logo logo
Induction of functional hepatocyte-like cells from mouse fibroblasts by defined factors. Huang Pengyu,He Zhiying,Ji Shuyi,Sun Huawang,Xiang Dao,Liu Changcheng,Hu Yiping,Wang Xin,Hui Lijian Nature The generation of functional hepatocytes independent of donor liver organs is of great therapeutic interest with regard to regenerative medicine and possible cures for liver disease. Induced hepatic differentiation has been achieved previously using embryonic stem cells or induced pluripotent stem cells. Particularly, hepatocytes generated from a patient's own induced pluripotent stem cells could theoretically avoid immunological rejection. However, the induction of hepatocytes from induced pluripotent stem cells is a complicated process that would probably be replaced with the arrival of improved technology. Overexpression of lineage-specific transcription factors directly converts terminally differentiated cells into some other lineages, including neurons, cardiomyocytes and blood progenitors; however, it remains unclear whether these lineage-converted cells could repair damaged tissues in vivo. Here we demonstrate the direct induction of functional hepatocyte-like (iHep) cells from mouse tail-tip fibroblasts by transduction of Gata4, Hnf1α and Foxa3, and inactivation of p19(Arf). iHep cells show typical epithelial morphology, express hepatic genes and acquire hepatocyte functions. Notably, transplanted iHep cells repopulate the livers of fumarylacetoacetate-hydrolase-deficient (Fah(-/-)) mice and rescue almost half of recipients from death by restoring liver functions. Our study provides a novel strategy to generate functional hepatocyte-like cells for the purpose of liver engineering and regenerative medicine. 10.1038/nature10116
Paracrine signals from mesenchymal cell populations govern the expansion and differentiation of human hepatic stem cells to adult liver fates. Hepatology (Baltimore, Md.) UNLABELLED:The differentiation of embryonic or determined stem cell populations into adult liver fates under known conditions yields cells with some adult-specific genes but not others, aberrant regulation of one or more genes, and variations in the results from experiment to experiment. We tested the hypothesis that sets of signals produced by freshly isolated, lineage-dependent mesenchymal cell populations would yield greater efficiency and reproducibility in driving the differentiation of human hepatic stem cells (hHpSCs) into adult liver fates. The subpopulations of liver-derived mesenchymal cells, purified by immunoselection technologies, included (1) angioblasts, (2) mature endothelia, (3) hepatic stellate cell precursors, (4) mature stellate cells (pericytes), and (5) myofibroblasts. Freshly immunoselected cells of each of these subpopulations were established in primary cultures under wholly defined (serum-free) conditions that we developed for short-term cultures and were used as feeders with hHpSCs. Feeders of angioblasts yielded self-replication, stellate cell precursors caused lineage restriction to hepatoblasts, mature endothelia produced differentiation into hepatocytes, and mature stellate cells and/or myofibroblasts resulted in differentiation into cholangiocytes. Paracrine signals produced by the different feeders were identified by biochemical, immunohistochemical, and quantitative reverse-transcription polymerase chain reaction analyses, and then those signals were used to replace the feeders in monolayer and three-dimensional cultures to elicit the desired biological responses from hHpSCs. The defined paracrine signals were proved to be able to yield reproducible responses from hHpSCs and to permit differentiation into fully mature and functional parenchymal cells. CONCLUSION:Paracrine signals from defined mesenchymal cell populations are important for the regulation of stem cell populations into specific adult fates; this finding is important for basic and clinical research as well as industrial investigations. 10.1002/hep.23829
Liver X receptor α (LXRα/NR1H3) regulates differentiation of hepatocyte-like cells via reciprocal regulation of HNF4α. Chen Kai-Ting,Pernelle Kelig,Tsai Yuan-Hau,Wu Yu-Hsuan,Hsieh Jui-Yu,Liao Ko-Hsun,Guguen-Guillouzo Christiane,Wang Hsei-Wei Journal of hepatology BACKGROUND & AIMS:Hepatocyte-like cells, differentiated from different stem cell sources, are considered to have a range of possible therapeutic applications, including drug discovery, metabolic disease modelling, and cell transplantation. However, little is known about how stem cells differentiate into mature and functional hepatocytes. METHODS:Using transcriptomic screening, a transcription factor, liver X receptor α (NR1H3), was identified as increased during HepaRG cell hepatogenesis; this protein was also upregulated during embryonic stem cell and induced pluripotent stem cell differentiation. RESULTS:Overexpressing NR1H3 in human HepaRG cells promoted hepatic maturation; the hepatocyte-like cells exhibited various functions associated with mature hepatocytes, including cytochrome P450 (CYP) enzyme activity, secretion of urea and albumin, upregulation of hepatic-specific transcripts and an increase in glycogen storage. Importantly, the NR1H3-derived hepatocyte-like cells were able to rescue lethal fulminant hepatic failure using a non-obese diabetic/severe combined immunodeficient mouse model. CONCLUSIONS:In this study, we found that NR1H3 accelerates hepatic differentiation through an HNF4α-dependent reciprocal network. This contributes to hepatogenesis and is therapeutically beneficial to liver disease. 10.1016/j.jhep.2014.07.025
Generation of expandable human pluripotent stem cell-derived hepatocyte-like liver organoids. Mun Seon Ju,Ryu Jae-Sung,Lee Mi-Ok,Son Ye Seul,Oh Soo Jin,Cho Hyun-Soo,Son Mi-Young,Kim Dae-Soo,Kim Su Jung,Yoo Hyun Ju,Lee Ho-Joon,Kim Janghwan,Jung Cho-Rok,Chung Kyung-Sook,Son Myung Jin Journal of hepatology BACKGROUND & AIMS:The development of hepatic models capable of long-term expansion with competent liver functionality is technically challenging in a personalized setting. Stem cell-based organoid technologies can provide an alternative source of patient-derived primary hepatocytes. However, self-renewing and functionally competent human pluripotent stem cell (PSC)-derived hepatic organoids have not been developed. METHODS:We developed a novel method to efficiently and reproducibly generate functionally mature human hepatic organoids derived from PSCs, including human embryonic stem cells and induced PSCs. The maturity of the organoids was validated by a detailed transcriptome analysis and functional performance assays. The organoids were applied to screening platforms for the prediction of toxicity and the evaluation of drugs that target hepatic steatosis through real-time monitoring of cellular bioenergetics and high-content analyses. RESULTS:Our organoids were morphologically indistinguishable from adult liver tissue-derived epithelial organoids and exhibited self-renewal. With further maturation, their molecular features approximated those of liver tissue, although these features were lacking in 2D differentiated hepatocytes. Our organoids preserved mature liver properties, including serum protein production, drug metabolism and detoxifying functions, active mitochondrial bioenergetics, and regenerative and inflammatory responses. The organoids exhibited significant toxic responses to clinically relevant concentrations of drugs that had been withdrawn from the market due to hepatotoxicity and recapitulated human disease phenotypes such as hepatic steatosis. CONCLUSIONS:Our organoids exhibit self-renewal (expandable and further able to differentiate) while maintaining their mature hepatic characteristics over long-term culture. These organoids may provide a versatile and valuable platform for physiologically and pathologically relevant hepatic models in the context of personalized medicine. LAY SUMMARY:A functionally mature, human cell-based liver model exhibiting human responses in toxicity prediction and drug evaluation is urgently needed for pre-clinical drug development. Here, we develop a novel human pluripotent stem cell-derived hepatocyte-like liver organoid that is critically advanced in terms of its generation method, functional performance, and application technologies. Our organoids can contribute to the better understanding of liver development and regeneration, and provide insights for metabolic studies and disease modeling, as well as toxicity assessments and drug screening for personalized medicine. 10.1016/j.jhep.2019.06.030
Rapid generation of mature hepatocyte-like cells from human induced pluripotent stem cells by an efficient three-step protocol. Chen Yu-Fan,Tseng Chien-Yu,Wang Hsei-Wei,Kuo Hung-Chih,Yang Vincent W,Lee Oscar K Hepatology (Baltimore, Md.) UNLABELLED:Liver transplantation is the only definitive treatment for end-stage cirrhosis and fulminant liver failure, but the lack of available donor livers is a major obstacle to liver transplantation. Recently, induced pluripotent stem cells (iPSCs) derived from the reprogramming of somatic fibroblasts, have been shown to resemble embryonic stem (ES) cells in that they have pluripotent properties and the potential to differentiate into all cell lineages in vitro, including hepatocytes. Thus, iPSCs could serve as a favorable cell source for a wide range of applications, including drug toxicity testing, cell transplantation, and patient-specific disease modeling. Here, we describe an efficient and rapid three-step protocol that is able to rapidly generate hepatocyte-like cells from human iPSCs. This occurs because the endodermal induction step allows for more efficient and definitive endoderm cell formation. We show that hepatocyte growth factor (HGF), which synergizes with activin A and Wnt3a, elevates the expression of the endodermal marker Foxa2 (forkhead box a2) by 39.3% compared to when HGF is absent (14.2%) during the endodermal induction step. In addition, iPSC-derived hepatocytes had a similar gene expression profile to mature hepatocytes. Importantly, the hepatocyte-like cells exhibited cytochrome P450 3A4 (CYP3A4) enzyme activity, secreted urea, uptake of low-density lipoprotein (LDL), and possessed the ability to store glycogen. Moreover, the hepatocyte-like cells rescued lethal fulminant hepatic failure in a nonobese diabetic severe combined immunodeficient mouse model. CONCLUSION:We have established a rapid and efficient differentiation protocol that is able to generate functional hepatocyte-like cells from human iPSCs. This may offer an alternative option for treatment of liver diseases. 10.1002/hep.24790
Functional differentiation of human pluripotent stem cells on a chip. Giobbe Giovanni G,Michielin Federica,Luni Camilla,Giulitti Stefano,Martewicz Sebastian,Dupont Sirio,Floreani Annarosa,Elvassore Nicola Nature methods Microengineering human "organs-on-chips" remains an open challenge. Here, we describe a robust microfluidics-based approach for the differentiation of human pluripotent stem cells directly on a chip. Extrinsic signal modulation, achieved through optimal frequency of medium delivery, can be used as a parameter for improved germ layer specification and cell differentiation. Human cardiomyocytes and hepatocytes derived on chips showed functional phenotypes and responses to temporally defined drug treatments. 10.1038/nmeth.3411
The homeobox gene Hex regulates hepatocyte differentiation from embryonic stem cell-derived endoderm. Kubo Atsushi,Kim Yon Hui,Irion Stefan,Kasuda Shogo,Takeuchi Mitsuaki,Ohashi Kazuo,Iwano Masayuki,Dohi Yoshiko,Saito Yoshihiko,Snodgrass Ralph,Keller Gordon Hepatology (Baltimore, Md.) We investigated the role of the hematopoietically expressed homeobox (Hex) in the differentiation and development of hepatocytes within embryonic stem cell (ESC)-derived embryoid bodies (EBs). Analyses of hepatic endoderm derived from Hex(-/-) EBs revealed a dramatic reduction in the levels of albumin (Alb) and alpha-fetoprotein (Afp) expression. In contrast, stage-specific forced expression of Hex in EBs from wild-type ESCs led to the up-regulation of Alb and Afp expression and secretion of Alb and transferrin. These inductive effects were restricted to c-kit(+) endoderm-enriched EB-derived populations, suggesting that Hex functions at the level of hepatic specification of endoderm in this model. Microarray analysis revealed that Hex regulated the expression of a broad spectrum of hepatocyte-related genes, including fibrinogens, apolipoproteins, and cytochromes. When added to the endoderm-induced EBs, bone morphogenetic protein 4 acted synergistically with Hex in the induction of expression of Alb, Afp, carbamoyl phosphate synthetase, transcription factor 1, and CCAAT/enhancer binding protein alpha. These findings indicate that Hex plays a pivotal role during induction of liver development from endoderm in this in vitro model and suggest that this strategy may provide important insight into the generation of functional hepatocytes from ESCs. 10.1002/hep.23293
Enhancing the functional maturity of induced pluripotent stem cell-derived human hepatocytes by controlled presentation of cell-cell interactions in vitro. Berger Dustin R,Ware Brenton R,Davidson Matthew D,Allsup Samuel R,Khetani Salman R Hepatology (Baltimore, Md.) UNLABELLED:Induced pluripotent stem cell-derived human hepatocyte-like cells (iHeps) could provide a powerful tool for studying the mechanisms underlying human liver development and disease, testing the efficacy and safety of pharmaceuticals across different patients (i.e., personalized medicine), and enabling cell-based therapies in the clinic. However, current in vitro protocols that rely upon growth factors and extracellular matrices (ECMs) alone yield iHeps with low levels of liver functions relative to adult primary human hepatocytes (PHHs). Moreover, these low hepatic functions in iHeps are difficult to maintain for prolonged times (weeks to months) in culture. Here, we engineered a micropatterned coculture (iMPCC) platform in a multiwell format that, in contrast to conventional confluent cultures, significantly enhanced the functional maturation and longevity of iHeps in culture for at least 4 weeks in vitro when benchmarked against multiple donors of PHHs. In particular, iHeps were micropatterned onto collagen-coated domains of empirically optimized dimensions, surrounded by 3T3-J2 murine embryonic fibroblasts, and then sandwiched with a thin layer of ECM gel (Matrigel). We assessed iHep maturity by global gene expression profiles, hepatic polarity, secretion of albumin and urea, basal cytochrome P450 (CYP450) activities, phase II conjugation, drug-mediated CYP450 induction, and drug-induced hepatotoxicity. CONCLUSION:Controlling both homotypic interactions between iHeps and heterotypic interactions with stromal fibroblasts significantly matures iHep functions and maintains them for several weeks in culture. In the future, iMPCCs could prove useful for drug screening, studying molecular mechanisms underlying iHep differentiation, modeling liver diseases, and integration into human-on-a-chip systems being designed to assess multiorgan responses to compounds. 10.1002/hep.27621
Generation of endoderm-derived human induced pluripotent stem cells from primary hepatocytes. Liu Hua,Ye Zhaohui,Kim Yonghak,Sharkis Saul,Jang Yoon-Young Hepatology (Baltimore, Md.) UNLABELLED:Recent advances in induced pluripotent stem (iPS) cell research have significantly changed our perspective on regenerative medicine. Patient-specific iPS cells have been derived not only for disease modeling but also as sources for cell replacement therapy. However, there have been insufficient data to prove that iPS cells are functionally equivalent to human embryonic stem (hES) cells or are safer than hES cells. There are several important issues that need to be addressed, and foremost are the safety and efficacy of human iPS cells of different origins. Human iPS cells have been derived mostly from cells originating from mesoderm and in a few cases from ectoderm. So far, there has been no report of endoderm-derived human iPS cells, and this has prevented comprehensive comparative investigations of the quality of human iPS cells of different origins. Here we show for the first time reprogramming of human endoderm-derived cells (i.e., primary hepatocytes) to pluripotency. Hepatocyte-derived iPS cells appear indistinguishable from hES cells with respect to colony morphology, growth properties, expression of pluripotency-associated transcription factors and surface markers, and differentiation potential in embryoid body formation and teratoma assays. In addition, these cells are able to directly differentiate into definitive endoderm, hepatic progenitors, and mature hepatocytes. CONCLUSION:The technology to develop endoderm-derived human iPS cell lines, together with other established cell lines, will provide a foundation for elucidating the mechanisms of cellular reprogramming and for studying the safety and efficacy of differentially originated human iPS cells for cell therapy. For the study of liver disease pathogenesis, this technology also provides a potentially more amenable system for generating liver disease-specific iPS cells. 10.1002/hep.23626
Reprogramming fibroblasts into bipotential hepatic stem cells by defined factors. Yu Bing,He Zhi-Ying,You Pu,Han Qing-Wang,Xiang Dao,Chen Fei,Wang Min-Jun,Liu Chang-Cheng,Lin Xi-Wen,Borjigin Uyunbilig,Zi Xiao-Yuan,Li Jian-Xiu,Zhu Hai-Ying,Li Wen-Lin,Han Chun-Sheng,Wangensteen Kirk J,Shi Yufang,Hui Li-Jian,Wang Xin,Hu Yi-Ping Cell stem cell Recent studies have demonstrated direct reprogramming of fibroblasts into a range of somatic cell types, but to date stem or progenitor cells have only been reprogrammed for the blood and neuronal lineages. We previously reported generation of induced hepatocyte-like (iHep) cells by transduction of Gata4, Hnf1α, and Foxa3 in p19 Arf null mouse embryonic fibroblasts (MEFs). Here, we show that Hnf1β and Foxa3, liver organogenesis transcription factors, are sufficient to reprogram MEFs into induced hepatic stem cells (iHepSCs). iHepSCs can be stably expanded in vitro and possess the potential of bidirectional differentiation into both hepatocytic and cholangiocytic lineages. In the injured liver of fumarylacetoacetate hydrolase (Fah)-deficient mice, repopulating iHepSCs become hepatocyte-like cells. They also engraft as cholangiocytes into bile ducts of mice with DDC-induced bile ductular injury. Lineage conversion into bipotential expandable iHepSCs provides a strategy to enable efficient derivation of both hepatocytes and cholangiocytes for use in disease modeling and tissue engineering. 10.1016/j.stem.2013.06.017
Human pluripotent stem cell-derived hepatocytes support complete replication of hepatitis C virus. Roelandt Philip,Obeid Susan,Paeshuyse Jan,Vanhove Jolien,Van Lommel Alfons,Nahmias Yaakov,Nevens Frederik,Neyts Johan,Verfaillie Catherine M Journal of hepatology BACKGROUND & AIMS:Worldwide, about 180 million people are chronically infected with the hepatitis C virus (HCV). Current in vitro culture systems for HCV depend chiefly on human hepatoma cell lines. Although primary human hepatocytes support HCV infection in vitro, and immunodeficient mice repopulated with human hepatocytes support HCV infection in vivo, these models are limited because of shortage of human livers to isolate hepatocytes. Therefore, there is significant interest in the establishment from of a HCV culture system in human stem cell-derived hepatocyte-like cells. METHODS:Human embryonic stem cell (hESC)-derived hepatocytes were infected with HCV in the presence or absence of direct acting antivirals. After inoculation, replication of HCV was analyzed extensively. RESULTS:We demonstrate that hESC-derived hepatocytes can be infected with the HCV JFH1 genotype 2a, resulting in the production of viral RNA in the stem cell progeny. Viral replication is inhibited by a non-nucleoside HCV polymerase-inhibitor (HCV-796), a cyclophilin binding molecule (Debio 025-Alisporivir) and the protease inhibitor VX-950 (Telaprevir). Stem cell-derived hepatocytes produced, for more than 10 days, the HCV core protein as well as virions that were capable of re-infecting hepatoma cells. CONCLUSIONS:Hepatocytes derived from hESC support the complete HCV replication cycle (including the production of infectious virus), and viral replication in these cells is efficiently inhibited by selective inhibitors of HCV replication. 10.1016/j.jhep.2012.03.030
Pluripotent stem cell-derived hepatocyte-like cells. Schwartz R E,Fleming H E,Khetani S R,Bhatia S N Biotechnology advances Liver disease is an important clinical problem, impacting over 30 million Americans and over 600 million people worldwide. It is the 12th leading cause of death in the United States and the 16th worldwide. Due to a paucity of donor organs, several thousand Americans die yearly while waiting for liver transplantation. Unfortunately, alternative tissue sources such as fetal hepatocytes and hepatic cell lines are unreliable, difficult to reproduce, and do not fully recapitulate hepatocyte phenotype and functions. As a consequence, alternative cell sources that do not have these limitations have been sought. Human embryonic stem (hES) cell- and induced pluripotent stem (iPS) cell-derived hepatocyte-like cells may enable cell based therapeutics, the study of the mechanisms of human disease and human development, and provide a platform for screening the efficacy and toxicity of pharmaceuticals. iPS cells can be differentiated in a step-wise fashion with high efficiency and reproducibility into hepatocyte-like cells that exhibit morphologic and phenotypic characteristics of hepatocytes. In addition, iPS-derived hepatocyte-like cells (iHLCs) possess some functional hepatic activity as they secrete urea, alpha-1-antitrypsin, and albumin. However, the combined phenotypic and functional traits exhibited by iHLCs resemble a relatively immature hepatic phenotype that more closely resembles that of fetal hepatocytes rather than adult hepatocytes. Specifically, iHLCs express fetal markers such as alpha-fetoprotein and lack key mature hepatocyte functions, as reflected by drastically reduced activity (~0.1%) of important detoxification enzymes (i.e. CYP2A6, CYP3A4). These key differences between iHLCs and primary adult human hepatocytes have limited the use of stem cells as a renewable source of functional adult hepatocytes for in vitro and in vivo applications. Unfortunately, the developmental pathways that control hepatocyte maturation from a fetal into an adult hepatocyte are poorly understood, which has hampered the field in its efforts to induce further maturation of iPS-derived hepatic lineage cells. This review analyzes recent developments in the derivation of hepatocyte-like cells, and proposes important points to consider and assays to perform during their characterization. In the future, we envision that iHLCs will be used as in vitro models of human disease, and in the longer term, provide an alternative cell source for drug testing and clinical therapy. 10.1016/j.biotechadv.2014.01.003
Engrafted human stem cell-derived hepatocytes establish an infectious HCV murine model. Carpentier Arnaud,Tesfaye Abeba,Chu Virginia,Nimgaonkar Ila,Zhang Fang,Lee Seung Bum,Thorgeirsson Snorri S,Feinstone Stephen M,Liang T Jake The Journal of clinical investigation The demonstrated ability to differentiate both human embryonic stem cells (hESCs) and patient-derived induced pluripotent stem cells (hiPSCs) into hepatocyte-like cells (HLCs) holds great promise for both regenerative medicine and liver disease research. Here, we determined that, despite an immature phenotype, differentiated HLCs are permissive to hepatitis C virus (HCV) infection and mount an interferon response to HCV infection in vitro. HLCs differentiated from hESCs and hiPSCs could be engrafted in the liver parenchyma of immune-deficient transgenic mice carrying the urokinase-type plasminogen activator gene driven by the major urinary protein promoter. The HLCs were maintained for more than 3 months in the livers of chimeric mice, in which they underwent further maturation and proliferation. These engrafted and expanded human HLCs were permissive to in vivo infection with HCV-positive sera and supported long-term infection of multiple HCV genotypes. Our study demonstrates efficient engraftment and in vivo HCV infection of human stem cell-derived hepatocytes and provides a model to study chronic HCV infection in patient-derived hepatocytes, action of antiviral therapies, and the biology of HCV infection. 10.1172/JCI75456
KDR identifies a conserved human and murine hepatic progenitor and instructs early liver development. Goldman Orit,Han Songyan,Sourisseau Marion,Sourrisseau Marion,Dziedzic Noelle,Hamou Wissam,Corneo Barbara,D'Souza Sunita,Sato Thomas,Kotton Darrell N,Bissig Karl-Dimiter,Kalir Tamara,Jacobs Adam,Evans Todd,Evans Matthew J,Gouon-Evans Valerie Cell stem cell Understanding the fetal hepatic niche is essential for optimizing the generation of functional hepatocyte-like cells (hepatic cells) from human embryonic stem cells (hESCs). Here, we show that KDR (VEGFR2/FLK-1), previously assumed to be mostly restricted to mesodermal lineages, marks a hESC-derived hepatic progenitor. hESC-derived endoderm cells do not express KDR but, when cultured in media supporting hepatic differentiation, generate KDR+ hepatic progenitors and KDR- hepatic cells. KDR+ progenitors require active KDR signaling both to instruct their own differentiation into hepatic cells and to non-cell-autonomously support the functional maturation of cocultured KDR- hepatic cells. Analysis of human fetal livers suggests that similar progenitors are present in human livers. Lineage tracing in mice provides in vivo evidence of a KDR+ hepatic progenitor for fetal hepatoblasts, adult hepatocytes, and adult cholangiocytes. Altogether, our findings reveal that KDR is a conserved marker for endoderm-derived hepatic progenitors and a functional receptor instructing early liver development. 10.1016/j.stem.2013.04.026
Single-cell RNA-seq reveals novel regulators of human embryonic stem cell differentiation to definitive endoderm. Genome biology BACKGROUND:Human pluripotent stem cells offer the best available model to study the underlying cellular and molecular mechanisms of human embryonic lineage specification. However, it is not fully understood how individual stem cells exit the pluripotent state and transition towards their respective progenitor states. RESULTS:Here, we analyze the transcriptomes of human embryonic stem cell-derived lineage-specific progenitors by single-cell RNA-sequencing (scRNA-seq). We identify a definitive endoderm (DE) transcriptomic signature that leads us to pinpoint a critical time window when DE differentiation is enhanced by hypoxia. The molecular mechanisms governing the emergence of DE are further examined by time course scRNA-seq experiments, employing two new statistical tools to identify stage-specific genes over time (SCPattern) and to reconstruct the differentiation trajectory from the pluripotent state through mesendoderm to DE (Wave-Crest). Importantly, presumptive DE cells can be detected during the transitory phase from Brachyury (T) (+) mesendoderm toward a CXCR4 (+) DE state. Novel regulators are identified within this time window and are functionally validated on a screening platform with a T-2A-EGFP knock-in reporter engineered by CRISPR/Cas9. Through loss-of-function and gain-of-function experiments, we demonstrate that KLF8 plays a pivotal role modulating mesendoderm to DE differentiation. CONCLUSIONS:We report the analysis of 1776 cells by scRNA-seq covering distinct human embryonic stem cell-derived progenitor states. By reconstructing a differentiation trajectory at single-cell resolution, novel regulators of the mesendoderm transition to DE are elucidated and validated. Our strategy of combining single-cell analysis and genetic approaches can be applied to uncover novel regulators governing cell fate decisions in a variety of systems. 10.1186/s13059-016-1033-x
Sall4 regulates cell fate decision in fetal hepatic stem/progenitor cells. Oikawa Tsunekazu,Kamiya Akihide,Kakinuma Sei,Zeniya Mikio,Nishinakamura Ryuichi,Tajiri Hisao,Nakauchi Hiromitsu Gastroenterology BACKGROUND & AIMS:Fetal hepatic stem/progenitor cells, called hepatoblasts, differentiate into both hepatocytes and cholangiocytes. The molecular mechanisms regulating this lineage segmentation process remain unknown. Sall4 has been shown to be among the regulators of organogenesis, embryogenesis, maintenance of pluripotency, and early embryonic cell fate decisions in embryonic stem cells. The expression and functional roles of Sall4 during liver development have not been elucidated. We here provide their first description in hepatoblasts. METHODS:To investigate functions of Sall4 in fetal liver development, Dlk(+)CD45(-)Ter119(-) hepatoblasts derived from embryonic day 14 mouse livers were purified, and in vitro gain and loss of function analyses and in vivo transplantation analyses were performed using retrovirus- or lentivirus-mediated gene transfer. RESULTS:We demonstrated that Sall4 was expressed in fetal hepatoblasts but not adult hepatocytes. The expression level of Sall4 gradually fell during liver development. Overexpression of Sall4 in hepatoblasts significantly inhibited maturation induced by oncostatin M and extracellular matrix in vitro, as evidenced by morphologic changes and suppression of hepatic maturation marker gene expression. When bile duct-like structures were induced by collagen gel-embedded culture, overexpression of Sall4 markedly augmented size and number of cytokeratin19(+)-branching structures. Knockdown of Sall4 inhibited formation of these branching structures. With in vivo transplantation, Sall4 enhanced differentiation of cytokeratin19(+)-bile ducts derived from transplanted hepatoblasts. CONCLUSIONS:These results suggest that Sall4 plays a crucial role in controlling the lineage commitment of hepatoblasts not only inhibiting their differentiation into hepatocytes but also driving their differentiation toward cholangiocytes. 10.1053/j.gastro.2008.11.018
Efficient generation of hepatocyte-like cells from human induced pluripotent stem cells. Song Zhihua,Cai Jun,Liu Yanxia,Zhao Dongxin,Yong Jun,Duo Shuguang,Song Xijun,Guo Yushan,Zhao Yang,Qin Han,Yin Xiaolei,Wu Chen,Che Jie,Lu Shichun,Ding Mingxiao,Deng Hongkui Cell research Human induced pluripotent stem (iPS) cells are similar to embryonic stem (ES) cells, and can proliferate intensively and differentiate into a variety of cell types. However, the hepatic differentiation of human iPS cells has not yet been reported. In this report, human iPS cells were induced to differentiate into hepatic cells by a stepwise protocol. The expression of liver cell markers and liver-related functions of the human iPS cell-derived cells were monitored and compared with that of differentiated human ES cells and primary human hepatocytes. Approximately 60% of the differentiated human iPS cells at day 7 expressed hepatic markers alpha fetoprotein and Alb. The differentiated cells at day 21 exhibited liver cell functions including albumin Asecretion, glycogen synthesis, urea production and inducible cytochrome P450 activity. The expression of hepatic markers and liver-related functions of the iPS cell-derived hepatic cells were comparable to that of the human ES cell-derived hepatic cells. These results show that human iPS cells, which are similar to human ES cells, can be efficiently induced to differentiate into hepatocyte-like cells. 10.1038/cr.2009.107
Stage-specific regulation of the WNT/β-catenin pathway enhances differentiation of hESCs into hepatocytes. Touboul Thomas,Chen Shujuan,To Cuong C,Mora-Castilla Sergio,Sabatini Karen,Tukey Robert H,Laurent Louise C Journal of hepatology BACKGROUND & AIMS:Hepatocytes differentiated from human embryonic stem cells (hESCs) have the potential to overcome the shortage of primary hepatocytes for clinical use and drug development. Many strategies for this process have been reported, but the functionality of the resulting cells is incomplete. We hypothesize that the functionality of hPSC-derived hepatocytes might be improved by making the differentiation method more similar to normal in vivo hepatic development. METHODS:We tested combinations of growth factors and small molecules targeting candidate signaling pathways culled from the literature to identify optimal conditions for differentiation of hESCs to hepatocytes, using qRT-PCR for stage-specific markers to identify the best conditions. Immunocytochemistry was then used to validate the selected conditions. Finally, induction of expression of metabolic enzymes in terminally differentiated cells was used to assess the functionality of the hESC-derived hepatocytes. RESULTS:Optimal differentiation of hESCs was attained using a 5-stage protocol. After initial induction of definitive endoderm (stage 1), we showed that inhibition of the WNT/β-catenin pathway during the 2nd and 3rd stages of differentiation was required to specify first posterior foregut, and then hepatic gut cells. In contrast, during the 4th stage of differentiation, we found that activation of the WNT/β-catenin pathway allowed generation of proliferative bipotent hepatoblasts, which then were efficiently differentiated into hepatocytes in the 5th stage by dual inhibition of TGF-β and NOTCH signaling. CONCLUSION:Here, we show that stage-specific regulation of the WNT/β-catenin pathway results in improved differentiation of hESCs to functional hepatocytes. 10.1016/j.jhep.2016.02.028
Gene networks and transcription factor motifs defining the differentiation of stem cells into hepatocyte-like cells. Godoy Patricio,Schmidt-Heck Wolfgang,Natarajan Karthick,Lucendo-Villarin Baltasar,Szkolnicka Dagmara,Asplund Annika,Björquist Petter,Widera Agata,Stöber Regina,Campos Gisela,Hammad Seddik,Sachinidis Agapios,Chaudhari Umesh,Damm Georg,Weiss Thomas S,Nüssler Andreas,Synnergren Jane,Edlund Karolina,Küppers-Munther Barbara,Hay David C,Hengstler Jan G Journal of hepatology BACKGROUND & AIMS:The differentiation of stem cells to hepatocyte-like cells (HLC) offers the perspective of unlimited supply of human hepatocytes. However, the degree of differentiation of HLC remains controversial. To obtain an unbiased characterization, we performed a transcriptomic study with HLC derived from human embryonic and induced stem cells (ESC, hiPSC) from three different laboratories. METHODS:Genome-wide gene expression profiles of ESC and HLC were compared to freshly isolated and up to 14days cultivated primary human hepatocytes. Gene networks representing successful and failed hepatocyte differentiation, and the transcription factors involved in their regulation were identified. RESULTS:Gene regulatory network analysis demonstrated that HLC represent a mixed cell type with features of liver, intestine, fibroblast and stem cells. The "unwanted" intestinal features were associated with KLF5 and CDX2 transcriptional networks. Cluster analysis identified highly correlated groups of genes associated with mature liver functions (n=1057) and downregulated proliferation associated genes (n=1562) that approach levels of primary hepatocytes. However, three further clusters containing 447, 101, and 505 genes failed to reach levels of hepatocytes. Key TF of two of these clusters include SOX11, FOXQ1, and YBX3. The third unsuccessful cluster, controlled by HNF1, CAR, FXR, and PXR, strongly overlaps with genes repressed in cultivated hepatocytes compared to freshly isolated hepatocytes, suggesting that current in vitro conditions lack stimuli required to maintain gene expression in hepatocytes, which consequently also explains a corresponding deficiency of HLC. CONCLUSIONS:The present gene regulatory network approach identifies key transcription factors which require modulation to improve HLC differentiation. 10.1016/j.jhep.2015.05.013
Differentiation and transplantation of human embryonic stem cell-derived hepatocytes. Basma Hesham,Soto-Gutiérrez Alejandro,Yannam Govardhana Rao,Liu Liping,Ito Ryotaro,Yamamoto Toshiyuki,Ellis Ewa,Carson Steven D,Sato Shintaro,Chen Yong,Muirhead David,Navarro-Alvarez Nalu,Wong Ronald J,Roy-Chowdhury Jayanta,Platt Jeffrey L,Mercer David F,Miller John D,Strom Stephen C,Kobayashi Naoya,Fox Ira J Gastroenterology BACKGROUND & AIMS:The ability to obtain unlimited numbers of human hepatocytes would improve the development of cell-based therapies for liver diseases, facilitate the study of liver biology, and improve the early stages of drug discovery. Embryonic stem cells are pluripotent, potentially can differentiate into any cell type, and therefore could be developed as a source of human hepatocytes. METHODS:To generate human hepatocytes, human embryonic stem cells were differentiated by sequential culture in fibroblast growth factor 2 and human activin-A, hepatocyte growth factor, and dexamethasone. Functional hepatocytes were isolated by sorting for surface asialoglycoprotein-receptor expression. Characterization was performed by real-time polymerase chain reaction, immunohistochemistry, immunoblot, functional assays, and transplantation. RESULTS:Embryonic stem cell-derived hepatocytes expressed liver-specific genes, but not genes representing other lineages, secreted functional human liver-specific proteins similar to those of primary human hepatocytes, and showed human hepatocyte cytochrome P450 metabolic activity. Serum from rodents given injections of embryonic stem cell-derived hepatocytes contained significant amounts of human albumin and alpha1-antitrypsin. Colonies of cytokeratin-18 and human albumin-expressing cells were present in the livers of recipient animals. CONCLUSIONS:Human embryonic stem cells can be differentiated into cells with many characteristics of primary human hepatocytes. Hepatocyte-like cells can be enriched and recovered based on asialoglycoprotein-receptor expression and potentially could be used in drug discovery research and developed as therapeutics. 10.1053/j.gastro.2008.10.047
Noggin, retinoids, and fibroblast growth factor regulate hepatic or pancreatic fate of human embryonic stem cells. Mfopou Josué Kunjom,Chen Bing,Mateizel Ileana,Sermon Karen,Bouwens Luc Gastroenterology BACKGROUND & AIMS:New sources of beta cells are needed to develop cell therapies for patients with diabetes. An in vitro, sequential method has been developed to derive pancreatic progenitors, but this technique has not been used for other cell lines. We investigated whether definitive endoderm derived from human embryonic stem (hES) cells might be used to create beta cells. METHODS:Five hES cell lines were induced to form pancreatic progenitors and analyzed for pancreas markers. Cells were incubated with a bone morphogenetic protein (BMP) antagonist, retinoids, a Hedgehog antagonist, or fibroblast growth factor (FGF) and phenotypes were analyzed. RESULTS:Four hES cell lines sequentially generated definitive endoderm, primitive gut, and posterior foregut equivalents, as described previously. However, functional hepatocytes, rather than pancreas progenitors, developed. Consistent with liver development, FGF and BMP signaling pathways were involved in this process; their inhibition disrupted hepatocyte differentiation. During early stages of development, exposure of cells to noggin and retinoid acid, followed by FGF10, generated pancreatic cells (PDX1+; 50%-80%) that coexpressed FOXA2, HNF6, and SOX9. CONCLUSIONS:These findings demonstrate the combined functions of endogenous BMP and supplemented FGF in inducing differentiation of hepatocytes from hES cells and the ability to shift developmental pathways from hepatic to pancreatic cell differentiation. Although additional signals appear to be required for full specification of PDX1(+) early pancreatic progenitors (via PTF1a and NKX6.1 coexpression), these findings indicate the signaling pathways required for differentiation of bipotential progenitors. 10.1053/j.gastro.2010.02.056
Human stem cell-derived hepatocytes as a model for hepatitis B virus infection, spreading and virus-host interactions. Xia Yuchen,Carpentier Arnaud,Cheng Xiaoming,Block Peter Daniel,Zhao Yao,Zhang Zhensheng,Protzer Ulrike,Liang T Jake Journal of hepatology BACKGROUND & AIMS:One major obstacle of hepatitis B virus (HBV) research is the lack of efficient cell culture system permissive for viral infection and replication. The aim of our study was to establish a robust HBV infection model by using hepatocyte-like cells (HLCs) derived from human pluripotent stem cells. METHODS:HLCs were differentiated from human embryonic stem cells and induced pluripotent stem cells. Maturation of hepatocyte functions was determined. After HBV infection, total viral DNA, cccDNA, total viral RNA, pgRNA, HBeAg and HBsAg were measured. RESULTS:More than 90% of the HLCs expressed strong signals of human hepatocyte markers, like albumin, as well as known host factors required for HBV infection, suggesting that these cells possessed key features of mature hepatocytes. Notably, HLCs expressed the viral receptor sodium-taurocholate cotransporting polypeptide more stably than primary human hepatocytes (PHHs). HLCs supported robust infection and some spreading of HBV. Finally, by using this model, we identified two host-targeting agents, genistin and PA452, as novel antivirals. CONCLUSIONS:Stem cell-derived HLCs fully support HBV infection. This novel HLC HBV infection model offers a unique opportunity to advance our understanding of the molecular details of the HBV life cycle; to further characterize virus-host interactions and to define new targets for HBV curative treatment. LAY SUMMARY:Our study used human pluripotent stem cells to develop hepatocyte-like cells (HLCs) capable of expressing hepatocyte markers and host factors important for HBV infection. These cells fully support HBV infection and virus-host interactions, allowing for the identification of two novel antiviral agents. Thus, stem cell-derived HLCs provide a highly physiologically relevant system to advance our understanding of viral life cycle and provide a new tool for antiviral drug screening and development. 10.1016/j.jhep.2016.10.009
Generation of metabolically functioning hepatocytes from human pluripotent stem cells by FOXA2 and HNF1α transduction. Takayama Kazuo,Inamura Mitsuru,Kawabata Kenji,Sugawara Michiko,Kikuchi Kiyomi,Higuchi Maiko,Nagamoto Yasuhito,Watanabe Hitoshi,Tashiro Katsuhisa,Sakurai Fuminori,Hayakawa Takao,Furue Miho Kusuda,Mizuguchi Hiroyuki Journal of hepatology BACKGROUND & AIMS:Hepatocyte-like cells differentiated from human embryonic stem cells (hESCs) and induced pluripotent stem cells (hiPSCs) can be utilized as a tool for screening for hepatotoxicity in the early phase of pharmaceutical development. We have recently reported that hepatic differentiation is promoted by sequential transduction of SOX17, HEX, and HNF4α into hESC- or hiPSC-derived cells, but further maturation of hepatocyte-like cells is required for widespread use of drug screening. METHODS:To screen for hepatic differentiation-promoting factors, we tested the seven candidate genes related to liver development. RESULTS:The combination of two transcription factors, FOXA2 and HNF1α, promoted efficient hepatic differentiation from hESCs and hiPSCs. The expression profile of hepatocyte-related genes (such as genes encoding cytochrome P450 enzymes, conjugating enzymes, hepatic transporters, and hepatic nuclear receptors) achieved with FOXA2 and HNF1α transduction was comparable to that obtained in primary human hepatocytes. The hepatocyte-like cells generated by FOXA2 and HNF1α transduction exerted various hepatocyte functions including albumin and urea secretion, and the uptake of indocyanine green and low density lipoprotein. Moreover, these cells had the capacity to metabolize all nine tested drugs and were successfully employed to evaluate drug-induced cytotoxicity. CONCLUSIONS:Our method employing the transduction of FOXA2 and HNF1α represents a useful tool for the efficient generation of metabolically functional hepatocytes from hESCs and hiPSCs, and the screening of drug-induced cytotoxicity. 10.1016/j.jhep.2012.04.038
Hepatoblast-like progenitor cells derived from embryonic stem cells can repopulate livers of mice. Li Fuming,Liu Pingyu,Liu Changcheng,Xiang Dao,Deng Li,Li Wenlin,Wangensteen Kirk,Song Jianguo,Ma Yue,Hui Lijian,Wei Lixin,Li Lingsong,Ding Xiaoyan,Hu Yiping,He Zhiying,Wang Xin Gastroenterology BACKGROUND & AIMS:Hepatocyte-like cells can be derived from pluripotent stem cells such as embryonic stem (ES) cells, but ES cell-derived hepatic cells with extensive capacity to repopulate liver have not been identified. We aimed to identify and purify ES cell-derived hepatoblast-like progenitor cells and to explore their capacity for liver repopulation in mice after in vitro expansion. METHODS:Unmanipulated mouse ES cells were cultured under defined conditions and allowed to undergo stepwise hepatic differentiation. The derived hepatic cells were examined by morphologic, fluorescence-activated cell sorting, gene expression, and clonal expansion analyses. The capacities of ES cell-derived hepatic progenitor cells to repopulate liver were investigated in mice that were deficient in fumarylacetoacetate hydrolase (Fah) (a model of liver injury). RESULTS:Mouse ES cells were induced to differentiate into a population that contained hepatic progenitor cells; this population included cells that expressed epithelial cell adhesion molecule (EpCAM) but did not express c-Kit. Clonal hepatic progenitors that arose from single c-Kit(-)EpCAM(+) cells could undergo long-term expansion and maintain hepatoblast-like characteristics. Enriched c-Kit(-)EpCAM(+) cells and clonally expanded hepatic progenitor cells repopulated the livers of Fah-deficient mice without inducing tumorigenesis. CONCLUSIONS:ES cell-derived c-Kit(-)EpCAM(+) cells contain a population of hepatoblast-like progenitor cells that can repopulate livers of mice. 10.1053/j.gastro.2010.08.042
Phenotypic and functional analyses show stem cell-derived hepatocyte-like cells better mimic fetal rather than adult hepatocytes. Baxter Melissa,Withey Sarah,Harrison Sean,Segeritz Charis-Patricia,Zhang Fang,Atkinson-Dell Rebecca,Rowe Cliff,Gerrard Dave T,Sison-Young Rowena,Jenkins Roz,Henry Joanne,Berry Andrew A,Mohamet Lisa,Best Marie,Fenwick Stephen W,Malik Hassan,Kitteringham Neil R,Goldring Chris E,Piper Hanley Karen,Vallier Ludovic,Hanley Neil A Journal of hepatology BACKGROUND & AIMS:Hepatocyte-like cells (HLCs), differentiated from pluripotent stem cells by the use of soluble factors, can model human liver function and toxicity. However, at present HLC maturity and whether any deficit represents a true fetal state or aberrant differentiation is unclear and compounded by comparison to potentially deteriorated adult hepatocytes. Therefore, we generated HLCs from multiple lineages, using two different protocols, for direct comparison with fresh fetal and adult hepatocytes. METHODS:Protocols were developed for robust differentiation. Multiple transcript, protein and functional analyses compared HLCs to fresh human fetal and adult hepatocytes. RESULTS:HLCs were comparable to those of other laboratories by multiple parameters. Transcriptional changes during differentiation mimicked human embryogenesis and showed more similarity to pericentral than periportal hepatocytes. Unbiased proteomics demonstrated greater proximity to liver than 30 other human organs or tissues. However, by comparison to fresh material, HLC maturity was proven by transcript, protein and function to be fetal-like and short of the adult phenotype. The expression of 81% phase 1 enzymes in HLCs was significantly upregulated and half were statistically not different from fetal hepatocytes. HLCs secreted albumin and metabolized testosterone (CYP3A) and dextrorphan (CYP2D6) like fetal hepatocytes. In seven bespoke tests, devised by principal components analysis to distinguish fetal from adult hepatocytes, HLCs from two different source laboratories consistently demonstrated fetal characteristics. CONCLUSIONS:HLCs from different sources are broadly comparable with unbiased proteomic evidence for faithful differentiation down the liver lineage. This current phenotype mimics human fetal rather than adult hepatocytes. 10.1016/j.jhep.2014.10.016
Human embryonic stem cell-derived hepatoblasts are an optimal lineage stage for hepatitis C virus infection. Yan Fang,Wang Yi,Zhang Wencheng,Chang Mingyang,He Zhiying,Xu Jinbo,Shang Changzhen,Chen Tao,Liu Jiang,Wang Xin,Pei Xuetao,Wang Yunfang Hepatology (Baltimore, Md.) Maturation of hepatic cells can be gradually acquired through multiple stages of hepatic lineage specification, while it is unclear whether hepatitis C virus (HCV) infection is maturationally lineage-dependent. We investigated the susceptibility to HCV at multiple stages of human embryonic stem cells, definitive endodermal cells, hepatic stem cells, hepatoblasts (hHBs), and mature hepatocytes. Susceptibility to infection occurred initially at the stage of human hepatic stem cells; however, hHBs proved to have the highest permissiveness and infectivity compared with all other stages. The hHBs' susceptibility to HCV correlated with the translocation of occludin, an HCV receptor, from cytoplasm to plasma membrane of HBs. Vascular endothelial cell growth factor enhanced the HCV susceptibility of hHBs through rearrangement of occludin by dephosphorylation; this minimized hHB polarization and prevented hHBs from further maturation. The transcription profiles of different hepatic lineage stages indicated that expression of innate immune response genes was correlated with hepatic maturation; interferon β played an important role in protecting hHBs from HCV infection. HCV-infected hHBs were able to engraft and integrate into the livers of Fah Rag2 mice and maintained an hHB phenotype for over 12 weeks during the time when HCV antigen was evident. After suppression of interferon β in hHBs, HCV infection was significantly enhanced in the engrafted humanized liver tissue of host mice. CONCLUSION:Human embryonic stem cell-derived hHBs are the optimal hosts for HCV infectivity; the realization that HCV entry and replication occur primarily at a particular hepatic lineage stage enables us to understand the HCV infection factors, life cycle, and infection dynamics that are facets of the pathogenesis as well as suggesting targets for anti-HCV treatment. (Hepatology 2017;66:717-735). 10.1002/hep.29134
A sequential EMT-MET mechanism drives the differentiation of human embryonic stem cells towards hepatocytes. Li Qiuhong,Hutchins Andrew P,Chen Yong,Li Shengbiao,Shan Yongli,Liao Baojian,Zheng Dejin,Shi Xi,Li Yinxiong,Chan Wai-Yee,Pan Guangjin,Wei Shicheng,Shu Xiaodong,Pei Duanqing Nature communications Reprogramming has been shown to involve EMT-MET; however, its role in cell differentiation is unclear. We report here that in vitro differentiation of hESCs to hepatic lineage undergoes a sequential EMT-MET with an obligatory intermediate mesenchymal phase. Gene expression analysis reveals that Activin A-induced formation of definitive endoderm (DE) accompanies a synchronous EMT mediated by autocrine TGFβ signalling followed by a MET process. Pharmacological inhibition of TGFβ signalling blocks the EMT as well as DE formation. We then identify SNAI1 as the key EMT transcriptional factor required for the specification of DE. Genetic ablation of SNAI1 in hESCs does not affect the maintenance of pluripotency or neural differentiation, but completely disrupts the formation of DE. These results reveal a critical mesenchymal phase during the acquisition of DE, highlighting a role for sequential EMT-METs in both differentiation and reprogramming. 10.1038/ncomms15166
Generation of functional hepatocytes from human embryonic stem cells under chemically defined conditions that recapitulate liver development. Touboul Thomas,Hannan Nicholas R F,Corbineau Sébastien,Martinez Amélie,Martinet Clémence,Branchereau Sophie,Mainot Sylvie,Strick-Marchand Hélène,Pedersen Roger,Di Santo James,Weber Anne,Vallier Ludovic Hepatology (Baltimore, Md.) UNLABELLED:Generation of hepatocytes from human embryonic stem cells (hESCs) could represent an advantageous source of cells for cell therapy approaches as an alternative to orthotopic liver transplantation. However, the generation of differentiated hepatocytes from hESCs remains a major challenge, especially using a method compatible with clinical applications. We report a novel approach to differentiate hESCs into functional hepatic cells using fully defined culture conditions, which recapitulate essential stages of liver development. hESCs were first differentiated into a homogenous population of endoderm cells using a combination of activin, fibroblast growth factor 2, and bone morphogenetic protein 4 together with phosphoinositide 3-kinase inhibition. The endoderm cells were then induced to differentiate further into hepatic progenitors using fibroblast growth factor 10, retinoic acid, and an inhibitor of activin/nodal receptor. After further maturation, these cells expressed markers of mature hepatocytes, including asialoglycoprotein receptor, tyrosine aminotransferase, alpha1-antitrypsin, Cyp7A1, and hepatic transcription factors such as hepatocyte nuclear factors 4alpha and 6. Furthermore, the cells generated under these conditions exhibited hepatic functions in vitro, including glycogen storage, cytochrome activity, and low-density lipoprotein uptake. After transduction with a green fluorescent protein-expressing lentivector and transplantation into immunodeficient uPA transgenic mice, differentiated cells engrafted into the liver, grew, and expressed human albumin and alpha1-antitrypsin as well as green fluorescent protein for at least 8 weeks. In addition, we showed that hepatic cells could be generated from human-induced pluripotent cells derived from reprogrammed fibroblasts, demonstrating the efficacy of this approach with pluripotent stem cells of diverse origins. CONCLUSION:We have developed a robust and efficient method to differentiate pluripotent stem cells into hepatic cells, which exhibit characteristics of human hepatocytes. Our approach should facilitate the development of clinical grade hepatocytes for transplantation and for research on drug discovery. 10.1002/hep.23506