryonic hair generation and adult hair cycling, many researchers have tried to obtain mature hair follicles using different strategies and approaches depending on the causes of hair loss. This review summarizes current advances in the different experimental strategies to regenerate or neogenerate hair follicles, with emphasis on those involving neogenesis of hair follicles in adult individuals using isolated cells and tissue engineering. Most of these experiments were performed using rodent cells, particularly from embryonic or newborn origin. However, no successful strategy to generate human hair follicles from adult cells has yet been reported. This review identifies several issues that should be considered to achieve this objective. Perhaps the most important challenge is to provide three-dimensional culture conditions mimicking the structure of living tissue. Improving culture conditions that allow the expansion of specific cells while protecting their inductive properties, as well as methods for selecting populations of epithelial stem cells, should give us the necessary tools to overcome the difficulties that constrain human hair follicle neogenesis. An analysis of patent trends shows that the number of patent applications aimed at hair follicle regeneration and neogenesis has been increasing during the last decade. This field is attractive not only to academic researchers but also to the companies that own almost half of the patents in this field. 10.4252/wjsc.v7.i4.711
    Platelet-derived growth factor signaling modulates adult hair follicle dermal stem cell maintenance and self-renewal. González Raquel,Moffatt Garrett,Hagner Andrew,Sinha Sarthak,Shin Wisoo,Rahmani Waleed,Chojnacki Andrew,Biernaskie Jeff NPJ Regenerative medicine Hair follicle regeneration is dependent on reciprocal signaling between epithelial cells and underlying mesenchymal cells within the dermal papilla. Hair follicle dermal stem cells reside within the hair follicle mesenchyme, self-renew in vivo, and function to repopulate the dermal papilla and regenerate the connective tissue sheath with each hair cycle. The identity and temporal pattern of signals that regulate hair follicle dermal stem cell function are not known. Here, we show that platelet-derived growth factor signaling is crucial for hair follicle dermal stem cell function and platelet-derived growth factor deficiency results in a progressive depletion of the hair follicle dermal stem cell pool and their progeny. Using mice, we ablated specifically within the adult hair follicle dermal stem cell lineage. This led to significant loss of hair follicle dermal stem cell progeny in connective tissue sheath and dermal papilla of individual follicles, and a progressive reduction in total number of anagen hair follicles containing YFP cells. As well, over successive hair cycles, fewer hair follicle dermal stem cells were retained within each telogen hair follicle suggesting an impact on hair follicle dermal stem cell self-renewal. To further assess this, we grew prospectively isolated hair follicle dermal stem cells (Sox2GFP αSMAdsRed) in the presence or absence of platelet-derived growth factor ligands. Platelet-derived growth factor-BB enhanced proliferation, increased the frequency of Sox2 hair follicle dermal stem cell progeny and improved inductive capacity of hair follicle dermal stem cells in an ex vivo hair follicle formation assay. Similar effects on proliferation were observed in adult human SKPs. Our findings impart novel insights into the signals that comprise the adult hair follicle dermal stem cell niche and suggest that platelet-derived growth factor signaling promotes self renewal, is essential to maintain the hair follicle dermal stem cell pool and ultimately their regenerative capacity within the hair follicle. 10.1038/s41536-017-0013-4
    Stem Cells and Tissue Engineering: Regeneration of the Skin and Its Contents. Strong Amy L,Neumeister Michael W,Levi Benjamin Clinics in plastic surgery In this review, the authors discuss the stages of skin wound healing, the role of stem cells in accelerating skin wound healing, and the mechanism by which these stem cells may reconstitute the skin in the context of tissue engineering. 10.1016/j.cps.2017.02.020
    Strategies to enhance epithelial-mesenchymal interactions for human hair follicle bioengineering. Ohyama Manabu,Veraitch Ophelia Journal of dermatological science Hair follicle morphogenesis and regeneration depend on intensive but well-orchestrated interactions between epithelial and mesenchymal components. Accordingly, the enhancement of this crosstalk represents a promising approach to achieve successful bioengineering of human hair follicles. The present article summarizes the techniques, both currently available and potentially feasible, to promote epithelial-mesenchymal interactions (EMIs) necessary for human hair follicle regeneration. The strategies include the preparation of epithelial components with high receptivity to trichogenic dermal signals and/or mesenchymal cell populations with potent hair inductive capacity. In this regard, bulge epithelial stem cells, keratinocytes predisposed to hair follicle fate or keratinocyte precursor cells with plasticity may provide favorable epithelial cell populations. Dermal papilla cells sustaining intrinsic hair inductive capacity, putative dermal papilla precursor cells in the dermal sheath/neonatal dermis or trichogenic dermal cells derived from undifferentiated stem/progenitor cells are promising candidates as hair inductive dermal cells. The most established protocol for in vivo hair follicle reconstitution is co-grafting of epithelial and mesenchymal components into immunodeficient mice. In theory, combination of individually optimized cellular components of respective lineages should elicit most intensive EMIs to form hair follicles. Still, EMIs can be further ameliorated by the modulation of non-cell autonomous conditions, including cell compartmentalization to replicate the positional relationship in vivo and humanization of host environment by preparing human stromal bed. These approaches may not always synergistically intensify EMIs, however, step-by-step investigation probing optimal combinations should maximally enhance EMIs to achieve successful human hair follicle bioengineering. 10.1016/j.jdermsci.2013.02.004
    Mesenchymal stem cells with modification of junctional adhesion molecule a induce hair formation. Wu Minjuan,Guo Xiaocan,Yang Ling,Wang Yue,Tang Ying,Yang Yongji,Liu Houqi Stem cells translational medicine The junctional adhesion molecule A (JAM-A) has been shown to serve a crucial role in the proliferation, differentiation, and tube-like formation of epithelial cells during angiogenesis. The role of JAM-A in hair follicle (HF) regeneration has not yet been reported. In this study, we used human JAM-A-modified human mesenchymal stem cells (MSCs) to repair HF abnormalities in BALB/c nu/nu mice. The JAM-A gene and JAM-A short hairpin RNA were transfected into cultured human MSCs to generate the JAM-A overexpression MSCs (JAM-A(ov) MSCs) and JAM-A knockdown MSCs (JAM-A(kd) MSCs), respectively. These cells were injected intradermally into the skin of nude mice during the first telogen phase of the HF that occurs 21 days postnatally. We found that JAM-A(ov) MSCs migrated into the HF sheath and remodeled HF structure effectively. The HF abnormalities such as HF curve and HF zigzag were remodeled, and hair formation was improved 7 days following injection in both the JAM-A(ov) MSC and MSC groups, compared with the JAM-A(kd) MSC group or negative control group. Furthermore, the JAM-A(ov) MSC group showed enhanced hair formation in contrast to the MSC group, and the number of curved and zigzagged HFs was reduced by 80% (p < .05). These results indicated that JAM-A(ov) MSCs improved hair formation in nude mice through HF structure remodeling. 10.5966/sctm.2013-0165
    Use of human intra-tissue stem/progenitor cells and induced pluripotent stem cells for hair follicle regeneration. Ohyama Manabu Inflammation and regeneration Background:The hair follicle (HF) is a unique miniorgan, which self-renews for a lifetime. Stem cell populations of multiple lineages reside within human HF and enable its regeneration. In addition to resident HF stem/progenitor cells (HFSPCs), the cells with similar biological properties can be induced from human-induced pluripotent stem cells (hiPSCs). As approaches to regenerate HF by combining HF-derived cells have been established in rodents and a huge demand exists to treat hair loss diseases, attempts have been made to bioengineer human HF using HFSPCs or hiPSCs. Main body of the abstract:The aim of this review is to comprehensively summarize the strategies to regenerate human HF using HFSPCs or hiPSCs. HF morphogenesis and regeneration are enabled by well-orchestrated epithelial-mesenchymal interactions (EMIs). In rodents, various combinations of keratinocytes with mesenchymal (dermal) cells with trichogenic capacity, which were transplanted into in vivo environment, have successfully generated HF structures. The regeneration efficiency was higher, when epithelial or dermal HFSPCs were adopted. The success in HF formation most likely depended on high receptivity to trichogenic dermal signals and/or potent hair inductive capacity of HFSPCs. In theory, the use of epithelial HFSPCs in the bulge area and dermal papilla cells, their precursor cells in the dermal sheath, or trichogenic neonatal dermal cells should elicit intense EMI sufficient for HF formation. However, technical hurdles, represented by the limitation in starting materials and the loss of intrinsic properties during in vitro expansion, hamper the stable reconstitution of human HFs with this approach. Several strategies, including the amelioration of culture condition or compartmentalization of cells to strengthen EMI, can be conceived to overcome this obstacle. Obviously, use of hiPSCs can resolve the shortage of the materials once reliable protocols to induce wanted HFSPC subsets have been developed, which is in progress. Taking advantage of their pluripotency, hiPSCs may facilitate previously unthinkable approaches to regenerate human HFs, for instance, via bioengineering of 3D integumentary organ system, which can also be applied for the treatment of other diseases. Short conclusion:Further development of methodologies to reproduce EMI in HF formation is indispensable. However, human HFSPCs and hiPSCs hold promise as materials for human HF regeneration. 10.1186/s41232-019-0093-1
    Hair follicle dermal stem cells and skin-derived precursor cells: Exciting tools for endogenous and exogenous therapies. Agabalyan Natacha A,Rosin Nicole L,Rahmani Waleed,Biernaskie Jeff Experimental dermatology Understanding the cellular interactions and molecular signals underlying hair follicle (HF) regeneration may have significant implications for restorative therapies for skin disease that diminish hair growth, whilst also serving to provide fundamental insight into the mechanisms underlying adult tissue regeneration. One of the major, yet underappreciated, players in this process is the underlying HF mesenchyme. Here, we provide an overview of a mesenchymal progenitor pool referred to as hair follicle dermal stem cells (hfDSCs), discuss their potential functions within the skin and their relationship to skin-derived precursors (SKPs), and consider unanswered questions about the function of these specialized fibroblasts. We contend that dermal stem cells provide an important reservoir of renewable dermal progenitors that may enable development of novel restorative therapies following hair loss, skin injury or disease. 10.1111/exd.13359
    Pre-aggregation of scalp progenitor dermal and epidermal stem cells activates the WNT pathway and promotes hair follicle formation in in vitro and in vivo systems. Su Yiqun,Wen Jie,Zhu Junrong,Xie Zhiwei,Liu Chang,Ma Chuan,Zhang Qun,Xu Xin,Wu Xunwei Stem cell research & therapy BACKGROUND:Billions of dollars are invested annually by pharmaceutical companies in search of new options for treating hair loss conditions; nevertheless, the challenge remains. One major limitation to hair follicle research is the lack of effective and efficient drug screening systems using human cells. Organoids, three-dimensional in vitro structures derived from stem cells, provide new opportunities for studying organ development, tissue regeneration, and disease pathogenesis. The present study focuses on the formation of human hair follicle organoids. METHODS:Scalp-derived dermal progenitor cells mixed with foreskin-derived epidermal stem cells at a 2:1 ratio aggregated in suspension to form hair follicle-like organoids, which were confirmed by immunostaining of hair follicle markers and by molecular dye labeling assays to analyze dermal and epidermal cell organization in those organoids. The hair-forming potential of organoids was examined using an in vivo transplantation assay. RESULTS:Pre-aggregation of dermal and epidermal cells enhanced hair follicle formation in vivo. In vitro pre-aggregation initiated the interactions of epidermal and dermal progenitor cells resulting in activation of the WNT pathway and the formation of pear-shape structures, named type I aggregates. Cell-tracing analysis showed that the dermal and epidermal cells self-assembled into distinct epidermal and dermal compartments. Histologically, the type I aggregates expressed early hair follicle markers, suggesting the hair peg-like phase of hair follicle morphogenesis. The addition of recombinant WNT3a protein to the medium enhanced the formation of these aggregates, and the Wnt effect could be blocked by the WNT inhibitor, IWP2. CONCLUSIONS:In summary, our system supports the rapid formation of a large number of hair follicle organoids (type I aggregates). This system provides a platform for studying epithelial-mesenchymal interactions, for assessing inductive hair stem cells and for screening compounds that support hair follicle regeneration. 10.1186/s13287-019-1504-6
    Hair Follicle Regeneration by Transplantation of a Bioengineered Hair Follicle Germ. Tezuka Katsunari,Toyoshima Koh-Ei,Tsuji Takashi Methods in molecular biology (Clifton, N.J.) Hair follicle morphogenesis is first induced by epithelial-mesenchymal interactions in the developing embryo. In the hair follicle, various stem-cell populations are maintained in specialized niches to promote repetitive hair follicle-morphogenesis, which is observed in the variable lower region of the hair follicle as a postnatal hair cycle. In contrast, the genesis of most organs is induced only once during embryogenesis. We developed a novel bioengineering technique, the Organ Germ Method, that employs three-dimensional stem cell culture for regenerating various organs and reproducing embryonic organogenesis. In this chapter, we describe a protocol for hair follicle germ reconstitution using adult follicle-derived epithelial stem cells and dermal papilla cells with intracutaneous transplantation of the bioengineered hair-follicle organ germ. This protocol can be useful not only for the clinical study of hair regeneration but also for studies of stem cell biology and organogenesis. 10.1007/978-1-4939-3786-8_9
    Treatment of MSCs with Wnt1a-conditioned medium activates DP cells and promotes hair follicle regrowth. Dong Liang,Hao Haojie,Xia Lei,Liu Jiejie,Ti Dongdong,Tong Chuan,Hou Qian,Han Qingwang,Zhao Yali,Liu Huiling,Fu Xiaobing,Han Weidong Scientific reports Hair loss (alopecia) is a common problem for people. The dermal papilla is the key signaling center that regulates hair growth and it engage in crosstalk with the microenvironment, including Wnt signaling and stem cells. In this study, we explored the effects of bone marrow mesenchymal stem cell overexpression of Wnt1a on mouse hair follicle regeneration. Wnt-CM accelerated hair follicle progression from telogen to anagen and enhanced the ALP expression in the DP area. Moreover, the hair induction-related genes were upregulated, as demonstrated by qRT-PCR. Wnt-CM treatment restored and increased DP cell expression of genes downregulated by dihydrotestosterone treatment, as demonstrated by qRT-PCR assays. Our study reveals that BM-MSC-generated Wnt1a promotes the DP's ability to induce hair cycling and regeneration. 10.1038/srep05432
    Establishment of an in vitro organoid model of dermal papilla of human hair follicle. Gupta Abhishak C,Chawla Shikha,Hegde Ashok,Singh Divya,Bandyopadhyay Balaji,Lakshmanan Chandrasekharan C,Kalsi Gurpreet,Ghosh Sourabh Journal of cellular physiology Human hair dermal papilla (DP) cells are specialized mesenchymal cells that play a pivotal role in hair regeneration and hair cycle activation. The current study aimed to first develop three-dimensional (3D) DP spheroids (DPS) with or without a silk-gelatin (SG) microenvironment, which showed enhanced DP-specific gene expression, resulting in enhanced extracellular matrix (ECM) production compared with a monolayer culture. We tested the feasibility of using this DPS model for drug screening by using minoxidil, which is a standard drug for androgenic alopecia. Minoxidil-treated DPS showed enhanced expression of growth factors and ECM proteins. Further, an attempt has been made to establish an in vitro 3D organoid model consisting of DPS encapsulated by SG hydrogel and hair follicle (HF) keratinocytes and stem cells. This HF organoid model showed the importance of structural features, cell-cell interaction, and hypoxia akin to in vivo HF. The study helped to elucidate the molecular mechanisms to stimulate cell proliferation, cell viability, and elevated expression of HF markers as well as epithelial-mesenchymal crosstalks, demonstrating high relevance to human HF biology. This simple in vitro DP organoid model system has the potential to provide significant insights into the underlying mechanisms of HF morphogenesis, distinct molecular signals relevant to different stages of the hair cycle, and hence can be used for controlled evaluation of the efficacy of new drug molecules. 10.1002/jcp.26853
    Overexpression of Nanog in amniotic fluid-derived mesenchymal stem cells accelerates dermal papilla cell activity and promotes hair follicle regeneration. Park Junghyun,Jun Eun Kyoung,Son Daryeon,Hong Wonjun,Jang Jihoon,Yun Wonjin,Yoon Byung Sun,Song Gwonhwa,Kim In Yong,You Seungkwon Experimental & molecular medicine Alopecia, one of the most common chronic diseases, can seriously affect a patient's psychosocial life. Dermal papilla (DP) cells serve as essential signaling centers in the regulation of hair growth and regeneration and are associated with crosstalk between autocrine/paracrine factors and the surrounding environment. We previously demonstrated that amniotic fluid-derived mesenchymal stem cell-conditioned medium (AF-MSC-CM) accelerates hair regeneration and growth. The present study describes the effects of overexpression of a reprogramming factor, Nanog, on MSC properties, the paracrine effects on DP cells, and in vivo hair regrowth. First, we examined the in vitro proliferation and lifespan of AF-MSCs overexpressing reprogramming factors, including Oct4, Nanog, and Lin28, alone or in combination. Among these factors, Nanog was identified as a key factor in maintaining the self-renewal capability of AF-MSCs by delaying cellular senescence, increasing the endogenous expression of Oct4 and Sox2, and preserving stemness. Next, we evaluated the paracrine effects of AF-MSCs overexpressing Nanog (AF-N-MSCs) by monitoring secretory molecules related to hair regeneration and growth (IGF, PDGF, bFGF, and Wnt7a) and proliferation of DP cells. In vivo studies revealed that CM derived from AF-N-MSCs (AF-N-CM) accelerated the telogen-to-anagen transition in hair follicles (HFs) and increased HF density. The expression of DP and HF stem cell markers and genes related to hair induction were higher in AF-N-CM than in CM from AF-MSCs (AF-CM). This study suggests that the secretome from autologous MSCs overexpressing Nanog could be an excellent candidate as a powerful anagen inducer and hair growth stimulator for the treatment of alopecia. 10.1038/s12276-019-0266-7
    Transplantation of bone-marrow-derived mesenchymal and epidermal stem cells contribute to wound healing with different regenerative features. Peng Li-Hua,Mao Zu-Yao,Qi Xiao-Tian,Chen Xi,Li Ni,Tabata Yasuhiko,Gao Jian-Qing Cell and tissue research A new concept for wound therapy is the initiation of the regeneration of epidermal and dermal layers with appendages for skin function recovery. Bone-marrow-derived mesenchymal and epidermal stem cells (BMSCs and SSCs) are hypothesized to be able to home toward or to be transplanted to wound sites for skin repair and regeneration, but this awaits confirmation by further experimental and clinical evidence. In this study, the influence of the transplantation of BMSCs and SSCs with porous gelatin-β-tricalcium phosphate sponge as scaffolds on wound re-epithelization, collagen synthesis, skin tensile strength recovery, and skin appendage regeneration has been investigated. The transplantation of BMSCs or SSCs significantly accelerates wound re-epithelization, stimulates dermal collagen synthesis, and exhibits the trend to enhance the tensile strength recovery of skin. Furthermore, regenerative features of BMSCs and SSCs have been identified in activating blood vessel and hair follicle formation, respectively. These results not only provide experimental evidence for the application of BMSCs and SSCs as promising therapeutics for clinical wound treatment, but also display their characteristics in activating distinct skin appendage regeneration, which might have novel applications in skin tissue engineering. 10.1007/s00441-013-1609-7
    Wnt1a maintains characteristics of dermal papilla cells that induce mouse hair regeneration in a 3D preculture system. Dong Liang,Hao Haojie,Liu Jiejie,Tong Chuan,Ti Dongdong,Chen Deyun,Chen Li,Li Meirong,Liu Huiling,Fu Xiaobing,Han Weidong Journal of tissue engineering and regenerative medicine Hair follicle morphogenesis and regeneration depend on intensive but well-orchestrated interactions between epithelial and mesenchymal components. Therefore, an alternative strategy to reproduce the process of epithelial-mesenchymal interaction in vitro could use a 3D system containing appropriate cell populations. The 3D air-liquid culture system for reproducibly generating hair follicles from dissociated epithelial and dermal papilla (DP) cells combined with a collagen-chitosan scaffold is described in this study. Wnt-CM was prepared from the supernatant of Wnt1a-expressing bone marrow mesenchymal stem cells (BM-MSCs) that maintain the hair-inducing gene expression of DP cells. The collagen-chitosan scaffold cells (CCS cells) were constructed using a two-step method by inoculating the Wnt-CM-treated DP cells and epidermal (EP) cells into the CCS. The cells in the air-liquid culture formed dermal condensates and a proliferative cell layer in vitro. The CCS cells were able to induce hair regeneration in nude mice. The results demonstrate that Wnt-CM can maintain the hair induction ability of DP cells in expansion cultures, and this approach can be used for large-scale preparation of CCS cells in vitro to treat hair loss. Copyright © 2015 John Wiley & Sons, Ltd. 10.1002/term.2046
    Advances in Regenerative Stem Cell Therapy in Androgenic Alopecia and Hair Loss: Wnt pathway, Growth-Factor, and Mesenchymal Stem Cell Signaling Impact Analysis on Cell Growth and Hair Follicle Development. Gentile Pietro,Garcovich Simone Cells The use of stem cells has been reported to improve hair regrowth in several therapeutic strategies, including reversing the pathological mechanisms, that contribute to hair loss, regeneration of hair follicles, or creating hair using the tissue-engineering approach. Although various promising stem cell approaches are progressing via pre-clinical models to clinical trials, intraoperative stem cell treatments with a one-step procedure offer a quicker result by incorporating an autologous cell source without manipulation, which may be injected by surgeons through a well-established clinical practice. Many authors have concentrated on adipose-derived stromal vascular cells due to their ability to separate into numerous cell genealogies, platelet-rich plasma for its ability to enhance cell multiplication and neo-angiogenesis, as well as human follicle mesenchymal stem cells. In this paper, the significant improvements in intraoperative stem cell approaches, from in vivo models to clinical investigations, are reviewed. The potential regenerative instruments and functions of various cell populaces in the hair regrowth process are discussed. The addition of Wnt signaling in dermal papilla cells is considered a key factor in stimulating hair growth. Mesenchymal stem cell-derived signaling and growth factors obtained by platelets influence hair growth through cellular proliferation to prolong the anagen phase (FGF-7), induce cell growth (ERK activation), stimulate hair follicle development (β-catenin), and suppress apoptotic cues (Bcl-2 release and Akt activation). 10.3390/cells8050466
    Induction of hair follicle dermal papilla cell properties in human induced pluripotent stem cell-derived multipotent LNGFR(+)THY-1(+) mesenchymal cells. Veraitch Ophelia,Mabuchi Yo,Matsuzaki Yumi,Sasaki Takashi,Okuno Hironobu,Tsukashima Aki,Amagai Masayuki,Okano Hideyuki,Ohyama Manabu Scientific reports The dermal papilla (DP) is a specialised mesenchymal component of the hair follicle (HF) that plays key roles in HF morphogenesis and regeneration. Current technical difficulties in preparing trichogenic human DP cells could be overcome by the use of highly proliferative and plastic human induced pluripotent stem cells (hiPSCs). In this study, hiPSCs were differentiated into induced mesenchymal cells (iMCs) with a bone marrow stromal cell phenotype. A highly proliferative and plastic LNGFR(+)THY-1(+) subset of iMCs was subsequently programmed using retinoic acid and DP cell activating culture medium to acquire DP properties. The resultant cells (induced DP-substituting cells [iDPSCs]) exhibited up-regulated DP markers, interacted with human keratinocytes to up-regulate HF related genes, and when co-grafted with human keratinocytes in vivo gave rise to fibre structures with a hair cuticle-like coat resembling the hair shaft, as confirmed by scanning electron microscope analysis. Furthermore, iDPSCs responded to the clinically used hair growth reagent, minoxidil sulfate, to up-regulate DP genes, further supporting that they were capable of, at least in part, reproducing DP properties. Thus, LNGFR(+)THY-1(+) iMCs may provide material for HF bioengineering and drug screening for hair diseases. 10.1038/srep42777