1. A vaccine targeting mutant IDH1 in newly diagnosed glioma.
1. 一种针对新诊断的胶质瘤突变型IDH1的疫苗。
期刊:Nature
日期:2021-03-24
DOI :10.1038/s41586-021-03363-z
Mutated isocitrate dehydrogenase 1 (IDH1) defines a molecularly distinct subtype of diffuse glioma. The most common IDH1 mutation in gliomas affects codon 132 and encodes IDH1(R132H), which harbours a shared clonal neoepitope that is presented on major histocompatibility complex (MHC) class II. An IDH1(R132H)-specific peptide vaccine (IDH1-vac) induces specific therapeutic T helper cell responses that are effective against IDH1(R132H) tumours in syngeneic MHC-humanized mice. Here we describe a multicentre, single-arm, open-label, first-in-humans phase I trial that we carried out in 33 patients with newly diagnosed World Health Organization grade 3 and 4 IDH1(R132H) astrocytomas (Neurooncology Working Group of the German Cancer Society trial 16 (NOA16), ClinicalTrials.gov identifier NCT02454634). The trial met its primary safety endpoint, with vaccine-related adverse events restricted to grade 1. Vaccine-induced immune responses were observed in 93.3% of patients across multiple MHC alleles. Three-year progression-free and death-free rates were 0.63 and 0.84, respectively. Patients with immune responses showed a two-year progression-free rate of 0.82. Two patients without an immune response showed tumour progression within two years of first diagnosis. A mutation-specificity score that incorporates the duration and level of vaccine-induced IDH1(R132H)-specific T cell responses was associated with intratumoral presentation of the IDH1(R132H) neoantigen in pre-treatment tumour tissue. There was a high frequency of pseudoprogression, which indicates intratumoral inflammatory reactions. Pseudoprogression was associated with increased vaccine-induced peripheral T cell responses. Combined single-cell RNA and T cell receptor sequencing showed that tumour-infiltrating CD40LG and CXCL13 T helper cell clusters in a patient with pseudoprogression were dominated by a single IDH1(R132H)-reactive T cell receptor.
添加收藏
创建看单
引用
1区Q1影响因子: 10.6
跳转PDF
登录
英汉
2. EphA3 CAR T cells are effective against glioblastoma in preclinical models.
2. EphA3CART 细胞在临床前模型中有效对抗胶质母细胞瘤。
期刊:Journal for immunotherapy of cancer
日期:2024-08-07
DOI :10.1136/jitc-2024-009403
BACKGROUND:Adoptive T-cell therapy targeting antigens expressed in glioblastoma has emerged as a potential therapeutic strategy to prevent or delay recurrence and prolong overall survival in this aggressive disease setting. Ephrin receptor A3 (EphA3), which is highly expressed in glioblastoma; in particular, on the tumor vasculature and brain cancer stem cells, is an ideal target for immune-based therapies. METHODS:We have designed an EphA3-targeted chimeric antigen receptor (CAR) using the single chain variable fragment of a novel monoclonal antibody, and assessed its therapeutic potential against EphA3-expressing patient-derived glioblastoma neurospheres, organoids and xenografted glioblastoma tumors in immunodeficient mice. RESULTS:In vitro expanded EphA3 CAR T cells from healthy individuals efficiently recognize and kill EphA3-positive glioblastoma cells in vitro. Furthermore, these effector cells demonstrated curative efficacy in an orthotopic xenograft model of glioblastoma. EphA3 CAR T cells were equally effective in targeting patient-derived neurospheres and infiltrate, disaggregate, and induce apoptosis in glioblastoma-derived organoids. CONCLUSIONS:This study provides compelling evidence supporting the therapeutic potential of EphA3 CAR T-cell therapy against glioblastoma by targeting EphA3 associated with brain cancer stem cells and the tumor vasculature. The ability to target patient-derived glioblastoma underscores the translational significance of this EphA3 CAR T-cell therapy in the pursuit of effective and targeted glioblastoma treatment strategies.
添加收藏
创建看单
引用
3区Q1影响因子: 4.7
英汉
3. Toosendanin inhibits T-cell proliferation through the P38 MAPK signalling pathway.
3. Toosendanin 通过 P38 MAPK 信号通路抑制 T 细胞增殖。
期刊:European journal of pharmacology
日期:2024-04-06
DOI :10.1016/j.ejphar.2024.176562
In recent years, immunosuppressants have shown significant success in the treatment of autoimmune diseases. Therefore, there is an urgent need to develop additional immunosuppressants that offer more options for patients. Toosendanin has been shown to have immunosuppressive activity in vitro as well as effects on autoimmune hepatitis (AIH) in vivo. Toosendanin did not induce apoptosis in activated T-cells and affect the survival rate of naive T-cells. Toosendanin did not affect the expression of CD25 or secretion of IL-2 by activated T-cells, and not affect the expression of IL-4 and INF-γ. Toosendanin did not affect the phosphorylation of STAT5, ERK, AKT, P70S6K. However, toosendanin inhibited proliferation of anti-CD3/anti-CD28 mAbs-activated T-cells with IC50 of (10 ± 2.02) nM. Toosendanin arrested the cell cycle in the G0/G1 phase, significantly inhibited IL-6 and IL-17A secretion, promoted IL-10 expression, and inhibited the P38 MAPK pathway. Finally, toosendanin significantly alleviated ConA-induced AIH in mice. In Summary, toosendanin exhibited immunosuppressive activity in vivo and in vitro. Toosendanin inhibits the proliferation of activated T-cells through the P38 MAPK signalling pathway, significantly suppresses the expression of inflammatory factors, enhances the expression of anti-inflammatory factors, and effectively alleviates ConA-induced AIH in mice, suggesting that toosendanin may be a lead compound for the development of novel immunomodulatory agents with improved efficacy and reduced toxicity.
添加收藏
创建看单
引用
1区Q1影响因子: 44.5
跳转PDF
登录
英汉
4. Macrophage Polarization Contributes to Glioblastoma Eradication by Combination Immunovirotherapy and Immune Checkpoint Blockade.
4. 巨噬细胞极化通过免疫免疫疗法和免疫检查站封锁相结合,有助于根除胶质母细胞瘤。
作者:Saha Dipongkor , Martuza Robert L , Rabkin Samuel D
期刊:Cancer cell
日期:2017-08-14
DOI :10.1016/j.ccell.2017.07.006
Glioblastoma is an immunosuppressive, fatal brain cancer that contains glioblastoma stem-like cells (GSCs). Oncolytic herpes simplex virus (oHSV) selectively replicates in cancer cells while inducing anti-tumor immunity. oHSV G47Δ expressing murine IL-12 (G47Δ-mIL12), antibodies to immune checkpoints (CTLA-4, PD-1, PD-L1), or dual combinations modestly extended survival of a mouse glioma model. However, the triple combination of anti-CTLA-4, anti-PD-1, and G47Δ-mIL12 cured most mice in two glioma models. This treatment was associated with macrophage influx and M1-like polarization, along with increased T effector to T regulatory cell ratios. Immune cell depletion studies demonstrated that CD4 and CD8 T cells as well as macrophages are required for synergistic curative activity. This combination should be translatable to the clinic and other immunosuppressive cancers.
添加收藏
创建看单
引用
3区Q2影响因子: 2.8
跳转PDF
登录
英汉
5. Immunotherapy Resistance in Glioblastoma.
5. 胶质母细胞瘤的免疫治疗耐药性。
期刊:Frontiers in genetics
日期:2021-12-17
DOI :10.3389/fgene.2021.750675
Glioblastoma is the most common malignant primary brain tumor in adults. Despite treatment consisting of surgical resection followed by radiotherapy and adjuvant chemotherapy, survival remains poor at a rate of 26.5% at 2 years. Recent successes in using immunotherapies to treat a number of solid and hematologic cancers have led to a growing interest in harnessing the immune system to target glioblastoma. Several studies have examined the efficacy of various immunotherapies, including checkpoint inhibitors, vaccines, adoptive transfer of lymphocytes, and oncolytic virotherapy in both pre-clinical and clinical settings. However, these therapies have yielded mixed results at best when applied to glioblastoma. While the initial failures of immunotherapy were thought to reflect the immunoprivileged environment of the brain, more recent studies have revealed immune escape mechanisms created by the tumor itself and adaptive resistance acquired in response to therapy. Several of these resistance mechanisms hijack key signaling pathways within the immune system to create a protumoral microenvironment. In this review, we discuss immunotherapies that have been trialed in glioblastoma, mechanisms of tumor resistance, and strategies to sensitize these tumors to immunotherapies. Insights gained from the studies summarized here may help pave the way for novel therapies to overcome barriers that have thus far limited the success of immunotherapy in glioblastoma.
添加收藏
创建看单
引用
1区Q1影响因子: 14.6
跳转PDF
登录
英汉
6. Small-molecule toosendanin reverses macrophage-mediated immunosuppression to overcome glioblastoma resistance to immunotherapy.
6. 小分子川楝素逆转macrophage-mediated克服胶质母细胞瘤抗免疫治疗免疫抑制。
期刊:Science translational medicine
日期:2023-02-15
DOI :10.1126/scitranslmed.abq3558
T cell-based immunotherapy holds promise for treating solid tumors, but its therapeutic efficacy is limited by intratumoral immune suppression. This immune suppressive tumor microenvironment is largely driven by tumor-associated myeloid cells, including macrophages. Here, we report that toosendanin (TSN), a small-molecule compound, reprograms macrophages to enforce antitumor immunity in glioblastoma (GBM) in mouse models. Our functional screen of genetically probed macrophages with a chemical library identifies that TSN reverses macrophage-mediated tumor immunosuppression, leading to enhanced T cell infiltration, activation, and reduced exhaustion. Chemoproteomic and structural analyses revealed that TSN interacts with Hck and Lyn to abrogate suppressive macrophage immunity. In addition, a combination of immune checkpoint blockade and TSN therapy induced regression of syngeneic GBM tumors in mice. Furthermore, TSN treatment sensitized GBM to Egfrviii chimeric antigen receptor (CAR) T cell therapy. These findings suggest that TSN may serve as a therapeutic compound that blocks tumor immunosuppression and circumvents tumor resistance to T cell-based immunotherapy in GBM and other solid tumors that warrants further investigation.
添加收藏
创建看单
引用
3区Q1影响因子: 4.9
打开PDF
登录
英汉
7. Molecular Mechanisms of Treatment Resistance in Glioblastoma.
7. 胶质母细胞瘤治疗抗性的分子机制。
期刊:International journal of molecular sciences
日期:2020-12-31
DOI :10.3390/ijms22010351
Glioblastoma is the most common malignant primary brain tumor in adults and is almost invariably fatal. Despite our growing understanding of the various mechanisms underlying treatment failure, the standard-of-care therapy has not changed over the last two decades, signifying a great unmet need. The challenges of treating glioblastoma are many and include inadequate drug or agent delivery across the blood-brain barrier, abundant intra- and intertumoral heterogeneity, redundant signaling pathways, and an immunosuppressive microenvironment. Here, we review the innate and adaptive molecular mechanisms underlying glioblastoma's treatment resistance, emphasizing the intrinsic challenges therapeutic interventions must overcome-namely, the blood-brain barrier, tumoral heterogeneity, and microenvironment-and the mechanisms of resistance to conventional treatments, targeted therapy, and immunotherapy.
添加收藏
创建看单
引用
1区Q1影响因子: 14.6
打开PDF
登录
英汉
8. SynNotch-CAR T cells overcome challenges of specificity, heterogeneity, and persistence in treating glioblastoma.
8. SynNotch-Car T细胞克服了特异性,异质性和持续性在治疗胶质母细胞瘤的挑战。
期刊:Science translational medicine
日期:2021-04-28
DOI :10.1126/scitranslmed.abe7378
Treatment of solid cancers with chimeric antigen receptor (CAR) T cells is plagued by the lack of ideal target antigens that are both absolutely tumor specific and homogeneously expressed. We show that multi-antigen prime-and-kill recognition circuits provide flexibility and precision to overcome these challenges in the context of glioblastoma. A synNotch receptor that recognizes a specific priming antigen, such as the heterogeneous but tumor-specific glioblastoma neoantigen epidermal growth factor receptor splice variant III (EGFRvIII) or the central nervous system (CNS) tissue-specific antigen myelin oligodendrocyte glycoprotein (MOG), can be used to locally induce expression of a CAR. This enables thorough but controlled tumor cell killing by targeting antigens that are homogeneous but not absolutely tumor specific. Moreover, synNotch-regulated CAR expression averts tonic signaling and exhaustion, maintaining a higher fraction of the T cells in a naïve/stem cell memory state. In immunodeficient mice bearing intracerebral patient-derived xenografts (PDXs) with heterogeneous expression of EGFRvIII, a single intravenous infusion of EGFRvIII synNotch-CAR T cells demonstrated higher antitumor efficacy and T cell durability than conventional constitutively expressed CAR T cells, without off-tumor killing. T cells transduced with a synNotch-CAR circuit primed by the CNS-specific antigen MOG also exhibited precise and potent control of intracerebral PDX without evidence of priming outside of the brain. In summary, by using circuits that integrate recognition of multiple imperfect but complementary antigens, we improve the specificity, completeness, and persistence of T cells directed against glioblastoma, providing a general recognition strategy applicable to other solid tumors.
添加收藏
创建看单
引用
3区Q1影响因子: 4.9
跳转PDF
登录
英汉
9. The Evolving Role of CD8CD28 Immunosenescent T Cells in Cancer Immunology.
9. 在癌症免疫CD8CD28 Immunosenescent性T细胞的作用的发展。
作者:Huff Wei X , Kwon Jae Hyun , Henriquez Mario , Fetcko Kaleigh , Dey Mahua
期刊:International journal of molecular sciences
日期:2019-06-08
DOI :10.3390/ijms20112810
Functional, tumor-specific CD8 cytotoxic T lymphocytes drive the adaptive immune response to cancer. Thus, induction of their activity is the ultimate aim of all immunotherapies. Success of anti-tumor immunotherapy is precluded by marked immunosuppression in the tumor microenvironment (TME) leading to CD8 effector T cell dysfunction. Among the many facets of CD8 T cell dysfunction that have been recognized-tolerance, anergy, exhaustion, and senescence-CD8 T cell senescence is incompletely understood. Naïve CD8 T cells require three essential signals for activation, differentiation, and survival through T-cell receptor, costimulatory receptors, and cytokine receptors. Downregulation of costimulatory molecule CD28 is a hallmark of senescent T cells and increased CD8CD28 senescent populations with heterogeneous roles have been observed in multiple solid and hematogenous tumors. T cell senescence can be induced by several factors including aging, telomere damage, tumor-associated stress, and regulatory T (Treg) cells. Tumor-induced T cell senescence is yet another mechanism that enables tumor cell resistance to immunotherapy. In this paper, we provide a comprehensive overview of CD8CD28 senescent T cell population, their origin, their function in immunology and pathologic conditions, including TME and their implication for immunotherapy. Further characterization and investigation into this subset of CD8 T cells could improve the efficacy of future anti-tumor immunotherapy.