logo logo
Comprehensive analysis of multi-tissue transcriptome data and the genome-wide investigation of GRAS family in Phyllostachys edulis. Zhao Hansheng,Dong Lili,Sun Huayu,Li Lichao,Lou Yongfeng,Wang Lili,Li Zuyao,Gao Zhimin Scientific reports GRAS family is one of plant specific transcription factors and plays diverse roles in the regulation of plant growth and development as well as in the plant disease resistance and abiotic stress responses. However, the investigation of GRAS family and multi-tissue gene expression profiles still remains unavailable in bamboo (Phyllostachys edulis). Here, we applied RNA-Seq analysis to monitor global transcriptional changes and investigate expression patterns in the five tissues of Ph. edulis, and analyzed a large-scale transcriptional events and patterns. Moreover, the tissue-specific genes and DEGs in different tissues were detected. For example, DEGs in panicle and leaf tissues were abundant in photosynthesis, glutathione, porphyrin and chlorophyll metabolism, whereas those in shoot and rhizome were majority in glycerophospholipid metabolism. In the portion of Ph. edulis GRAS (PeGRAS) analyses, we performed the analysis of phylogenetic, gene structure, conserved motifs, and analyzed the expression profiles of PeGRASs in response to high light and made a co-expression analysis. Additionally, the expression profiles of PeGRASs were validated using quantitative real-time PCR. Thus, PeGRASs based on dynamics profiles of gene expression is helpful in uncovering the specific biological functions which might be of critical values for bioengineering to improve bamboo breeding in future. 10.1038/srep27640
GRAS proteins: the versatile roles of intrinsically disordered proteins in plant signalling. Sun Xiaolin,Jones William T,Rikkerink Erik H A The Biochemical journal IDPs (intrinsically disordered proteins) are highly abundant in eukaryotic proteomes and important for cellular functions, especially in cell signalling and transcriptional regulation. An IDR (intrinsically disordered region) within an IDP often undergoes disorder-to-order transitions upon binding to various partners, allowing an IDP to recognize and bind different partners at various binding interfaces. Plant-specific GRAS proteins play critical and diverse roles in plant development and signalling, and act as integrators of signals from multiple plant growth regulatory and environmental inputs. Possessing an intrinsically disordered N-terminal domain, the GRAS proteins constitute the first functionally required unfoldome from the plant kingdom. Furthermore, the N-terminal domains of GRAS proteins contain MoRFs (molecular recognition features), short interaction-prone segments that are located within IDRs and are able to recognize their interacting partners by undergoing disorder-to-order transitions upon binding to these specific partners. These MoRFs represent potential protein-protein binding sites and may be acting as molecular bait in recognition events during plant development. Intrinsic disorder provides GRAS proteins with a degree of binding plasticity that may be linked to their functional versatility. As an overview of structure-function relationships for GRAS proteins, the present review covers the main biological functions of the GRAS family, the IDRs within these proteins and their implications for understanding mode-of-action. 10.1042/BJ20111766
Genome-wide identification, phylogeny and expression analysis of GRAS gene family in tomato. Huang Wei,Xian Zhiqiang,Kang Xia,Tang Ning,Li Zhengguo BMC plant biology BACKGROUND:GRAS transcription factors usually act as integrators of multiple growth regulatory and environmental signals, including axillary shoot meristem formation, root radial pattering, phytohormones, light signaling, and abiotic/biotic stress. However, little is known about this gene family in tomato (Solanum lycopersicum), the most important model plant for crop species with fleshy fruits. RESULTS:In this study, 53 GRAS genes were identified and renamed based on tomato whole-genome sequence and their respective chromosome distribution except 19 members were kept as their already existed name. Multiple sequence alignment showed typical GRAS domain in these proteins. Phylogenetic analysis of GRAS proteins from tomato, Arabidopsis, Populus, P.mume, and Rice revealed that SlGRAS proteins could be divided into at least 13 subfamilies. SlGRAS24 and SlGRAS40 were identified as target genes of miR171 using5'-RACE (Rapid amplification of cDNA ends). qRT-PCR analysis revealed tissue-/organ- and development stage-specific expression patterns of SlGRAS genes. Moreover, their expression patterns in response to different hormone and abiotic stress treatments were also investigated. CONCLUSIONS:This study provides the first comprehensive analysis of GRAS gene family in the tomato genome. The data will undoubtedly be useful for better understanding the potential functions of GRAS genes, and their possible roles in mediating hormone cross-talk and abiotic stress in tomato as well as in some other relative species. 10.1186/s12870-015-0590-6
Computational identification and systematic classification of novel GRAS genes in Isatis indigotica. Zhang Lei,Li Qing,Chen Jun-Feng,Chen Wan-Sheng Chinese journal of natural medicines Isatis indigotica Fort., belonging to Cruciferae, is one of the most commonly used plants in traditional Chinese medicine. The accumulation of the effective components of I. indigotica is related with its growth conditions. The GRAS genes are members of a multigene family of transcriptional regulators that play a crucial role in plant growth. Although the activities of many GRAS genes have long been recognized, only in recent years were some of them identified and functionally characterized in detail. In the present study, 41 GRAS genes were identified from I. indigotica through bioinformatics methods for the first time. They were classified into ten groups according to the classification of Arabidopsis and rice. The characterization, gene structure, conserved motifs, disordered N-terminal domains, and phylogenetic reconstruction of these GRASs were analyzed. Forty-three orthologous gene pairs were shared by I. indigotica and Arabidopsis, and interaction networks of these orthologous genes were constructed. Furthermore, gene expression patterns were investigated by analysis in methyl jasmonate (MeJA)-treated I. indigotica hairy roots based on RNA-seq data. In conclusion, this comprehensive analysis would provide rich resources for further studies of GRAS protein functions in this plant. 10.1016/S1875-5364(16)30013-9
Genome-wide identification and expression analysis of GRAS family transcription factors in tea plant (Camellia sinensis). Scientific reports GRAS proteins are important transcription factors that play multifarious roles in regulating the growth and development as well as stress responses of plants. Tea plant is an economically important leaf -type beverage crop. Information concerning GRAS family transcription factors in tea plant is insufficient. In this study, 52 CsGRAS genes encoding GRAS proteins were identified from tea plant genome database. Phylogenetic analysis of the identified GRAS proteins from tea plant, Arabidopsis, and rice divided these proteins into at least 13 subgroups. Conserved motif analysis revealed that the gene structure and motif compositions of the proteins were considerably conserved among the same subgroup. Functional divergence analysis indicated that the shifted evolutionary rate might act as a major evolutionary force driving subfamily-specific functional diversification. Transcriptome analysis showed that the transcriptional levels of CsGRAS genes under non-stress conditions varied among different tea plant cultivars. qRT-PCR analysis revealed tissue and development stage-specific expression patterns of CsGRAS genes in tea plant. The expression patterns of CsGRAS genes in response to abiotic stresses and gibberellin treatment suggested the possible multiple functions of these genes. This study provides insights into the potential functions of GRAS genes. 10.1038/s41598-018-22275-z
Crystal Structure of the GRAS Domain of SCARECROW-LIKE7 in Oryza sativa. Li Shengping,Zhao Yanhe,Zhao Zheng,Wu Xiuling,Sun Lifang,Liu Qingsong,Wu Yunkun The Plant cell GRAS proteins belong to a plant-specific protein family with many members and play essential roles in plant growth and development, functioning primarily in transcriptional regulation. Proteins in the family are minimally defined as containing the conserved GRAS domain. Here, we determined the structure of the GRAS domain of Os-SCL7 from rice (Oryza sativa) to 1.82 Å. The structure includes cap and core subdomains and elucidates the features of the conserved GRAS LRI, VHIID, LRII, PFYRE, and SAW motifs. The structure is a dimer, with a clear groove to accommodate double-stranded DNA. Docking a DNA segment into the groove to generate an Os-SCL7/DNA complex provides insight into the DNA binding mechanism of GRAS proteins. Furthermore, the in vitro DNA binding property of Os-SCL7 and model-defined recognition residues are assessed by electrophoretic mobility shift analysis and mutagenesis assays. These studies reveal the structure and preliminary DNA interaction mechanisms of GRAS proteins and open the door to in-depth investigation and understanding of the individual pathways in which they play important roles. 10.1105/tpc.16.00018
Evolution of the Symbiosis-Specific GRAS Regulatory Network in Bryophytes. Grosche Christopher,Genau Anne Christina,Rensing Stefan A Frontiers in plant science Arbuscular mycorrhiza is one of the most common plant symbiotic interactions observed today. Due to their nearly ubiquitous occurrence and their beneficial impact on both partners it was suggested that this mutualistic interaction was crucial for plants to colonize the terrestrial habitat approximately 500 Ma ago. On the plant side the association is established via the common symbiotic pathway (CSP). This pathway allows the recognition of the fungal symbiotic partner, subsequent signaling to the nucleus, and initiation of the symbiotic program with respect to specific gene expression and cellular re-organization. The downstream part of the CSP is a regulatory network that coordinates the transcription of genes necessary to establish the symbiosis, comprising multiple GRAS transcription factors (TFs). These regulate their own expression as an intricate transcriptional network. Deduced from non-host genome data the loss of genes encoding CSP components coincides with the loss of the interaction itself. Here, we analyzed bryophyte species with special emphasis on the moss , supposed to be a non-host, for the composition of the GRAS regulatory network components. We show lineage specific losses and expansions of several of these factors in bryophytes, potentially coinciding with the proposed host/non-host status of the lineages. We evaluate losses and expansions and infer clade-specific evolution of GRAS TFs. 10.3389/fpls.2018.01621
Identification and Expression Analysis of GRAS Transcription Factors to Elucidate Candidate Genes Related to Stolons, Fruit Ripening and Abiotic Stresses in Woodland Strawberry (). Chen Hong,Li Huihui,Lu Xiaoqing,Chen Longzheng,Liu Jing,Wu Han International journal of molecular sciences The cultivated strawberry (), an allo-octoploid with non-climacteric fleshy fruits, is a popular Rosaceae horticultural crop worldwide that is mainly propagated via stolons during cultivation. Woodland strawberry (), one of the four diploid progenitor species of cultivated strawberry, is widely used as a model plant in the study of Rosaceae fruit trees, non-climacteric fruits and stolons. One GRAS transcription factor has been shown to regulate stolon formation; the other GRAS proteins in woodland strawberry remain unknown. In this study, we identified 54 FveGRAS proteins in woodland strawberry, and divided them into 14 subfamilies. Conserved motif analysis revealed that the motif composition of FveGRAS proteins was conserved within each subfamily, but diverged widely among subfamilies. We found 56 orthologous pairs of GRAS proteins between woodland strawberry and , 47 orthologous pairs between woodland strawberry and rice and 92 paralogous pairs within woodland strawberry. The expression patterns of genes in various organs and tissues, and changes therein under cold, heat and GA treatments, were characterized using transcriptomic analysis. The results showed that 34 genes were expressed with different degrees in at least four organs, including stolons; only a few genes displayed organ-specific expression. The expression levels of 16 genes decreased, while that of four genes increased during fruit ripening; showed the largest increase in expression. Under cold, heat and GA treatments, around half of the genes displayed increased or decreased expression to some extent, suggesting differing functions of these genes in the responses to cold, heat and GAs. This study provides insight into the potential functions of genes in woodland strawberry. A few genes were identified as candidate genes for further study, in terms of their functions in stolon formation, fruit ripening and abiotic stresses. 10.3390/ijms20184593
Genome-wide analysis of the GRAS gene family in Chinese cabbage (Brassica rapa ssp. pekinensis). Song Xiao-Ming,Liu Tong-Kun,Duan Wei-Ke,Ma Qing-Hua,Ren Jun,Wang Zhen,Li Ying,Hou Xi-Lin Genomics The GRAS gene family is one of the most important families of transcriptional regulators. In this study, 48 GRAS genes are identified from Chinese cabbage, and they are classified into eight groups according to the classification of Arabidopsis. The characterization, classification, gene structure and phylogenetic construction of GRAS proteins are performed. Distribution mapping shows that GRAS proteins are nonrandomly localized in 10 chromosomes. Fifty-five orthologous gene pairs are shared by Chinese cabbage and Arabidopsis, and interaction networks of these orthologous genes are constructed. The expansion of GRAS genes in Chinese cabbage results from genome triplication. Among the 17 species examined, 14 higher plants carry the GRAS genes, whereas two lower plants and one fungi species do not. Furthermore, the expression patterns of GRAS genes exhibit differences in three tissues based on RNA-seq data. Taken together, this comprehensive analysis will provide rich resources for studying GRAS protein functions in Chinese cabbage. 10.1016/j.ygeno.2013.12.004
Unusual tandem expansion and positive selection in subgroups of the plant GRAS transcription factor superfamily. Wu Ningning,Zhu Yan,Song Wanlu,Li Yaxuan,Yan Yueming,Hu Yingkao BMC plant biology BACKGROUND:GRAS proteins belong to a plant transcription factor family that is involved with multifarious roles in plants. Although previous studies of this protein family have been reported for Arabidopsis, rice, Chinese cabbage and other species, investigation of expansion patterns and evolutionary rate on the basis of comparative genomics in different species remains inadequate. RESULTS:A total of 289 GRAS genes were identified in Arabidopsis, B. distachyon, rice, soybean, S. moellendorffii, and P. patens and were grouped into seven subfamilies, supported by the similarity of their exon-intron patterns and structural motifs. All of tandem duplicated genes were found in group II except one cluster of rice, indicating that tandem duplication greatly promoted the expansion of group II. Furthermore, segment duplications were mainly found in the soybean genome, whereas no single expansion pattern dominated in other plant species indicating that GRAS genes from these five species might be subject to a more complex evolutionary mechanism. Interestingly, branch-site model analyses of positive selection showed that a number of sites were positively selected under foreground branches I and V. These results strongly indicated that these groups were experiencing higher positive selection pressure. Meanwhile, the site-specific model revealed that the GRAS genes were under strong positive selection in P. patens. DIVERGE v2.0 was used to detect critical amino acid sites, and the results showed that the shifted evolutionary rate was mainly attributed to the functional divergence between the GRAS genes in the two groups. In addition, the results also demonstrated the expression divergence of the GRAS duplicated genes in the evolution. In short, the results above provide a solid foundation for further functional dissection of the GRAS gene superfamily. CONCLUSIONS:In this work, differential expression, evolutionary rate, and expansion patterns of the GRAS gene family in the six species were predicted. Especially, tandem duplication events played an important role in expansion of group II. Together, these results contribute to further functional analysis and the molecular evolution of the GRAS gene superfamily. 10.1186/s12870-014-0373-5
Genome-wide analysis of the GRAS gene family in physic nut (Jatropha curcas L.). Wu Z Y,Wu P Z,Chen Y P,Li M R,Wu G J,Jiang H W Genetics and molecular research : GMR GRAS proteins play vital roles in plant growth and development. Physic nut (Jatropha curcas L.) was found to have a total of 48 GRAS family members (JcGRAS), 15 more than those found in Arabidopsis. The JcGRAS genes were divided into 12 subfamilies or 15 ancient monophyletic lineages based on the phylogenetic analysis of GRAS proteins from both flowering and lower plants. The functions of GRAS genes in 9 subfamilies have been reported previously for several plants, while the genes in the remaining 3 subfamilies were of unknown function; we named the latter families U1 to U3. No member of U3 subfamily is present in Arabidopsis and Poaceae species according to public genome sequence data. In comparison with the number of GRAS genes in Arabidopsis, more were detected in physic nut, resulting from the retention of many ancient GRAS subfamilies and the formation of tandem repeats during evolution. No evidence of recent duplication among JcGRAS genes was observed in physic nut. Based on digital gene expression data, 21 of the 48 genes exhibited differential expression in four tissues analyzed. Two members of subfamily U3 were expressed only in buds and flowers, implying that they may play specific roles. Our results provide valuable resources for future studies on the functions of GRAS proteins in physic nut. 10.4238/2015.December.29.31
Expression and purification of a GRAS domain of SLR1, the rice DELLA protein. Sato Tomomi,Miyanoiri Yohei,Takeda Mitsuhiro,Naoe Youichi,Mitani Rie,Hirano Ko,Takehara Sayaka,Kainosho Masatsune,Matsuoka Makoto,Ueguchi-Tanaka Miyako,Kato Hiroaki Protein expression and purification GRAS proteins belong to a plant specific protein family that participates in diverse and important functions in growth and development. GRAS proteins are typically composed of a variable N-terminal domain and highly conserved C-terminal GRAS domain. Despite the importance of the GRAS domain, little biochemical or structural analyses have been reported, mainly due to difficulties with purification of sufficient quality and quantity of protein. This study is focused on one of the most extensively studied GRAS proteins, the rice DELLA protein (SLR1), which is known to be involved in gibberellin (GA) signaling. Using a baculovirus-insect cell expression system we have achieved overproduction and purification of full-length SLR1. Limited proteolysis of the full-length SLR1 indicated that a region including the entire GRAS domain (SLR1(206-625)) is protease resistant. Based on those results, we have constructed an expression and purification system of the GRAS domain (SLR1(206-625)) in Escherichia coli. Several physicochemical assays have indicated that the folded structure of the GRAS domain is rich in secondary structural elements and that alanine substitutions for six cysteine residues improves protein folding without impairing function. Furthermore, by NMR spectroscopy we have observed direct interaction between the purified GRAS domain and the GA receptor GID1. Taken together, our purified preparation of the GRAS domain of SLR1 is suitable for further structural and functional studies that will contribute to precise understanding of the plant regulation mechanism through DELLA and GRAS proteins. 10.1016/j.pep.2014.01.006
Insights into the complex role of GRAS transcription factors in the arbuscular mycorrhiza symbiosis. Hartmann Rico M,Schaepe Sieke,Nübel Daniel,Petersen Arne C,Bertolini Martina,Vasilev Jana,Küster Helge,Hohnjec Natalija Scientific reports To improve access to limiting nutrients, the vast majority of land plants forms arbuscular mycorrhizal (AM) symbioses with Glomeromycota fungi. We show here that AM-related GRAS transcription factors from different subgroups are upregulated during a time course of mycorrhization. Based on expression studies in mutants defective in arbuscule branching (ram1-1, with a deleted MtRam1 GRAS transcription factor gene) or in the formation of functional arbuscules (pt4-2, mutated in the phosphate transporter gene MtPt4), we demonstrate that the five AM-related GRAS transcription factor genes MtGras1, MtGras4, MtGras6, MtGras7, and MtRad1 can be differentiated by their dependency on MtRAM1 and MtPT4, indicating that the network of AM-related GRAS transcription factors consists of at least two regulatory modules. One module involves the MtRAM1- and MtPT4-independent transcription factor MtGRAS4 that activates MtGras7. Another module is controlled by the MtRAM1- and MtPT4-dependent transcription factor MtGRAS1. Genome-wide expression profiles of mycorrhized MtGras1 knockdown and ram1-1 roots differ substantially, indicating different targets. Although an MtGras1 knockdown reduces transcription of AM-related GRAS transcription factor genes including MtRam1 and MtGras7, MtGras1 overexpression alone is not sufficient to activate MtGras genes. MtGras1 knockdown roots display normal fungal colonization, with a trend towards the formation of smaller arbuscules. 10.1038/s41598-019-40214-4
Genome-wide characterization and expression analysis of GRAS gene family in pepper ( L.). Liu Baoling,Sun Yan,Xue Jinai,Jia Xiaoyun,Li Runzhi PeerJ Plant-specific GRAS transcription factors regulate various biological processes in plant growth, development and stress responses. However, this important gene family was not fully characterized in pepper ( L.), an economically important vegetable crop. Here, a total of 50 CaGRAS members were identified in pepper genome and renamed by their respective chromosomal distribution. Genomic organization revealed that most genes (84%) have no intron. Phylogenetic analysis divided pepper CaGRAS members into 10 subfamilies, with each having distinct conserved domains and functions. For the expansion of the genes in pepper, segmental duplication contributed more than tandem duplication did. Gene expression analysis in various tissues demonstrated that most of genes exhibited a tissue- and development stage-specific expression pattern, uncovering their potential functions in pepper growth and development. Moreover, 21 genes were differentially expressed under cold, drought, salt and gibberellin acid (GA) treatments, indicating that they may implicated in plant response to abiotic stress. Notably, GA responsive -elements were detected in the promoter regions of the majority of genes, suggesting that CaGRAS may involve in signal cross-talking. The first comprehensive analysis of GRAS gene family in pepper genome by this study provide insights into understanding the GRAS-mediated regulation network, benefiting the genetic improvements in pepper and some other relative plants. 10.7717/peerj.4796
A GRAS-like gene of sunflower (Helianthus annuus L.) alters the gibberellin content and axillary meristem outgrowth in transgenic Arabidopsis plants. Fambrini M,Mariotti L,Parlanti S,Salvini M,Pugliesi C Plant biology (Stuttgart, Germany) The GRAS proteins belong to a plant transcriptional regulator family that function in the regulation of plant growth and development. Despite their important roles, in sunflower only one GRAS gene (HaDella1) with the DELLA domain has been reported. Here, we provide a functional characterisation of a GRAS-like gene from Helianthus annuus (Ha-GRASL) lacking the DELLA motif. The Ha-GRASL gene contains an intronless open reading frame of 1,743 bp encoding 580 amino acids. Conserved motifs in the GRAS domain are detected, including VHIID, PFYRE, SAW and two LHR motifs. Within the VHII motif, the P-H-N-D-Q-L residues are entirely maintained. Phylogenetic analysis reveals that Ha-GRASL belongs to the SCARECROW LIKE4/7 (SCL4/7) subfamily of the GRAS consensus tree. Accumulation of Ha-GRASL mRNA at the adaxial boundaries from P6/P7 leaf primordia suggests a role of Ha-GRASL in the initiation of median and basal axillary meristems (AMs) of sunflower. When Ha-GRASL is over-expressed in Arabidopsis wild-type plants, the number of lateral bolts increases differently from untransformed plants. However, Ha-GRASL slightly affects the lateral suppressor (las-4-) mutation. Therefore, we hypothesise that Ha-GRASL and LAS are not functionally equivalent. The over-expression of Ha-GRASL reduces metabolic flow of gibberellins (GAs) in Arabidopsis and this modification could be relevant in AM development. Phylogenetic analysis includes LAS and SCL4/7 in the same major clade, suggesting a more recent separation of these genes with respect to other GRAS members. We propose that some features of their ancestor, as well as AM initiation and outgrowth, are partially retained in both LAS and SCL4/7. 10.1111/plb.12358
Homology-based analysis of the GRAS gene family in tobacco. Genetics and molecular research : GMR Members of the GRAS gene family are important transcriptional regulators. In this study, 21 GRAS genes were identified from tobacco, and were classified into eight subgroups according to the classification of Arabidopsis thaliana. Here, we provide a preliminary overview of this gene family in tobacco, describing the gene structure, gene expression, protein motif organization, phylogenetic analysis, and comparative analysis in tobacco, Arabidopsis, and rice. Using the sequences of 21 GRAS genes in Arabidopsis to search against the American tobacco genome database, 21 homologous GRAS genes in tobacco were identified. Sequence analysis indicates that these GRAS proteins have five conserved domains, which is consistent with their counterparts in other plants. Phylogenetic analyses divided the GRAS gene family into eight subgroups, each of which has distinct conserved domains and biological functions. Furthermore, the expression pattern of these 21 GRAS genes reveals that most are expressed in all six tissues studied; however, some have tissue specificity. Taken together, this comprehensive analysis will provide a rich resource to assist in the study of GRAS protein functions in tobacco. 10.4238/2015.November.25.7
Identification, Classification, and Expression Analysis of Gene Family in . Fan Sheng,Zhang Dong,Gao Cai,Zhao Ming,Wu Haiqin,Li Youmei,Shen Yawen,Han Mingyu Frontiers in physiology genes encode plant-specific transcription factors that play important roles in plant growth and development. However, little is known about the gene family in apple. In this study, 127 genes were identified in the apple ( Borkh.) genome and named to according to their chromosomal locations. The chemical characteristics, gene structures and evolutionary relationships of the genes were investigated. The 127 genes could be grouped into eight subfamilies based on their structural features and phylogenetic relationships. Further analysis of gene structures, segmental and tandem duplication, gene phylogeny and tissue-specific expression with ArrayExpress database indicated their diversification in quantity, structure and function. We further examined the expression pattern of genes during apple flower induction with transcriptome sequencing. Eight higher (, and ) genes were surfaced. Further quantitative reverse transcription PCR indicated that the candidate eight genes showed distinct expression patterns among different tissues (leaves, stems, flowers, buds, and fruits). The transcription levels of eight genes were also investigated with various flowering related treatments (GA, 6-BA, and sucrose) and different flowering varieties (Yanfu No. 6 and Nagafu No. 2). They all were affected by flowering-related circumstance and showed different expression level. Changes in response to these hormone or sugar related treatments indicated their potential involvement during apple flower induction. Taken together, our results provide rich resources for studying genes and their potential clues in genetic improvement of apple flowering, which enriches biological theories of genes in apple and their involvement in flower induction of fruit trees. 10.3389/fphys.2017.00253
Genome-Wide Identification, Evolutionary Analysis, and Stress Responses of the GRAS Gene Family in Castor Beans. Xu Wei,Chen Zexi,Ahmed Naeem,Han Bing,Cui Qinghua,Liu Aizhong International journal of molecular sciences Plant-specific GRAS transcription factors play important roles in regulating growth, development, and stress responses. Castor beans (Ricinus communis) are important non-edible oilseed plants, cultivated worldwide for its seed oils and its adaptability to growth conditions. In this study, we identified and characterized a total of 48 GRAS genes based on the castor bean genome. Combined with phylogenetic analysis, the castor bean GRAS members were divided into 13 distinct groups. Functional divergence analysis revealed the presence of mostly Type-I functional divergence. The gene structures and conserved motifs, both within and outside the GRAS domain, were characterized. Gene expression analysis, performed in various tissues and under a range of abiotic stress conditions, uncovered the potential functions of GRAS members in regulating plant growth development and stress responses. The results obtained from this study provide valuable information toward understanding the potential molecular mechanisms of GRAS proteins in castor beans. These findings also serve as a resource for identifying the genes that allow castor beans to grow in stressful conditions and to enable further breeding and genetic improvements in agriculture. 10.3390/ijms17071004
Identification and expression of GRAS family genes in maize (Zea mays L.). Guo Yuyu,Wu Hongyu,Li Xiang,Li Qi,Zhao Xinyan,Duan Xueqing,An Yanrong,Lv Wei,An Hailong PloS one GRAS transcriptional factors have diverse functions in plant growth and development, and are named after the first three transcription factors, namely, GAI (GIBBERELLIC ACID INSENSITIVE), RGA (REPRESSOR OF GAI) and SCR (SCARECROW) identified in this family. Knowledge of the GRAS gene family in maize remains was largely unknown, and their characterization is necessary to understand their importance in the maize life cycle. This study identified 86 GRAS genes in maize, and further characterized with phylogenetics, gene structural analysis, genomic loci, and expression patterns. The 86 GRAS genes were divided into 8 groups (SCL3, HAM, LS, SCR, DELLA, SHR, PAT1 and LISCL) by phylogenetic analysis. Most of the maize GRAS genes contain one exon (80.23%) and closely related members in the phylogenetic tree had similar structure and motif composition. Different motifs especially in the N-terminus might be the sources of their functional divergence. Segmental- and tandem-duplication occurred in this family leading to expansion of maize GRAS genes and the expression patterns of the duplicated genes in the heat map according to the published microarray data were very similar. Quantitative RT-PCR (qRT-PCR) results demonstrated that the expression level of genes in different tissues were different, suggesting their differential roles in plant growth and development. The data set expands our knowledge to understanding the function of GRAS genes in maize, an important crop plant in the world. 10.1371/journal.pone.0185418
Genome-wide Identification, Classification, Expression and Duplication Analysis of GRAS Family Genes in Juglans regia L. Quan Shaowen,Niu Jianxin,Zhou Li,Xu Hang,Ma Li,Qin Yang Scientific reports Fifty-two GRAS genes are identified in walnut genome. Based on the evolutionary relationship and motif analysis, the walnut GRAS gene family was divided into eight subfamilies, and the sequence features analysis of JrGRAS proteins showed that the JrGRAS protein sequences were both conserved and altered during the evolutionary process. Gene duplication analysis indicated that seven GRAS genes in walnut have orthologous genes in other species, and five of them occurred duplicated events in walnut genome. Expression pattern analysis of the GRAS family genes in walnut showed that two JrGRAS genes (JrCIGRa-b and JrSCL28a) were differentially expressed between flower bud and leaf bud (p < 0.01), and two JrGRAS genes (JrCIGRa-b and JrSCL13b-d) were differentially expressed between the different development stages of flower buds transition (p < 0.01), besides, three hub genes (JrGAIa, JrSCL3f and JrSHRc) were identified by co-expression analysis, which suggested these GRAS genes may play an important role in regulating the development of apical meristem in walnut. This study laid a foundation for further understanding of the function of GRAS family genes in walnut. 10.1038/s41598-019-48287-x
Structural and Functional Analysis of the GRAS Gene Family in Grapevine Indicates a Role of GRAS Proteins in the Control of Development and Stress Responses. Grimplet Jérôme,Agudelo-Romero Patricia,Teixeira Rita T,Martinez-Zapater Jose M,Fortes Ana M Frontiers in plant science GRAS transcription factors are involved in many processes of plant growth and development (e.g., axillary shoot meristem formation, root radial patterning, nodule morphogenesis, arbuscular development) as well as in plant disease resistance and abiotic stress responses. However, little information is available concerning this gene family in grapevine (Vitis vinifera L.), an economically important woody crop. We performed a model curation of GRAS genes identified in the latest genome annotation leading to the identification of 52 genes. Gene models were improved and three new genes were identified that could be grapevine- or woody-plant specific. Phylogenetic analysis showed that GRAS genes could be classified into 13 groups that mapped on the 19 V. vinifera chromosomes. Five new subfamilies, previously not characterized in other species, were identified. Multiple sequence alignment showed typical GRAS domain in the proteins and new motifs were also described. As observed in other species, both segmental and tandem duplications contributed significantly to the expansion and evolution of the GRAS gene family in grapevine. Expression patterns across a variety of tissues and upon abiotic and biotic conditions revealed possible divergent functions of GRAS genes in grapevine development and stress responses. By comparing the information available for tomato and grapevine GRAS genes, we identified candidate genes that might constitute conserved transcriptional regulators of both climacteric and non-climacteric fruit ripening. Altogether this study provides valuable information and robust candidate genes for future functional analysis aiming at improving the quality of fleshy fruits. 10.3389/fpls.2016.00353
Genome-wide identification and characterization of GRAS transcription factors in sacred lotus (Nelumbo nucifera). Wang Yu,Shi Shenglu,Zhou Ying,Zhou Yu,Yang Jie,Tang Xiaoqing PeerJ The GRAS gene family is one of the most important plant-specific gene families, which encodes transcriptional regulators and plays an essential role in plant development and physiological processes. The GRAS gene family has been well characterized in many higher plants such as Arabidopsis, rice, Chinese cabbage, tomato and tobacco. In this study, we identified 38 GRAS genes in sacred lotus (Nelumbo nucifera), analyzed their physical and chemical characteristics and performed phylogenetic analysis using the GRAS genes from eight representative plant species to show the evolution of GRAS genes in Planta. In addition, the gene structures and motifs of the sacred lotus GRAS proteins were characterized in detail. Comparative analysis identified 42 orthologous and 9 co-orthologous gene pairs between sacred lotus and Arabidopsis, and 35 orthologous and 22 co-orthologous gene pairs between sacred lotus and rice. Based on publically available RNA-seq data generated from leaf, petiole, rhizome and root, we found that most of the sacred lotus GRAS genes exhibited a tissue-specific expression pattern. Eight of the ten PAT1-clade GRAS genes, particularly NnuGRAS-05, NnuGRAS-10 and NnuGRAS-25, were preferentially expressed in rhizome and root. In summary, this is the first in silico analysis of the GRAS gene family in sacred lotus, which will provide valuable information for further molecular and biological analyses of this important gene family. 10.7717/peerj.2388
Genome-wide identification, characterization, interaction network and expression profile of GRAS gene family in sweet orange (Citrus sinensis). Zhang Hua,Mi Limin,Xu Long,Yu Changxiu,Li Chen,Chen Chunli Scientific reports GRAS genes are suggested to be grouped into plant-specific transcriptional regulatory families that have been reported to participate in multiple processes, including plant development, phytohormone signaling, the formation of symbiotic relationships, and response to environmental signals. GRAS genes have been characterized in a number of plant species, but little is known about this gene family in Citrus sinensis. In this study, we identified a total of 50 GRAS genes and characterized the gene structures, conserved motifs, genome localizations and cis-elements within their promoter regions. According to their structural and phylogenetic features, the identified sweet orange GRAS members were divided into 11 subgroups, of which subfamily CsGRAS34 was sweet orange-specific. Based on publicly available RNA-seq data generated from callus, flower, leaf and fruit in sweet orange, we found that some sweet orange GRAS genes exhibited tissue-specific expression patterning. Three of the six members of subfamily AtSHR, particularly CsGRAS9, and two of the six members of subfamily AtPAT1 were preferentially expressed in leaf. Moreover, protein-protein interactions with CsGRAS were predicted. Gene expression analysis was performed under conditions of phosphate deficiency, and GA3 and NaCl treatment to identify the potential functions of GRAS members in regulating stress and hormone responses. This study provides the first comprehensive understanding of the GRAS gene family in the sweet orange genome. As such, the study generates valuable information for further gene function analysis and identifying candidate genes to improve abiotic stress tolerance in citrus plants. 10.1038/s41598-018-38185-z
Evolutionary Analyses of GRAS Transcription Factors in Angiosperms. Cenci Alberto,Rouard Mathieu Frontiers in plant science GRAS transcription factors (TFs) play critical roles in plant growth and development such as gibberellin and mycorrhizal signaling. Proteins belonging to this gene family contain a typical GRAS domain in the C-terminal sequence, whereas the -terminal region is highly variable. Although, GRAS genes have been characterized in a number of plant species, their classification is still not completely resolved. Based on a panel of eight representative species of angiosperms, we identified 29 orthologous groups or orthogroups (OGs) for the GRAS gene family, suggesting that at least 29 ancestor genes were present in the angiosperm lineage before the "Amborella" evolutionary split. Interestingly, some taxonomic groups were missing members of one or more OGs. The gene number expansion usually observed in transcription factors was not observed in GRAS while the genome triplication ancestral to the eudicots (γ hexaploidization event) was detectable in a limited number of GRAS orthogroups. We also found conserved OG-specific motifs in the variable -terminal region. Finally, we could regroup OGs in 17 subfamilies for which names were homogenized based on a literature review and described 5 new subfamilies (DLT, RAD1, RAM1, SCLA, and SCLB). This study establishes a consistent framework for the classification of GRAS members in angiosperm species, and thereby a tool to correctly establish the orthologous relationships of GRAS genes in most of the food crops in order to facilitate any subsequent functional analyses in the GRAS gene family. The multi-fasta file containing all the sequences used in our study could be used as database to perform diagnostic BLASTp to classify GRAS genes from other non-model species. 10.3389/fpls.2017.00273
Genome-wide survey and expression analyses of the GRAS gene family in Brassica napus reveals their roles in root development and stress response. Planta MAIN CONCLUSION:Genome-wide identification, classification, expression analyses, and functional characterization of GRAS genes in oil crop, Brassica napus, indicate their importance in root development and stress response. GRAS proteins are a plant-specific transcription factor gene family involved in tissues development and stress response. We classified 87 putative GRAS genes in the Brassica napus genome (BnGRASs) into 13 subfamilies by phylogenetic analysis. The C-terminal GRAS domains of Brassica napus (B. napus) proteins were less conserved among subfamilies, but were conserved within each subfamily. A series of analyses revealed that 89.7% of the BnGRASs did not have intron insertions, and 24 specific-motifs were found at the N-terminal. A highly conserved microRNA 171 (miRNA171) target was observed specifically in the HAM subfamily across land plants. A total of 868 pairs of interaction proteins were predicted, the primary of which were transcription factors involved in transcriptional regulation and signal transduction. Integrated comparative analysis of GRAS genes across 26 species of algae, mosses, ferns, gymnosperms, and angiosperms revealed that this gene family originated in early mosses and was classified into 19 subfamilies, 14 of which may have originated prior to bryophyte evolution. RNA-Seq analysis demonstrated that most BnGRASs were widely expressed in different tissues/organs at different stages in B. napus, and 24 BnGRASs were highly/specifically expressed in roots. Results from a qRT-PCR analysis suggested that two BnGRASs belonging to SCR and LISCL subfamilies potentially have important roles in the stress response of roots. 10.1007/s00425-019-03199-y
Genome-wide identification and characterization of GRAS transcription factors in tomato (). Niu Yiling,Zhao Tingting,Xu Xiangyang,Li Jingfu PeerJ , belonging to Solanaceae, is one of the commonly used model plants. The GRAS genes are transcriptional regulators, which play a significant role in plant growth and development, and the functions of several GRAS genes have been recognized, such as, axillary shoot meristem formation, radial root patterning, phytohormones (gibberellins) signal transduction, light signaling, and abiotic/biotic stress; however, only a few of these were identified and functionally characterized. In this study, a gene family was analyzed comprehensively with respect to phylogeny, gene structure, chromosomal localization, and expression pattern; the 54 GRAS members were screened from tomato by bioinformatics for the first time. The GRAS genes among tomato, , rice, and grapevine were rebuilt to form a phylogenomic tree, which was divided into ten groups according to the previous classification of and rice. A multiple sequence alignment exhibited the typical GRAS domain and conserved motifs similar to other gene families. Both the segmental and tandem duplications contributed significantly to the expansion and evolution of the GRAS gene family in tomato; the expression patterns across a variety of tissues and biotic conditions revealed potentially different functions of GRAS genes in tomato development and stress responses. Altogether, this study provides valuable information and robust candidate genes for future functional analysis for improving the resistance of tomato growth. 10.7717/peerj.3955
Genome-wide analysis of GRAS transcription factor gene family in Gossypium hirsutum L. Zhang Bin,Liu J,Yang Zhao E,Chen Er Y,Zhang Chao J,Zhang Xue Y,Li Fu G BMC genomics BACKGROUND:Cotton is a major fiber and oil crop worldwide. Cotton production, however, is often threatened by abiotic environmental stresses. GRAS family proteins are among the most abundant transcription factors in plants and play important roles in regulating root and shoot development, which can improve plant resistance to abiotic stresses. However, few studies on the GRAS family have been conducted in cotton. Recently, the G. hirsutum genome sequences have been released, which provide us an opportunity to analyze the GRAS family in G. hirsutum. RESULTS:In total, 150 GRAS proteins from G. hirsutum were identified. Phylogenetic analysis showed that these GRAS protins could be classified into 14 subfamilies including SCR, DLT, OS19, LAS, SCL4/7, OS4, OS43, DELLA, PAT1, SHR, HAM, SCL3, LISCL and G_GRAS. The gene structure and motif distribution analysis of the GRAS members in G. hirsutum revealed that many genes of the SHR subfamily have more than one intron, which maybe a kind of form in the evolution of plant by obtaining or losing introns. Chromosomal location and duplication analysis revealed that segment and tandem duplication maybe the reasons of the expension of the GRAS family in cotton. Gene expression analysis confirmed the expression level of GRAS members were up-regulated under different abiotic stresses, suggesting that their possible roles in response to stresses. What's more, higher expression level in root, stem, leaf and pistil also indicated these genes may have effect on the development and breeding of cotton. CONCLUSIONS:This study firstly shows the comprehensive analysis of GRAS members in G. hirsutum. Our results provide important information about GRAS family and a framework for stress-resistant breeding in G. hirsutum. 10.1186/s12864-018-4722-x
Genome-wide identification, phylogeny and function analysis of GRAS gene family in Dendrobium catenatum (Orchidaceae). Zeng Xu,Ling Hong,Chen Xiaomei,Guo Shunxing Gene BACKGROUND:In recent years, the molecular mechanism of plant growth and development has been reported in detail. GRAS genes, a plant-specific family of transcription factor, play critical roles in the process. GRAS transcription factors are associated with axillary shoot meristem formation, radial root patterning, phytohormones (gibberellins) signal transduction, light signaling, and abiotic or biotic stress. OBJECTIVE:Here, we firstly investigated GRAS gene family in Dendrobium catenatum, an important medicinal and flowering orchid in China. METHODS:The GRAS gene family in D. catenatum was cloned based on RNA-Seq data. Selected GRAS genes were introduced into Escherichia coli to express proteins. RESULTS:Based on phylogenetic relationship with the Arabidopsis and Oryza GRAS family members, 47 GRAS genes from D. catenatum are identified and their deduced proteins are classified into 11 subgroups. Most of these GRAS genes contain one exon and closely related members in the phylogenetic tree have similar motif composition. Our result also reveals that GRAS genes in D. catenatum are widely distributed and expressed in different tissue. In addition, 35 GRAS genes are successfully cloned from different subgroups and 7 DoGRAS fusion proteins are induced using E. coli system. Moreover, 8 genes were up-regulated in different tissue following exposure to heat and salt stresses. CONCLUSION:Our findings provide valuable information and candidate genes for future functional analysis for improving the resistance of D. catenatum growth. 10.1016/j.gene.2019.04.038
Genome-wide identification, expression analysis and functional study of the GRAS gene family in Tartary buckwheat (Fagopyrum tataricum). Liu Moyang,Huang Li,Ma Zhaotang,Sun Wenjun,Wu Qi,Tang Zizhong,Bu Tongliang,Li Chenglei,Chen Hui BMC plant biology BACKGROUND:GRAS are plant-specific transcription factors that play important roles in plant growth and development. Although the GRAS gene family has been studied in many plants, there has been little research on the GRAS genes of Tartary buckwheat (Fagopyrum tataricum), which is an important crop rich in rutin. The recently published whole genome sequence of Tartary buckwheat allows us to study the characteristics and expression patterns of the GRAS gene family in Tartary buckwheat at the genome-wide level. RESULTS:In this study, 47 GRAS genes of Tartary buckwheat were identified and divided into 10 subfamilies: LISCL, HAM, DELLA, SCR, PAT1, SCL4/7, LAS, SHR, SCL3, and DLT. FtGRAS genes were unevenly distributed on 8 chromosomes, and members of the same subfamily contained similar gene structures and motif compositions. Some FtGRAS genes may have been produced by gene duplications; tandem duplication contributed more to the expansion of the GRAS gene family in Tartary buckwheat. Real-time PCR showed that the transcription levels of FtGRAS were significantly different in different tissues and fruit development stages, implying that FtGRAS might have different functions. Furthermore, an increase in fruit weight was induced by exogenous paclobutrazol, and the transcription level of the DELLA subfamily member FtGRAS22 was significantly upregulated during the whole fruit development stage. Therefore, FtGRAS22 may be a potential target for molecular breeding or genetic editing. CONCLUSIONS:Collectively, this systematic analysis lays a foundation for further study of the functional characteristics of GRAS genes and for the improvement of Tartary buckwheat crops. 10.1186/s12870-019-1951-3
Overexpression of VaPAT1, a GRAS transcription factor from Vitis amurensis, confers abiotic stress tolerance in Arabidopsis. Yuan Yangyang,Fang Linchuan,Karungo Sospeter Karanja,Zhang Langlang,Gao Yingying,Li Shaohua,Xin Haiping Plant cell reports KEY MESSAGE:VaPAT1 functions as a stress-inducible GRAS gene and enhanced cold, drought and salt tolerance in transgenic Arabidopsis via modulation of the expression of a series of stress-related genes. The plant-specific GRAS transcription factor family regulates diverse processes involved in plant growth, development and stress responses. In this study, VaPAT1, a GRAS gene from Vitis amurensis was isolated and functionally characterized. Sequence alignment and phylogenetic analysis showed that VaPAT1 has a high sequence identity to CmsGRAS and OsCIGR1, which belong to PAT1 branch of GRAS family and function in stress resistance. The transcription of VaPAT1 was markedly induced by stress-related phytohormone abscisic acid (ABA) and various abiotic stress treatments such as cold, drought and high salinity, however, it was repressed by exogenous gibberellic acid (GA) application. Overexpression of VaPAT1 increased the cold, drought and high salinity tolerance in transgenic Arabidopsis. When compared with wild type (WT) seedlings, the VaPAT1-overexpression lines accumulated higher levels of proline and soluble sugar under these stress treatments. Moreover, stress-related genes such as AtSIZ1, AtCBF1, AtATR1/MYB34, AtMYC2, AtCOR15A, AtRD29A and AtRD29B showed higher expression levels in VaPAT1 transgenic lines than in WT Arabidopsis under normal growth conditions. Together, our results indicated that VaPAT1 functions as a positive transcriptional regulator involved in grapevine abiotic stress responses. 10.1007/s00299-015-1910-x