AI总结:
Scan me!
共22篇 平均IF=10.1 (2.3-48.5)更多分析
  • 2区Q2影响因子: 4.3
    打开PDF
    1. Glutamate blunts cell-killing effects of neutrophils in tumor microenvironment.
    期刊:Cancer science
    日期:2022-04-24
    DOI :10.1111/cas.15355
    Neutrophils are the first defenders of the innate system for injury and infection. They have gradually been recognized as important participants in tumor initiation and development due to their heterogeneity and plasticity. In the tumor microenvironment (TME), neutrophils can exert antitumor and protumor functions, depending on the surroundings. Tumor cells systemically alter intracellular amino acid (AA) metabolism and extracellular AA distribution to meet their proliferation need, leading to metabolic reprogramming and TME reshaping. However, the underlying mechanisms that determine how altered AAs affect neutrophils in TME are less-explored. Here, we identified that abundant glutamate releasing from tumor cells blunted neutrophils' cell-killing effects toward tumor cells in vitro and in vivo. Mass spectrometric detection, flow cytometry, and western blot experiments proved that increased levels of pSTAT3/RAB10/ARF4, mediated by glutamate, were accompanied with immunosuppressive phenotypes of neutrophils in TME. We also discovered that riluzole, an FDA-approved glutamate release inhibitor, significantly inhibited tumor growth by restoring neutrophils' cell-killing effects and decreasing glutamate secretion from tumor cells. These findings highlight the importance of tumor-released glutamate on neutrophil transformation in TME, providing new possible cancer treatments targeting altered glutamate metabolism.
  • 3区Q2影响因子: 4.6
    打开PDF
    2. Determination and Application of Nineteen Monoamines in the Gut Microbiota Targeting Phenylalanine, Tryptophan, and Glutamic Acid Metabolic Pathways.
    作者:Ma Shu-Rong , Yu Jin-Bo , Fu Jie , Pan Li-Bin , Yu Hang , Han Pei , Zhang Zheng-Wei , Peng Ran , Xu Hui , Wang Yan
    期刊:Molecules (Basel, Switzerland)
    日期:2021-03-04
    DOI :10.3390/molecules26051377
    It has been reported that monoamine neurotransmitters can be produced by gut microbiota, and that several related metabolites of amino acids in these pathways are associated with nervous system (NVS) diseases. Herein, we focused on three pathways, namely, phenylalanine (Phe), tryptophan (Trp), and glutamic acid (Glu), and established an underivatized liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for the quantification of nineteen monoamine neurotransmitters and related metabolites in the gut microbiota. The neurotransmitters and related metabolites included Phe, tyrosine (Tyr), l-dopa (Dopa), dopamine (DA), 3-methoxytyramine, Trp, hydroxytryptophan, 5-hydroxytryptamine (5-HT), 5-hydroxyindole-3-acetic acid (5-HIAA), kynurenine (KN), kynurenic acid (KYNA), melatonin, tryptamine (TA), indole-3-lactic acid (ILA), indole-3-acetic acid (IAA), indolyl-3-propionic acid (IPA), Glu, gamma-aminobutyric acid (GABA), and acetylcholine (Ach). A fluoro-phenyl bonded column was used for separation, and the mobile phase consisted of methanol:acetonitrile (1:1) and water, with 0.2% formic acid in both phases. The compounds exhibited symmetric peak shapes and sufficient sensitivity under a total analysis time of 8.5 min. The method was fully validated with acceptable linearity, accuracy, precision, matrix effect, extraction recovery, and stability. The results showed that neurotransmitters, such as Dopa, DA, 5-HT, GABA, and Ach, were present in the gut microbiota. The metabolic pathway of Trp was disordered under depression, with lower levels of 5-HT, 5-HIAA, KN, KYNA, TA, ILA, IAA, IPA, and Glu, and a higher ratio of KYNA/KN. In addition, some first-line NVS drugs, such as sertraline, imipramine, and chlorpromazine, showed regulatory potential on these pathways in the gut microbiota.
  • 2区Q1影响因子: 4.8
    跳转PDF
    3. 919 Syrup Alleviates Postpartum Depression by Modulating the Structure and Metabolism of Gut Microbes and Affecting the Function of the Hippocampal GABA/Glutamate System.
    期刊:Frontiers in cellular and infection microbiology
    日期:2021-08-20
    DOI :10.3389/fcimb.2021.694443
    Postpartum depression (PPD) is a mental disorder that affects pregnant women around the world, with serious consequences for mothers, families, and children. Its pathogenesis remains unclear, and medications for treating PPD that can be used during lactation remain to be identified. 919 syrup (919 TJ) is a Chinese herbal medicine that has been shown to be beneficial in the treatment of postpartum depression in both clinical and experimental studies. The mechanism of action of 919 TJ is unclear. 919 syrup is ingested orally, making the potential interaction between the drug and the gut microbiome impossible to ignore. We therefore hypothesized that 919 syrup could improve the symptoms of postpartum depression by affecting the structure and function of the intestinal flora, thereby altering hippocampal metabolism. We compared changes in hippocampal metabolism, fecal metabolism, and intestinal microflora of control BALB/c mice, mice with induced untreated PPD, and mice with induced PPD treated with 919 TJ, and found that 4-aminobutyric acid (GABA) in the hippocampus corresponded with PPD behaviors. Based on changes in GABA levels, multiple key gut bacterial species ( sp.2.1.33B and sp. CAG:755) were associated with PPD. Metabolic markers that may represent the function of the intestinal microbiota in mice with PPD were identified (Met-Arg, urocanic acid, thioetheramide-PC, L-pipecolic acid, and linoleoyl ethanolamide). The relationship between these factors is not a simple one-to-one correspondence, but more likely a network of staggered functions. We therefore believe that the composition and function of the entire intestinal flora should be emphasized in research studying the gut and PPD, rather than changes in the abundance of individual bacterial species. The introduction of this concept of "GutBalance" may help clarify the relationship between gut bacteria and systemic disease.
  • 2区Q1影响因子: 4.6
    打开PDF
    4. Gut Microbiota and Metabolome Alterations Associated with Parkinson's Disease.
    作者:Vascellari Sarah , Palmas Vanessa , Melis Marta , Pisanu Silvia , Cusano Roberto , Uva Paolo , Perra Daniela , Madau Veronica , Sarchioto Marianna , Oppo Valentina , Simola Nicola , Morelli Micaela , Santoru Maria Laura , Atzori Luigi , Melis Maurizio , Cossu Giovanni , Manzin Aldo
    期刊:mSystems
    日期:2020-09-15
    DOI :10.1128/mSystems.00561-20
    Parkinson's disease is a neurodegenerative disorder characterized by the accumulation of intracellular aggregates of misfolded alpha-synuclein along the cerebral axis. Several studies report the association between intestinal dysbiosis and Parkinson's disease, although a cause-effect relationship remains to be established. Herein, the gut microbiota composition of 64 Italian patients with Parkinson's disease and 51 controls was determined using a next-generation sequencing approach. A real metagenomics shape based on gas chromatography-mass spectrometry was also investigated. The most significant changes within the Parkinson's disease group highlighted a reduction in bacterial taxa, which are linked to anti-inflammatory/neuroprotective effects, particularly in the family and key members, such as , and The direct evaluation of fecal metabolites revealed changes in several classes of metabolites. Changes were seen in lipids (linoleic acid, oleic acid, succinic acid, and sebacic acid), vitamins (pantothenic acid and nicotinic acid), amino acids (isoleucine, leucine, phenylalanine, glutamic acid, and pyroglutamic acid) and other organic compounds (cadaverine, ethanolamine, and hydroxy propionic acid). Most modified metabolites strongly correlated with the abundance of members belonging to the family, suggesting that these gut bacteria correlate with altered metabolism rates in Parkinson's disease. To our knowledge, this is one of the few studies thus far that correlates the composition of the gut microbiota with the direct analysis of fecal metabolites in patients with Parkinson's disease. Overall, our data highlight microbiota modifications correlated with numerous fecal metabolites. This suggests that Parkinson's disease is associated with gut dysregulation that involves a synergistic relationship between gut microbes and several bacterial metabolites favoring altered homeostasis. Interestingly, a reduction of short-chain fatty acid (SCFA)-producing bacteria influenced the shape of the metabolomics profile, affecting several metabolites with potential protective effects in the Parkinson group. On the other hand, the extensive impact that intestinal dysbiosis has at the level of numerous metabolic pathways could encourage the identification of specific biomarkers for the diagnosis and treatment of Parkinson's disease, also in light of the effect that specific drugs have on the composition of the intestinal microbiota.
  • 3区Q1影响因子: 4.9
    打开PDF
    5. d-glutamate and Gut Microbiota in Alzheimer's Disease.
    作者:Chang Chun-Hung , Lin Chieh-Hsin , Lane Hsien-Yuan
    期刊:International journal of molecular sciences
    日期:2020-04-11
    DOI :10.3390/ijms21082676
    BACKGROUND:An increasing number of studies have shown that the brain-gut-microbiota axis may significantly contribute to Alzheimer's disease (AD) pathogenesis. Moreover, impaired memory and learning involve the dysfunction neurotransmission of glutamate, the agonist of the -methyl-d-aspartate receptor and a major excitatory neurotransmitter in the brain. This systematic review aimed to summarize the current cutting-edge research on the gut microbiota and glutamate alterations associated with dementia. METHODS:PubMed, the Cochrane Collaboration Central Register of Controlled Clinical Trials, and Cochrane Systematic Reviews were reviewed for all studies on glutamate and gut microbiota in dementia published up until Feb 2020. RESULTS:Several pilot studies have reported alterations of gut microbiota and metabolites in AD patients and other forms of dementia. Gut microbiota including and affect glutamate metabolism and decrease the glutamate metabolite 2-keto-glutaramic acid. Meanwhile, gut bacteria with glutamate racemase including , and can convert l-glutamate to d-glutamate. N-methyl-d-aspartate glutamate receptor (NMDAR)-enhancing agents have been found to potentially improve cognition in AD or Parkinson's disease patients. These findings suggest that d-glutamate (d-form glutamate) metabolized by the gut bacteria may influence the glutamate NMDAR and cognitive function in dementia patients. CONCLUSIONS:Gut microbiota and glutamate are potential novel interventions to be developed for dementia. Exploring comprehensive cognitive functions in animal and human trials with glutamate-related NMDAR enhancers are warranted to examine d-glutamate signaling efficacy in gut microbiota in patients with AD and other neurodegenerative dementias.
  • 3区Q2影响因子: 3.7
    打开PDF
    6. Gut Microbiota is the Key to the Antidepressant Effect of Chaihu-Shu-Gan-San.
    作者:Yu Meng , Jia Hong-Mei , Zhang Tao , Shang Hai , Zhang Hong-Wu , Ma Li-Yan , Zou Zhong-Mei
    期刊:Metabolites
    日期:2020-02-10
    DOI :10.3390/metabo10020063
    Accumulating evidence highlights the link between gut microbiota and depression. As an antidepressant herbal drug in clinic, Chaihu-Shu-Gan-San (CSGS) has also been used in China for the treatment of various gastrointestinal disorders. Therefore, we hypothesize that the gut microbiota might be involved in the effect of CSGS. Here, we investigated the antidepressant effects of CSGS against chronic variable stress (CVS)-induced depression rats with and without antibiotic treatment using 16S rRNA gene sequencing and ultra-performance liquid chromatography coupled with time of flight mass spectrometry (UPLC-Q-TOF/MS) based metabolome approaches. As a result, the prominent effects of CSGS against the depression-like behavioral disorder of CVS-induced rats were significantly weakened when the gut microbiota was changed after oral administration of the broad-spectrum antibiotic. The mediation of CSGS on hippocampal levels of serotonin (5-HT) and glutamic acid (Glu) was also receded with the antibiotic treatment. Further investigation on the diversity of microbiome indicated that the improvement effect of CSGS on gut microbiota dysbiosis-especially the phylum level of was attenuated compared with the CSGS combined antibiotic treated one. Moreover, 3-hydroxypicolinic acid (H4) and inosine (H8) in the hippocampus were considered as important biomarkers for depression and are also associated with gut microbiota mediated CSGS efficacy. Taken together, our current study indicated that gut microbiota is a critical factor in the antidepressant effect of CSGS, and this acts in part through gut microbiota to improve depression-related biomarkers.
  • 4区Q3影响因子: 2.3
    跳转PDF
    7. Dynamic Alteration of the Gut Microbiota Associated with Obesity and Intestinal Inflammation in Ovariectomy C57BL/6 Mice.
    期刊:International journal of endocrinology
    日期:2022-01-22
    DOI :10.1155/2022/6600158
    OBJECTIVE:Estrogen is a critical hormone that is mainly produced by the ovary in females. Estrogen deficiency leads to various syndromes and diseases, partly due to gut microbiota alterations. Previous studies have shown that estrogen deficiency affects the gut microbiota at 6-8 weeks after ovariectomy, but the immediate effect of estrogen deficiency on the gut microbiota remains poorly understood. METHODS:To investigate the short time and dynamic effects of decreased estrogen levels on the gut microbiota and their potential impact on estrogen deficiency-related diseases, we performed metagenomic sequencing of 260 fecal samples from 50 ovariectomy (OVX) and 15 control C57BL/6 female mice at four time points after surgery. RESULTS:We found that seven gut microbiota species, including 8_1_57FAA and M10_2, were abundant in OVX mice. The abundance of these species increased with time after OVX surgery. The relative abundance of the opportunistic pathogen and the Crohn's disease-related was significantly correlated with mouse weight gain in the OVX group. Butyrate production and the Entner-Doudoroff pathway were significantly enriched in the control mouse group, while the degradation of glutamic acid and aspartic acid was enriched in the OVX mouse group. As the time after OVX surgery increased, the bacterial species and metabolic pathways significantly changed and tended to suggest an inflammatory environment, indicating a subhealthy state of the gut microbiota in the OVX mouse group. CONCLUSIONS:Taken together, our results show that the dynamic gut microbiota profile alteration caused by estrogen deficiency is related to obesity and inflammation, which may lead to immune and metabolic disorders. This study provides new clues for the treatment of estrogen deficiency-related diseases.
  • 4区Q3影响因子: 2.9
    跳转PDF
    8. Combination of poly-γ-glutamic acid and galactooligosaccharide improves intestinal microbiota, defecation status, and relaxed mood in humans: a randomized, double-blind, parallel-group comparison trial.
    期刊:Bioscience of microbiota, food and health
    日期:2022-07-20
    DOI :10.12938/bmfh.2021-084
    The genus comprises beneficial intestinal bacteria that play a crucial role in the regulation of human health. Traditional prebiotics are known to increase intestinal bifidobacteria by supplying a carbon source necessary for their growth. However, intestinal bifidobacteria need not only a carbon source but also a nitrogen source for growth. Moreover, the growth of bifidobacteria is known to be inhibited in a culture medium that does not contain glutamic acid. Based on these reports, we hypothesized that the combined intake of traditional prebiotics and glutamic acid would be beneficial for growth of bifidobacteria in the gut. In this study, we investigated the effects of the combination of galactooligosaccharide (GOS; traditional prebiotic material) and poly-γ-glutamic acid (γ-PGA; source of glutamic acid) and only GOS on the intestinal microbiota and health conditions (including intestinal regulation, mood status, gastrointestinal condition, skin condition, and sleep quality) in a randomized, double-blind, parallel-group comparison trial in healthy subjects. The combined intake of GOS and γ-PGA significantly increased the prevalence of compared to the intake of GOS alone. A minimum effective dose of 2.0 g GOS and 0.3 g γ-PGA improved defecation and mood status. We revealed the combined effects of GOS and γ-PGA on intestinal microbiota as well as physical condition and concluded that the delivery of glutamic acid to the large intestine with traditional prebiotics is useful as an advanced prebiotic.
  • 1区Q1影响因子: 15.7
    跳转PDF
    9. Sexual dimorphism in glucose metabolism is shaped by androgen-driven gut microbiome.
    期刊:Nature communications
    日期:2021-12-06
    DOI :10.1038/s41467-021-27187-7
    Males are generally more susceptible to impaired glucose metabolism and type 2 diabetes (T2D) than females. However, the underlying mechanisms remain to be determined. Here, we revealed that gut microbiome depletion abolished sexual dimorphism in glucose metabolism. The transfer of male donor microbiota into antibiotics-treated female mice led the recipients to be more insulin resistant. Depleting androgen via castration changed the gut microbiome of male mice to be more similar to that of females and improved glucose metabolism, while reintroducing dihydrotestosterone (DHT) reversed these alterations. More importantly, the effects of androgen on glucose metabolism were largely abolished when the gut microbiome was depleted. Next, we demonstrated that androgen modulated circulating glutamine and glutamine/glutamate (Gln/Glu) ratio partially depending on the gut microbiome, and glutamine supplementation increases insulin sensitivity in vitro. Our study identifies the effects of androgen in deteriorating glucose homeostasis partially by modulating the gut microbiome and circulating glutamine and Gln/Glu ratio, thereby contributing to the difference in glucose metabolism between the two sexes.
  • 2区Q2影响因子: 3.1
    跳转PDF
    10. Gut Microbiome and Serum Metabolome Alterations Associated with Isolated Dystonia.
    作者:Ma Lingyan , Keng Jing , Cheng Min , Pan Hua , Feng Bo , Hu Yongfeng , Feng Tao , Yang Fan
    期刊:mSphere
    日期:2021-08-04
    DOI :10.1128/mSphere.00283-21
    Dystonia is a complex neurological movement disorder characterized by involuntary muscle contractions. Increasing studies implicate the microbiome as a possible key susceptibility factor for neurological disorders, but the relationship between the gut microbiota and dystonia remains poorly explored. Here, the gut microbiota of 57 patients with isolated dystonia and 27 age- and environment-matched healthy controls was analyzed by 16S rRNA gene amplicon sequencing. Further, integrative analysis of the gut microbiome and serum metabolome measured by high-performance liquid chromatography-mass spectrometry was performed. No difference in α-diversity was found, while β-diversity was significantly different, with a more heterogeneous community structure among dystonia patients than among controls. The most significant changes in dystonia highlighted an increase in , including Blautia obeum, Dorea longicatena, and Eubacterium hallii, and a reduction in Bacteroides vulgatus and Bacteroides plebeius. The functional analysis revealed that genes related to tryptophan and purine biosynthesis were more abundant in gut microbiota from patients with dystonia, while genes linked to citrate cycle, vitamin B, and glycan metabolism were less abundant. The evaluation of serum metabolites revealed altered levels of l-glutamic acid, taurine, and d-tyrosine, suggesting changes in neurotransmitter metabolism. The most modified metabolites strongly inversely correlated with the abundance of members belonging to the , revealing the effect of the gut microbiota on neurometabolic activity. This study is the first to reveal gut microbial dysbiosis in patients with isolated dystonia and identified potential links between gut microbiota and serum neurotransmitters, providing new insight into the pathogenesis of isolated dystonia. Dystonia is the third most common movement disorder after essential tremor and Parkinson's disease. However, the cause for the majority of cases is not known. This is the first study so far that reveals significant alterations of gut microbiome and correlates the alteration of serum metabolites with gut dysbiosis in patients with isolated dystonia. We demonstrated a general overrepresentation of and underrepresentation of in patients with dystonia in comparison with healthy controls. The functional analysis found that genes related to the biosynthesis of tryptophan, which is the precursor of the neurotransmitter serotonin, were more active in isolated dystonia patients. Altered levels of several serum metabolites were found to be associated with microbial changes, such as d-tyrosine, taurine, and glutamate, indicating differences in neurotransmitter metabolism in isolated dystonia. Integrative analysis suggests that neurotransmitter system dysfunction may be a possible pathway by which the gut microbiome participates in the development of dystonia. The gut microbiome changes provide new insight into the pathogenesis of dystonia, suggesting new potential therapeutic directions.
  • 1区Q1影响因子: 13.3
    打开PDF
    11. polysaccharides mitigate obesogenic diet-induced cognitive and social dysfunction via modulation of gut microbiota and tryptophan metabolism.
    期刊:Theranostics
    日期:2022-05-01
    DOI :10.7150/thno.72756
    The high fat and sucrose diet, known as the obesogenic diet (OD), has been related to low-grade chronic inflammation and neurodevelopmental disorders. Emerging evidence suggests that OD influences cognitive and social function via the gut-brain axis. However, the effects of OD during adolescence on future health have been unclear. Meanwhile, the underlying mechanisms and effective interventions are not fully understood. Polysaccharides, one of the most abundant substances in the , exhibit potential immunomodulatory and neuroprotective effects. Here, we aimed to investigate the impact of OD on adolescents, explore the modulating roles of polysaccharides (EPs) on OD-induced behavioral dysfunction, and elucidate the underlying molecular mechanisms. In the present study, four-week-old mice were fed with OD for four weeks to simulate persistent OD in adolescents. The behavioral features were accessed by open field test and Morris water maze. The gut bacterial structure was identified by 16S rRNA gene amplicon sequencing. The gene and protein expression in colonic tissues and hippocampus were detected by qRT-PCR, immunoblotting, enzyme-linked immunosorbent assay, and immunofluorescence staining. Detection of biological metabolites in serum and hippocampal tissues was performed by widely targeted metabolomics and targeted metabolomics. : We found that OD-fed mice showed cognitive and social-behavioral deficits accompanied by gut dysbiosis and systematic tryptophan (Trp) metabolism disorders, which increased kynurenine (Kyn) concentration in the hippocampus. Bacteria-derived lipopolysaccharide (LPS, endotoxin) induced microglia-mediated neuroinflammation, directing the metabolism of Kyn in the hippocampus toward quinolinic acid (QA), which led to glutamate-mediated hyperactivation of mossy cells (MCs) in hippocampal hilus. Furthermore, OD impaired parvalbumin (PV) interneurons-related local circuits in the hippocampal granule cell layer. These resulted in hippocampal neurogenesis deficits and related behavioral dysfunction in mice. EPs supplementation ameliorated OD-induced gut dysbiosis, as evidenced by inhibiting the expansion of () and reducing the concentration of LPS in colonic contents and serum, thereby inhibiting the subsequent neuroinflammation. In addition, oral EPs suppressed the peripheral Kyn pathway to reduce the concentration of QA and glutamic acid in the hippocampus of OD-fed mice, thereby rescuing the glutamic acid-triggered neuroexcitotoxicity. These contributed to remodeling the rhythm of hippocampal neurogenesis and mitigated behavioral dysfunction in OD-fed mice. : The present study addresses a gap in the understanding of neuronal dysfunction associated with OD during adolescence and provides the first evidence that EPs improved cognitive and social behavior via modulation of gut microbiota and tryptophan metabolism in adolescent mice fed with OD, which may represent novel preemptive therapy for neurodevelopmental disorders via manipulation of the tryptophan metabolite.
  • 3区Q1影响因子: 4.9
    打开PDF
    12. Glutamatergic Signaling Along The Microbiota-Gut-Brain Axis.
    作者:Baj Andreina , Moro Elisabetta , Bistoletti Michela , Orlandi Viviana , Crema Francesca , Giaroni Cristina
    期刊:International journal of molecular sciences
    日期:2019-03-25
    DOI :10.3390/ijms20061482
    A complex bidirectional communication system exists between the gastrointestinal tract and the brain. Initially termed the "gut-brain axis" it is now renamed the "microbiota-gut-brain axis" considering the pivotal role of gut microbiota in maintaining local and systemic homeostasis. Different cellular and molecular pathways act along this axis and strong attention is paid to neuroactive molecules (neurotransmitters, i.e., noradrenaline, dopamine, serotonin, gamma aminobutyric acid and glutamate and metabolites, i.e., tryptophan metabolites), sustaining a possible interkingdom communication system between eukaryota and prokaryota. This review provides a description of the most up-to-date evidence on glutamate as a neurotransmitter/neuromodulator in this bidirectional communication axis. Modulation of glutamatergic receptor activity along the microbiota-gut-brain axis may influence gut (i.e., taste, visceral sensitivity and motility) and brain functions (stress response, mood and behavior) and alterations of glutamatergic transmission may participate to the pathogenesis of local and brain disorders. In this latter context, we will focus on two major gut disorders, such as irritable bowel syndrome and inflammatory bowel disease, both characterized by psychiatric co-morbidity. Research in this area opens the possibility to target glutamatergic neurotransmission, either pharmacologically or by the use of probiotics producing neuroactive molecules, as a therapeutic approach for the treatment of gastrointestinal and related psychiatric disorders.
  • 跳转PDF
    13. How parasitic larvae affect the brain.
    期刊:eLife
    日期:2023-08-23
    DOI :10.7554/eLife.91149
    The release of the neurotransmitter glutamate by the parasitic tapeworm appears to be implicated in the pathophysiology of a widespread, but neglected, form of adult-onset epilepsy.
  • 1区Q1影响因子: 10.1
    跳转PDF
    14. GRIN2A (NR2A): a gene contributing to glutamatergic involvement in schizophrenia.
    期刊:Molecular psychiatry
    日期:2023-09-22
    DOI :10.1038/s41380-023-02265-y
    Involvement of the glutamate system, particularly N-methyl-D-aspartate (NMDA) receptor hypofunction, has long been postulated to be part of the pathophysiology of schizophrenia. An important development is provided by recent data that strongly implicate GRIN2A, the gene encoding the NR2A (GluN2A) NMDA receptor subunit, in the aetiology of the disorder. Rare variants and common variants are both robustly associated with genetic risk for schizophrenia. Some of the rare variants are point mutations likely affecting channel function, but most are predicted to cause protein truncation and thence result, like the common variants, in reduced gene expression. We review the genomic evidence, and the findings from Grin2a mutant mice and other models which give clues as to the likely phenotypic impacts of GRIN2A genetic variation. We suggest that one consequence of NR2A dysfunction is impairment in a form of hippocampal synaptic plasticity, producing deficits in short-term habituation and thence elevated and dysregulated levels of attention, a phenotype of relevance to schizophrenia and its cognitive aspects.
  • 1区Q1影响因子: 42.5
    打开PDF
    15. Nonpeptidergic neurons suppress mast cells via glutamate to maintain skin homeostasis.
    期刊:Cell
    日期:2021-03-24
    DOI :10.1016/j.cell.2021.03.002
    Cutaneous mast cells mediate numerous skin inflammatory processes and have anatomical and functional associations with sensory afferent neurons. We reveal that epidermal nerve endings from a subset of sensory nonpeptidergic neurons expressing MrgprD are reduced by the absence of Langerhans cells. Loss of epidermal innervation or ablation of MrgprD-expressing neurons increased expression of a mast cell gene module, including the activating receptor, Mrgprb2, resulting in increased mast cell degranulation and cutaneous inflammation in multiple disease models. Agonism of MrgprD-expressing neurons reduced expression of module genes and suppressed mast cell responses. MrgprD-expressing neurons released glutamate which was increased by MrgprD agonism. Inhibiting glutamate release or glutamate receptor binding yielded hyperresponsive mast cells with a genomic state similar to that in mice lacking MrgprD-expressing neurons. These data demonstrate that MrgprD-expressing neurons suppress mast cell hyperresponsiveness and skin inflammation via glutamate release, thereby revealing an unexpected neuroimmune mechanism maintaining cutaneous immune homeostasis.
  • 1区Q1影响因子: 15
    打开PDF
    16. VTA Glutamatergic Neurons Mediate Innate Defensive Behaviors.
    期刊:Neuron
    日期:2020-05-21
    DOI :10.1016/j.neuron.2020.04.024
    The ventral tegmental area (VTA) has dopamine, GABA, and glutamate neurons, which have been implicated in reward and aversion. Here, we determined whether VTA-glutamate or -GABA neurons play a role in innate defensive behavior. By VTA cell-type-specific genetic ablation, we found that ablation of glutamate, but not GABA, neurons abolishes escape behavior in response to threatening stimuli. We found that escape behavior is also decreased by chemogenetic inhibition of VTA-glutamate neurons and detected increases in activity in VTA-glutamate neurons in response to the threatening stimuli. By ultrastructural and electrophysiological analysis, we established that VTA-glutamate neurons receive a major monosynaptic glutamatergic input from the lateral hypothalamic area (LHA) and found that photoinhibition of this input decreases escape responses to threatening stimuli. These findings indicate that VTA-glutamate neurons are activated by and required for innate defensive responses and that information on threatening stimuli to VTA-glutamate neurons is relayed by LHA-glutamate neurons.
  • 1区Q1影响因子: 26.7
    跳转PDF
    17. The neural basis of sugar preference.
    期刊:Nature reviews. Neuroscience
    日期:2022-07-25
    DOI :10.1038/s41583-022-00613-5
    When it comes to food, one tempting substance is sugar. Although sweetness is detected by the tongue, the desire to consume sugar arises from the gut. Even when sweet taste is impaired, animals can distinguish sugars from non-nutritive sweeteners guided by sensory cues arising from the gut epithelium. Here, we review the molecular receptors, cells, circuits and behavioural consequences associated with sugar sensing in the gut. Recent work demonstrates that some duodenal cells, termed neuropod cells, can detect glucose using sodium-glucose co-transporter 1 and release glutamate onto vagal afferent neurons. Based on these and other data, we propose a model in which specific populations of vagal neurons relay these sensory cues to distinct sets of neurons in the brain, including neurons in the caudal nucleus of the solitary tract, dopaminergic reward circuits in the basal ganglia and homeostatic feeding circuits in the hypothalamus, that alter current and future sugar consumption. This emerging model highlights the critical role of the gut in sensing the chemical properties of ingested nutrients to guide appetitive decisions.
  • 1区Q1影响因子: 30.9
    18. Microbiota alterations in proline metabolism impact depression.
    期刊:Cell metabolism
    日期:2022-05-03
    DOI :10.1016/j.cmet.2022.04.001
    The microbiota-gut-brain axis has emerged as a novel target in depression, a disorder with low treatment efficacy. However, the field is dominated by underpowered studies focusing on major depression not addressing microbiome functionality, compositional nature, or confounding factors. We applied a multi-omics approach combining pre-clinical models with three human cohorts including patients with mild depression. Microbial functions and metabolites converging onto glutamate/GABA metabolism, particularly proline, were linked to depression. High proline consumption was the dietary factor with the strongest impact on depression. Whole-brain dynamics revealed rich club network disruptions associated with depression and circulating proline. Proline supplementation in mice exacerbated depression along with microbial translocation. Human microbiota transplantation induced an emotionally impaired phenotype in mice and alterations in GABA-, proline-, and extracellular matrix-related prefrontal cortex genes. RNAi-mediated knockdown of proline and GABA transporters in Drosophila and mono-association with L. plantarum, a high GABA producer, conferred protection against depression-like states. Targeting the microbiome and dietary proline may open new windows for efficient depression treatment.
  • 1区Q1影响因子: 29
    19. Mendelian randomization analyses support causal relationships between blood metabolites and the gut microbiome.
    期刊:Nature genetics
    日期:2022-01-03
    DOI :10.1038/s41588-021-00968-y
    The gut microbiome has been implicated in a variety of physiological states, but controversy over causality remains unresolved. Here, we performed bidirectional Mendelian randomization analyses on 3,432 Chinese individuals with whole-genome, whole-metagenome, anthropometric and blood metabolic trait data. We identified 58 causal relationships between the gut microbiome and blood metabolites, and replicated 43 of them. Increased relative abundances of fecal Oscillibacter and Alistipes were causally linked to decreased triglyceride concentration. Conversely, blood metabolites such as glutamic acid appeared to decrease fecal Oxalobacter, and members of Proteobacteria were influenced by metabolites such as 5-methyltetrahydrofolic acid, alanine, glutamate and selenium. Two-sample Mendelian randomization with data from Biobank Japan partly corroborated results with triglyceride and with uric acid, and also provided causal support for published fecal bacterial markers for cancer and cardiovascular diseases. This study illustrates the value of human genetic information to help prioritize gut microbial features for mechanistic and clinical studies.
  • 1区Q1影响因子: 20
    打开PDF
    20. GABA and glutamate neurons in the VTA regulate sleep and wakefulness.
    期刊:Nature neuroscience
    日期:2018-12-17
    DOI :10.1038/s41593-018-0288-9
    We screened for novel circuits in the mouse brain that promote wakefulness. Chemogenetic activation experiments and electroencephalogram recordings pointed to glutamatergic/nitrergic (NOS1) and GABAergic neurons in the ventral tegmental area (VTA). Activating glutamatergic/NOS1 neurons, which were wake- and rapid eye movement (REM) sleep-active, produced wakefulness through projections to the nucleus accumbens and the lateral hypothalamus. Lesioning the glutamate cells impaired the consolidation of wakefulness. By contrast, activation of GABAergic VTA neurons elicited long-lasting non-rapid-eye-movement-like sleep resembling sedation. Lesioning these neurons produced an increase in wakefulness that persisted for at least 4 months. Surprisingly, these VTA GABAergic neurons were wake- and REM sleep-active. We suggest that GABAergic VTA neurons may limit wakefulness by inhibiting the arousal-promoting VTA glutamatergic and/or dopaminergic neurons and through projections to the lateral hypothalamus. Thus, in addition to its contribution to goal- and reward-directed behaviors, the VTA has a role in regulating sleep and wakefulness.
  • 1区Q1影响因子: 30.9
    跳转PDF
    21. Hypothalamic astrocytes control systemic glucose metabolism and energy balance.
    期刊:Cell metabolism
    日期:2022-10-04
    DOI :10.1016/j.cmet.2022.09.002
    The hypothalamus is key in the control of energy balance. However, strategies targeting hypothalamic neurons have failed to provide viable options to treat most metabolic diseases. Conversely, the role of astrocytes in systemic metabolic control has remained largely unexplored. Here, we show that obesity promotes anatomically restricted remodeling of hypothalamic astrocyte activity. In the paraventricular nucleus (PVN) of the hypothalamus, chemogenetic manipulation of astrocytes results in bidirectional control of neighboring neuron activity, autonomic outflow, glucose metabolism, and energy balance. This process recruits a mechanism involving the astrocytic control of ambient glutamate levels, which becomes defective in obesity. Positive or negative chemogenetic manipulation of PVN astrocyte Ca signals, respectively, worsens or improves metabolic status of diet-induced obese mice. Collectively, these findings highlight a yet unappreciated role for astrocytes in the direct control of systemic metabolism and suggest potential targets for anti-obesity strategy.
  • 1区Q1影响因子: 48.5
    跳转PDF
    22. Specialized astrocytes mediate glutamatergic gliotransmission in the CNS.
    期刊:Nature
    日期:2023-09-06
    DOI :10.1038/s41586-023-06502-w
    Multimodal astrocyte-neuron communications govern brain circuitry assembly and function. For example, through rapid glutamate release, astrocytes can control excitability, plasticity and synchronous activity of synaptic networks, while also contributing to their dysregulation in neuropsychiatric conditions. For astrocytes to communicate through fast focal glutamate release, they should possess an apparatus for Ca-dependent exocytosis similar to neurons. However, the existence of this mechanism has been questioned owing to inconsistent data and a lack of direct supporting evidence. Here we revisited the astrocyte glutamate exocytosis hypothesis by considering the emerging molecular heterogeneity of astrocytes and using molecular, bioinformatic and imaging approaches, together with cell-specific genetic tools that interfere with glutamate exocytosis in vivo. By analysing existing single-cell RNA-sequencing databases and our patch-seq data, we identified nine molecularly distinct clusters of hippocampal astrocytes, among which we found a notable subpopulation that selectively expressed synaptic-like glutamate-release machinery and localized to discrete hippocampal sites. Using GluSnFR-based glutamate imaging in situ and in vivo, we identified a corresponding astrocyte subgroup that responds reliably to astrocyte-selective stimulations with subsecond glutamate release events at spatially precise hotspots, which were suppressed by astrocyte-targeted deletion of vesicular glutamate transporter 1 (VGLUT1). Furthermore, deletion of this transporter or its isoform VGLUT2 revealed specific contributions of glutamatergic astrocytes in cortico-hippocampal and nigrostriatal circuits during normal behaviour and pathological processes. By uncovering this atypical subpopulation of specialized astrocytes in the adult brain, we provide insights into the complex roles of astrocytes in central nervous system (CNS) physiology and diseases, and identify a potential therapeutic target.
logo logo
$!{favoriteKeywords}