
Investigating the impact of antibiotic-induced dysbiosis on protection from colitis by mouse colonic innate lymphoid cells.
mBio
Innate lymphoid cells (ILCs) play a critical role in maintaining intestinal health in homeostatic and diseased conditions. During infection (CDI), IL-33 activates ILC2 to protect from colonic damage and mortality. The function of IL-33 and ILC is tightly regulated by the intestinal microbiota. We set out to determine the impact of antibiotic-induced disruption of the microbiome on ILC function. Our goal was to understand antibiotic-induced changes in ILC function on susceptibility to colitis in a mouse model. We utilized high-throughput single-cell RNAseq to investigate the phenotypic features of colonic ILC at baseline, after antibiotic administration with or without IL-33 treatment. We identified a heterogeneous landscape of colonic ILCs with gene signatures of inflammatory, anti-inflammatory, migratory, progenitor, plastic, and antigen-presenting ILCs. Antibiotic treatment decreased ILC2 while coordinately increasing ILC1 and ILC3 phenotypes. Notably, Ifng, Ccl5, and Il23r ILC increased after antibiotics. IL-33 treatment counteracted the antibiotic effect by downregulating ILC1 and ILC3 and activating ILC2. In addition, IL-33 treatment markedly induced the expression of type 2 genes, including Areg and Il5. Finally, we identified amphiregulin, produced by ILC2, as protective during infection. Together, our data expand our understanding of how antibiotics induce susceptibility to colitis through their impact on ILC subsets and function.IMPORTANCE infection (CDI) accounts for around 500,000 symptomatic cases and over 20,000 deaths annually in the United States alone. A major risk factor of CDI is antibiotic-induced dysbiosis of the gut. Microbiota-regulated IL-33 and innate lymphoid cells (ILCs) are important in determining the outcomes of infection. Understanding how antibiotic and IL-33 treatment alter the phenotype of colon ILCs is important to identify potential therapeutics. Here, we performed single-cell RNAseq of mouse colon ILCs collected at baseline, after antibiotic treatment, and after IL-33 treatment. We identified heterogeneous subpopulations of all three ILC subtypes in the mouse colon. Our analysis revealed several potential pathways of antibiotic-mediated increased susceptibility to intestinal infection. Our discovery that Areg is abundantly expressed by ILCs, and the protection of mice from CDI by amphiregulin treatment, suggests that the amphiregulin-epidermal growth factor receptor pathway is a potential therapeutic target for treating intestinal colitis.
10.1128/mbio.03338-23
A single intranasal dose of essential oil spray confers modulation of the nasopharyngeal microbiota and short-term inhibition of Mannheimia in feedlot cattle: a pilot study.
Scientific reports
Five essential oils (EOs) were previously characterized in vitro and identified as candidate EOs for the development of an intranasal EO spray to mitigate bovine respiratory disease (BRD) pathogens. In the present study, these EOs were evaluated for their potential to (i) reduce BRD pathogens, (ii) modulate nasopharyngeal microbiota, and (iii) influence animal performance, feeding behavior and immune response when a single dose administered intranasally to feedlot cattle. Forty beef steer calves (7-8 months old, Initial body weight = 284 ± 5 kg [SE]) received either an intranasal EO spray (ajowan, thyme, fennel, cinnamon leaf, and citronella) or PBS (Control; n = 20/group) on day 0. Deep nasopharyngeal swabs were collected on days (d) -1, 1, 2, 7, 14, 28, and 42 and processed for 16S rRNA gene sequencing, qPCR, and culturing. Significant effects of EO on community structure (d1), microbial richness and diversity, relative abundance of some dominant phyla (d1, d2, and d14), and the overall interaction network structure of the nasopharyngeal microbiota were detected. The relative abundance of Mannheimia was lower in the EO calves (4.34%) than in Control calves (10.4%) on d2, and M. haemolytica prevalence on d7 as compared to control calves. Feed intake, average daily gain, feeding behavior, and blood cell counts were not affected by EO treatment. Overall, a single intranasal dose of EO spray resulted in moderate modulation of nasopharyngeal microbiota and short-term inhibition of Mannheimia while not influencing animal performance, feeding behavior or immune response. Our study, for the first time, shows the potential use of intranasal EO to mitigate BRD in feedlot cattle.
10.1038/s41598-023-50704-1
Biphasic Study to Characterize Agricultural Biogas Plants by High-Throughput 16S rRNA Gene Amplicon Sequencing and Microscopic Analysis.
Maus Irena,Kim Yong Sung,Wibberg Daniel,Stolze Yvonne,Off Sandra,Antonczyk Sebastian,Pühler Alfred,Scherer Paul,Schlüter Andreas
Journal of microbiology and biotechnology
Process surveillance within agricultural biogas plants (BGPs) was concurrently studied by high-throughput 16S rRNA gene amplicon sequencing and an optimized quantitative microscopic fingerprinting (QMF) technique. In contrast to 16S rRNA gene amplicons, digitalized microscopy is a rapid and cost-effective method that facilitates enumeration and morphological differentiation of the most significant groups of methanogens regarding their shape and characteristic autofluorescent factor 420. Moreover, the fluorescence signal mirrors cell vitality. In this study, four different BGPs were investigated. The results indicated stable process performance in the mesophilic BGPs and in the thermophilic reactor. Bacterial subcommunity characterization revealed significant differences between the four BGPs. Most remarkably, the genera and dominated the thermophilic bacterial subcommunity, whereas members of another taxon, , were found to be abundant in the mesophilic BGP. The domain Archaea was dominated by the genus in all four BGPs, followed by in BGP1 and BGP3. In contrast, members were highly abundant in the thermophilic BGP4. Furthermore, a high consistency between the sequencing approach and the QMF method was shown, especially for the thermophilic BGP. The differences elucidated that using this biphasic approach for mesophilic BGPs provided novel insights regarding disaggregated single cells of and species. Both dominated the archaeal subcommunity and replaced coccoid members belonging to the same group of that have been frequently observed in similar BGPs. This work demonstrates that combining QMF and 16S rRNA gene amplicon sequencing is a complementary strategy to describe archaeal community structures within biogas processes.
10.4014/jmb.1605.05083
Analysis of the cystic fibrosis lung microbiota via serial Illumina sequencing of bacterial 16S rRNA hypervariable regions.
Maughan Heather,Wang Pauline W,Diaz Caballero Julio,Fung Pauline,Gong Yunchen,Donaldson Sylva L,Yuan Lijie,Keshavjee Shaf,Zhang Yu,Yau Yvonne C W,Waters Valerie J,Tullis D Elizabeth,Hwang David M,Guttman David S
PloS one
The characterization of bacterial communities using DNA sequencing has revolutionized our ability to study microbes in nature and discover the ways in which microbial communities affect ecosystem functioning and human health. Here we describe Serial Illumina Sequencing (SI-Seq): a method for deep sequencing of the bacterial 16S rRNA gene using next-generation sequencing technology. SI-Seq serially sequences portions of the V5, V6 and V7 hypervariable regions from barcoded 16S rRNA amplicons using an Illumina short-read genome analyzer. SI-Seq obtains taxonomic resolution similar to 454 pyrosequencing for a fraction of the cost, and can produce hundreds of thousands of reads per sample even with very high multiplexing. We validated SI-Seq using single species and mock community controls, and via a comparison to cystic fibrosis lung microbiota sequenced using 454 FLX Titanium. Our control runs show that SI-Seq has a dynamic range of at least five orders of magnitude, can classify >96% of sequences to the genus level, and performs just as well as 454 and paired-end Illumina methods in estimation of standard microbial ecology diversity measurements. We illustrate the utility of SI-Seq in a pilot sample of central airway secretion samples from cystic fibrosis patients.
10.1371/journal.pone.0045791
Effect of administration of a probiotic preparation on gut microbiota and immune response in healthy women in India: an open-label, single-arm pilot study.
Singh Ankita,Sarangi Aditya N,Goel Amit,Srivastava Rajni,Bhargava Rajat,Gaur Priyanka,Aggarwal Amita,Aggarwal Rakesh
BMC gastroenterology
BACKGROUND:Probiotics have been shown to be useful for the treatment of many disease conditions. These beneficial effects are believed to be mediated by change in the composition of gut microbiota and modulation of the host immune responses. However, the available data on the effect of probiotics on these parameters are quite limited. METHODS:We studied the composition of fecal microbiota, using 16S rRNA sequencing, and host immune responses in peripheral blood (plasma cytokine levels, T cell subsets and in vitro cytokine production after stimulation with anti-CD3/CD28 antibody or lipopolysaccharide) in a group of 14 healthy women at three time-points - before and after administration of a probiotic preparation (a capsule of VSL#3, each containing 112.5 billion freeze-dried bacterial cells belonging to 8 species, twice a day for 4 weeks), and 4-weeks after discontinuation of the probiotic administration. RESULTS:There was no change in the abundance of various bacterial taxa as well as in the alpha diversity of gut microbiota following administration of the probiotic, or following its discontinuation. Probiotic administration led to a reduction in the relative frequency of circulating Th17 cells, and in vitro production of cytokines in whole-blood cultures in response to lipopolysaccharide stimulation. However, it had no effect on the relative frequencies of Th1, Th2 and T regulatory cells among circulating peripheral blood mononuclear cells, on plasma cytokine levels and on in vitro production of cytokines by T cells. CONCLUSIONS:We found that VSL#3 administration did not lead to any changes in gut flora, but led to a reduction in the frequency of Th17 cells and in the production of pro-inflammatory cytokine on lipopolysaccharide stimulation. These findings suggest that the beneficial anti-inflammatory effect of this preparation in patients with autoimmune and allergic disorders may be related to reduced production of monocyte-derived cytokines rather than to changes in the composition of gut microbiota. TRIAL REGISTRATION:NCT03330678 , Date of registration 30th October 2017. Retrospectively registered.
10.1186/s12876-018-0819-6
Integrated meta-omics reveals the regulatory landscape involved in lipid metabolism between pig breeds.
Microbiome
BACKGROUND:Domesticated pigs serve as an ideal animal model for biomedical research and also provide the majority of meat for human consumption in China. Porcine intramuscular fat content associates with human health and diseases and is essential in pork quality. The molecular mechanisms controlling lipid metabolism and intramuscular fat accretion across tissues in pigs, and how these changes in response to pig breeds, remain largely unknown. RESULTS:We surveyed the tissue-resident cell types of the porcine jejunum, colon, liver, and longissimus dorsi muscle between Lantang and Landrace breeds by single-cell RNA sequencing. Combining lipidomics and metagenomics approaches, we also characterized gene signatures and determined key discriminating markers of lipid digestibility, absorption, conversion, and deposition across tissues in two pig breeds. In Landrace, lean-meat swine mainly exhibited breed-specific advantages in lipid absorption and oxidation for energy supply in small and large intestinal epitheliums, nascent high-density lipoprotein synthesis for reverse cholesterol transport in enterocytes and hepatocytes, bile acid formation, and secretion for fat emulsification in hepatocytes, as well as intestinal-microbiota gene expression involved in lipid accumulation product. In Lantang, obese-meat swine showed a higher synthesis capacity of chylomicrons responsible for high serum triacylglycerol levels in small intestinal epitheliums, the predominant characteristics of lipid absorption in muscle tissue, and greater intramuscular adipcytogenesis potentials from muscular fibro-adipogenic progenitor subpopulation. CONCLUSIONS:The findings enhanced our understanding of the cellular biology of lipid metabolism and opened new avenues to improve animal production and human diseases. Video Abstract.
10.1186/s40168-023-01743-3
Chloroplast sequence variation and the efficacy of peptide nucleic acids for blocking host amplification in plant microbiome studies.
Fitzpatrick Connor R,Lu-Irving Patricia,Copeland Julia,Guttman David S,Wang Pauline W,Baltrus David A,Dlugosch Katrina M,Johnson Marc T J
Microbiome
BACKGROUND:The ability to efficiently characterize microbial communities from host individuals can be limited by co-amplification of host organellar sequences (mitochondrial and/or plastid), which share a common ancestor and thus sequence similarity with extant bacterial lineages. One promising approach is the use of sequence-specific peptide nucleic acid (PNA) clamps, which bind to, and block amplification of, host-derived DNA. Universal PNA clamps have been proposed to block host plant-derived mitochondrial (mPNA) and plastid (pPNA) sequences at the V4 16S rRNA locus, but their efficacy across a wide range of host plant species has not been experimentally tested. RESULTS:Using the universal PNA clamps, we amplified and sequenced root microbial communities from replicate individuals of 32 plant species with a most recent common ancestor inferred at 140 MYA. We found the average rate of host plastid contamination across plant species was 23%, however, particular lineages exhibited much higher rates (62-94%), with the highest levels of contamination occurring in the Asteraceae. We investigated chloroplast sequence variation at the V4 locus across 500 land plant species (Embryophyta) and found six lineages with mismatches between plastid and the universal pPNA sequence, including all species within the Asteraceae. Using a modified pPNA for the Asteraceae sequence, we found (1) host contamination in Asteraceae species was reduced from 65 to 23%; and (2) host contamination in non-Asteraceae species was increased from 12 to 69%. These results demonstrate that even single nucleotide mismatches can lead to drastic reductions in pPNA efficacy in blocking host amplification. Importantly, we found that pPNA type (universal or modified) had no effect on the detection of individual bacterial taxa, or estimates of within and between sample bacterial diversity, suggesting that our modification did not introduce bias against particular bacterial lineages. CONCLUSIONS:When high similarity exists between host organellar DNA and PCR target sequences, PNA clamps are an important molecular tool to reduce host contamination during amplification. Here, we provide a validated framework to modify universal PNA clamps to accommodate host variation in organellar sequences.
10.1186/s40168-018-0534-0
A tool kit for quantifying eukaryotic rRNA gene sequences from human microbiome samples.
Dollive Serena,Peterfreund Gregory L,Sherrill-Mix Scott,Bittinger Kyle,Sinha Rohini,Hoffmann Christian,Nabel Christopher S,Hill David A,Artis David,Bachman Michael A,Custers-Allen Rebecca,Grunberg Stephanie,Wu Gary D,Lewis James D,Bushman Frederic D
Genome biology
Eukaryotic microorganisms are important but understudied components of the human microbiome. Here we present a pipeline for analysis of deep sequencing data on single cell eukaryotes. We designed a new 18S rRNA gene-specific PCR primer set and compared a published rRNA gene internal transcribed spacer (ITS) gene primer set. Amplicons were tested against 24 specimens from defined eukaryotes and eight well-characterized human stool samples. A software pipeline https://sourceforge.net/projects/brocc/ was developed for taxonomic attribution, validated against simulated data, and tested on pyrosequence data. This study provides a well-characterized tool kit for sequence-based enumeration of eukaryotic organisms in human microbiome samples.
10.1186/gb-2012-13-7-r60
Extensive intra-phylotype diversity in lactobacilli and bifidobacteria from the honeybee gut.
Ellegaard Kirsten M,Tamarit Daniel,Javelind Emelie,Olofsson Tobias C,Andersson Siv G E,Vásquez Alejandra
BMC genomics
BACKGROUND:In the honeybee Apis mellifera, the bacterial gut community is consistently colonized by eight distinct phylotypes of bacteria. Managed bee colonies are of considerable economic interest and it is therefore important to elucidate the diversity and role of this microbiota in the honeybee. In this study, we have sequenced the genomes of eleven strains of lactobacilli and bifidobacteria isolated from the honey crop of the honeybee A. mellifera. RESULTS:Single gene phylogenies confirmed that the isolated strains represent the diversity of lactobacilli and bifidobacteria in the gut, as previously identified by 16S rRNA gene sequencing. Core genome phylogenies of the lactobacilli and bifidobacteria further indicated extensive divergence between strains classified as the same phylotype. Phylotype-specific protein families included unique surface proteins. Within phylotypes, we found a remarkably high level of gene content diversity. Carbohydrate metabolism and transport functions contributed up to 45% of the accessory genes, with some genomes having a higher content of genes encoding phosphotransferase systems for the uptake of carbohydrates than any previously sequenced genome. These genes were often located in highly variable genomic segments that also contained genes for enzymes involved in the degradation and modification of sugar residues. Strain-specific gene clusters for the biosynthesis of exopolysaccharides were identified in two phylotypes. The dynamics of these segments contrasted with low recombination frequencies and conserved gene order structures for the core genes. Hits for CRISPR spacers were almost exclusively found within phylotypes, suggesting that the phylotypes are associated with distinct phage populations. CONCLUSIONS:The honeybee gut microbiota has been described as consisting of a modest number of phylotypes; however, the genomes sequenced in the current study demonstrated a very high level of gene content diversity within all three described phylotypes of lactobacilli and bifidobacteria, particularly in terms of metabolic functions and surface structures, where many features were strain-specific. Together, these results indicate niche differentiation within phylotypes, suggesting that the honeybee gut microbiota is more complex than previously thought.
10.1186/s12864-015-1476-6
Microbial iron mats at the Mid-Atlantic Ridge and evidence that Zetaproteobacteria may be restricted to iron-oxidizing marine systems.
Scott Jarrod J,Breier John A,Luther George W,Emerson David
PloS one
Chemolithoautotrophic iron-oxidizing bacteria play an essential role in the global iron cycle. Thus far, the majority of marine iron-oxidizing bacteria have been identified as Zetaproteobacteria, a novel class within the phylum Proteobacteria. Marine iron-oxidizing microbial communities have been found associated with volcanically active seamounts, crustal spreading centers, and coastal waters. However, little is known about the presence and diversity of iron-oxidizing communities at hydrothermal systems along the slow crustal spreading center of the Mid-Atlantic Ridge. From October to November 2012, samples were collected from rust-colored mats at three well-known hydrothermal vent systems on the Mid-Atlantic Ridge (Rainbow, Trans-Atlantic Geotraverse, and Snake Pit) using the ROV Jason II. The goal of these efforts was to determine if iron-oxidizing Zetaproteobacteria were present at sites proximal to black smoker vent fields. Small, diffuse flow venting areas with high iron(II) concentrations and rust-colored microbial mats were observed at all three sites proximal to black smoker chimneys. A novel, syringe-based precision sampler was used to collect discrete microbial iron mat samples at the three sites. The presence of Zetaproteobacteria was confirmed using a combination of 16S rRNA pyrosequencing and single-cell sorting, while light micros-copy revealed a variety of iron-oxyhydroxide structures, indicating that active iron-oxidizing communities exist along the Mid-Atlantic Ridge. Sequencing analysis suggests that these iron mats contain cosmopolitan representatives of Zetaproteobacteria, but also exhibit diversity that may be uncommon at other iron-rich marine sites studied to date. A meta-analysis of publically available data encompassing a variety of aquatic habitats indicates that Zetaproteobacteria are rare if an iron source is not readily available. This work adds to the growing understanding of Zetaproteobacteria ecology and suggests that this organism is likely locally restricted to iron-rich marine environments but may exhibit wide-scale geographic distribution, further underscoring the importance of Zetaproteobacteria in global iron cycling.
10.1371/journal.pone.0119284
Active soil microbial composition and proliferation are directly affected by the presence of biocides from building materials.
The Science of the total environment
Combinations of biocides are commonly added to building materials to prevent microbial growth and thereby cause degradation of the façades. These biocides reach the environment by leaching from façades posing an environmental risk. Although ecotoxicity to the aquatic habitat is well established, there is hardly any data on the ecotoxicological effects of biocides on the soil habitat. This study aimed to characterize the effect of the biocides terbutryn, isoproturon, octhilinone, and combinations thereof on the total and metabolically active soil microbial community composition and functions. Total soil microbial community was retrieved directly from the nucleic acid extracts, while the DNA of the active soil microbial community was separated after bromodeoxyuridine labeling. Bacterial 16S rRNA gene and fungal internal transcribed spacer region gene-based amplicon sequencing was carried out for both active and total, while gene copy numbers were quantified only for the total soil microbial community. Additionally, soil respiration and physico-chemical parameters were analyzed to investigate overall soil microbial activity. The bacterial and fungal gene copy numbers were significantly affected by single biocides and combined biocide soil treatment but not soil respiration and physico-chemical parameters. While the total soil microbiome experienced only minor effects from single and combined biocide treatment, the active soil microbiome was significantly impacted in its diversity, richness, composition, and functional patterns. The active bacterial richness was more sensitive than fungal richness. However, the adverse effects of the biocide combination treatments on soil bacterial richness were highly dependent on the identities of the biocide combination. Our results demonstrate that the presence of biocides frequently used in building materials affects the active soil microbiome. Thereby, the approach described herein can be used as an ecotoxicological measure for the effect on complex soil environments in future studies.
10.1016/j.scitotenv.2023.168689
Visualization of microbes by 16S in situ hybridization in term and preterm placentas without intraamniotic infection.
American journal of obstetrics and gynecology
BACKGROUND:Numerous reports have documented bacteria in the placental membranes and basal plate decidua in the absence of immunopathology using histologic techniques. Similarly, independent metagenomic characterizations have identified an altered taxonomic makeup in association with spontaneous preterm birth. Here we sought to corroborate these findings by localizing presumptive intact bacteria using molecular histology within the placental microanatomy. OBJECTIVE:Here we examined for microbes in term and preterm gestations using a signal-amplified 16S universal in situ hybridization probe set for bacterial rRNA, alongside traditional histologic methods of Warthin-Starry and Gram stains, as well as clinical culture methodologies. We further sought to differentiate accompanying 16S gene sequencing taxonomic profiles from germ-free (gnotobiotic) mouse and extraction and amplicon contamination controls. STUDY DESIGN:Placentas were collected from a total of 53 subjects, composed of term labored (n = 4) and unlabored cesarean deliveries (n = 22) and preterm vaginal (n = 18) and cesarean deliveries (n = 8); a placenta from a single subject with clinical and histologic evident choriomanionitis was employed as a positive control (n = 1). The preterm cohort included spontaneous preterm birth with (n = 6) and without (n = 10) preterm premature rupture of membranes, as well as medically indicated preterm births (n = 10). Placental microbes were visualized using an in situ hybridization probe set designed against highly conserved regions of the bacterial 16S ribosome, which produces an amplified stable signal using branched DNA probes. Extracted bacterial nucleic acids from these same samples were subjected to 16S rRNA metagenomic sequencing (Illumina, V4) for course taxonomic analysis, alongside environmental and kit contaminant controls. A subset of unlabored, cesarean-delivered term pregnancies were also assessed with clinical culture for readily cultivatable pathogenic microbes. RESULTS:Molecular in situ hybridization of bacterial rRNA enabled visualization and localization of low-abundance microbes after systematic high-power scanning. Despite the absence of clinical or histologic chorioamnionitis in 52 of 53 subjects, instances of 16S rRNA signal were confidently observed in 13 of 16 spontaneous preterm birth placentas, which was not significantly different from term unlabored cesarean specimens (18 of 22; P > .05). 16S rRNA signal was largely localized to the villous parenchyma and/or syncytiotrophoblast, and less commonly the chorion and the maternal intervillous space. In all term and unlabored cesarean deliveries, visualization of evident placental microbes by in situ hybridization occurred in the absence of clinical or histologic detection using conventional clinical cultivation, hematoxylin-eosin, and Gram staining. In 1 subject, appreciable villous bacteria localized to an infarction, where 16S microbial detection was confirmed by Warthin-Starry stain. In all instances, parallel sample principle coordinate analysis using Bray-Cutis distances of 16S rRNA gene sequencing data demonstrated consistent taxonomic distinction from all negative or potential contamination controls (P = .024, PERMANOVA). Classification from contaminant filtered data identified a distinct taxonomic makeup among term and preterm cohorts when compared with contaminant controls (false discovery rate <0.05). CONCLUSION:Presumptively intact placental microbes are visualized as low-abundance, low-biomass and sparse populations within the placenta regardless of gestational age and mode of delivery. Their taxonomic makeup is distinct from contamination controls. These findings further support several previously published findings, including our own, which have used metagenomics to characterize low-abundance and low-biomass microbial communities in the placenta.
10.1016/j.ajog.2019.04.036
Accessing the soil metagenome for studies of microbial diversity.
Applied and environmental microbiology
Soil microbial communities contain the highest level of prokaryotic diversity of any environment, and metagenomic approaches involving the extraction of DNA from soil can improve our access to these communities. Most analyses of soil biodiversity and function assume that the DNA extracted represents the microbial community in the soil, but subsequent interpretations are limited by the DNA recovered from the soil. Unfortunately, extraction methods do not provide a uniform and unbiased subsample of metagenomic DNA, and as a consequence, accurate species distributions cannot be determined. Moreover, any bias will propagate errors in estimations of overall microbial diversity and may exclude some microbial classes from study and exploitation. To improve metagenomic approaches, investigate DNA extraction biases, and provide tools for assessing the relative abundances of different groups, we explored the biodiversity of the accessible community DNA by fractioning the metagenomic DNA as a function of (i) vertical soil sampling, (ii) density gradients (cell separation), (iii) cell lysis stringency, and (iv) DNA fragment size distribution. Each fraction had a unique genetic diversity, with different predominant and rare species (based on ribosomal intergenic spacer analysis [RISA] fingerprinting and phylochips). All fractions contributed to the number of bacterial groups uncovered in the metagenome, thus increasing the DNA pool for further applications. Indeed, we were able to access a more genetically diverse proportion of the metagenome (a gain of more than 80% compared to the best single extraction method), limit the predominance of a few genomes, and increase the species richness per sequencing effort. This work stresses the difference between extracted DNA pools and the currently inaccessible complete soil metagenome.
10.1128/AEM.01526-10
Gut, oral, and nasopharyngeal microbiota dynamics in the clinical course of hospitalized infants with respiratory syncytial virus bronchiolitis.
Frontiers in cellular and infection microbiology
Introduction:Respiratory syncytial virus (RSV) is the most common cause of bronchiolitis and hospitalization in infants worldwide. The nasopharyngeal microbiota has been suggested to play a role in influencing the clinical course of RSV bronchiolitis, and some evidence has been provided regarding oral and gut microbiota. However, most studies have focused on a single timepoint, and none has investigated all three ecosystems at once. Methods:Here, we simultaneously reconstructed the gut, oral and nasopharyngeal microbiota dynamics of 19 infants with RSV bronchiolitis in relation to the duration of hospitalization (more or less than 5 days). Fecal samples, oral swabs, and nasopharyngeal aspirates were collected at three timepoints (emergency room admission, discharge and six-month follow-up) and profiled by 16S rRNA amplicon sequencing. Results:Interestingly, all ecosystems underwent rearrangements over time but with distinct configurations depending on the clinical course of bronchiolitis. In particular, infants hospitalized for longer showed early and persistent signatures of unhealthy microbiota in all ecosystems, i.e., an increased representation of pathobionts and a depletion of typical age-predicted commensals. Discussion:Monitoring infant microbiota during RSV bronchiolitis and promptly reversing any dysbiotic features could be important for prognosis and long-term health.
10.3389/fcimb.2023.1193113
Reproductive System Symbiotic Bacteria Are Conserved between Two Distinct Populations of from Oahu, Hawaii.
Kerwin Allison H,Nyholm Spencer V
mSphere
Female Hawaiian bobtail squid, Euprymna scolopes, harbor a symbiotic bacterial community in a reproductive organ, the accessory nidamental gland (ANG). This community is known to be stable over several generations of wild-caught bobtail squid but has, to date, been examined for only one population in Maunalua Bay, Oahu, HI. This study assessed the ANG and corresponding egg jelly coat (JC) bacterial communities for another genetically isolated host population from Kaneohe Bay, Oahu, HI, using 16S amplicon sequencing. The bacterial communities from the ANGs and JCs of the two populations were found to be similar in richness, evenness, phylogenetic diversity, and overall community composition. However, the Kaneohe Bay samples formed their own subset within the Maunalua Bay ANG/JC community. An genus, BD2-13, was significantly higher in relative abundance in the Kaneohe Bay population, and several taxa also shifted in relative abundance between the two groups. This variation could be due to local adaptation to differing environmental challenges, to localized variability, or to functional redundancy among the ANG taxa. The overall stability of the community between the populations further supports a crucial functional role that has been hypothesized for this symbiosis. In this study, we examined the reproductive ANG symbiosis found in two genetically isolated populations of the Hawaiian bobtail squid, Euprymna scolopes. The stability of the community reported here provides support for the hypothesis that this symbiosis is under strong selective pressure, while the observed differences suggest that some level of local adaptation may have occurred. These two host populations are frequently used interchangeably as source populations for research. Euprymna scolopes is an important model organism and offers the opportunity to examine the interplay between a binary and a consortial symbiosis in a single model host. Understanding the inherent natural variability of this association will aid in our understanding of the conservation, function, transmission, and development of the ANG symbiosis.
10.1128/mSphere.00531-17
Alleviation Effects of GQD, a Traditional Chinese Medicine Formula, on Diabetes Rats Linked to Modulation of the Gut Microbiome.
Tian Jiaxing,Bai Bingbing,Gao Zezheng,Yang Yingying,Wu Haoran,Wang Xinmiao,Wang Jun,Li Min,Tong Xiaolin
Frontiers in cellular and infection microbiology
Gegen Qinlian Decoction (GQD) is a Chinese herbal medicine that has been reported to significantly decrease blood glucose levels, which is suggested to be related to interactions with the gut microbiota. However, the protective effect of GQD on intestinal barrier function with regard to its influence on the gut microbiota has not been explored to date. In this study, we investigated the role of the gut microbiota in mediating the hypoglycemic mechanism of GQD in type 2 diabetes mellitus (T2DM) rats induced by a single intraperitoneal injection of streptozotocin after 4 weeks of high-fat diet feeding. The T2DM rats were randomly allocated to receive GQD, metformin (Met), or saline for 12 consecutive weeks, and changes in metabolic parameters, intestinal barrier function, and inflammation were investigated. Gut microbiota was analyzed using 16S rRNA gene sequencing from fecal samples, and statistical analyses were performed to correlate microbiota composition with phenotypes of the T2DM rats. GQD administration decreased the levels of blood glucose and inflammatory cytokines, and increased the levels of tight junction proteins. Besides, GQD had a protective effect on islet function, restoring intestinal permeability, and inhibiting inflammation, as evidenced by increases in the levels of serum C-peptide, occludin, and claudin-1 in the colon, and also improved the expression of serum inflammatory factors. In addition, GQD regulated the structure of the gut microbiota by increasing the proportions of short-chain fatty acids-producing and anti-inflammatory bacteria, and decreasing the proportions of conditioned pathogenic bacteria associated with the diabetic phenotype. Overall, these findings suggest that GQD could ameliorate hyperglycemia and protect islet function by regulating the structure of the gut microbiota, thereby restoring intestinal permeability and inhibiting inflammation in T2DM rats. Our study thus suggests that the hypoglycemic mechanism of GQD is mediated by its modulation of the gut microbiota.
10.3389/fcimb.2021.740236
Effects of hydrolyzed fish protein and autolyzed yeast as substitutes of fishmeal in the gilthead sea bream (Sparus aurata) diet, on fish intestinal microbiome.
Rimoldi S,Gini E,Koch J F A,Iannini F,Brambilla F,Terova G
BMC veterinary research
BACKGROUND:This study evaluated the effects of partial substitution of dietary fishmeal (FM) with either fish protein hydrolysate (FPH) or autolysed dried yeast (HiCell®, Biorigin, Brazil) on intestinal microbiota of gilthead sea bream (Sparus aurata). A total number of 720 fish of 122.18 ± 6.22 g were fed for 92 days with three different diets in triplicate (3 tanks/diet). A diet based on FM/vegetable meal was used as control. The other two diets were formulated by replacing FM with 5% of either FPH or HiCell®. To analyze the gut microbiota associated to autochthonous and allochthonous microbial communities, the Illumina MiSeq platform for sequencing of 16S rRNA gene and QIIME pipeline were used. RESULTS:A total number of 102 OTUs (operational taxonomic units) at 97% identity were identified in fish gut samples collected at the end of feeding trial. Fourteen OTUs constituted the core gut microbiota, i.e. those OTUs found in at least nine out of fifteen samples per group and shared regardless of the diet. Eight OTUs were assigned to Firmicutes represented by Lactobacillus, Staphylococcus, and Bacillus genera, and six to Proteobacteria phylum. Dietary dried yeast autolysate modulated the intestinal microbiota by promoting the growth of some beneficial bacteria. At order level, fish fed yeast showed an enrichment in Bacillales and Clostridiales as compared to the control group, whereas fish fed FPH showed a significantly lower amount of bacteria belonging to Alteromonadales and Enterobacteriales than the other two feeding groups. Although we did not observe any effect of 5% FM replacement with alternative nitrogen sources at phylum level, at lower taxonomical levels, the composition of gut microbiota, in terms of relative abundance of specific taxa, was significantly influenced by the dietary treatment. CONCLUSIONS:The metabarcoding analysis revealed a clearly intestinal microbiota modulation in response to dietary autolyzed yeast. The abundance of some beneficial bacteria, i.e. indigestible carbohydrate degrading- and SCFA producing bacteria, was positively affected. Autolysed dried yeast obtained by the fermentation of a strain of Saccharomyces cerevisiae could be a valid alternative protein source to FM as well as a valid functional ingredient for aquafeed production [corrected].
10.1186/s12917-020-02335-1
JKSP109 and JKSP39 isolated from Tibetan kefir grain co-alleviated AOM/DSS induced inflammation and colorectal carcinogenesis.
Food & function
This study aimed to investigate the alleviative effects of JKSP109 (LK) and JKSP39 (SC) isolated from Tibetan kefir grain on colon inflammation and colorectal carcinogenesis. Azoxymethane (AOM) and dextran sulfate sodium (DSS) were used to establish a mouse model of colorectal cancer (CRC). The treatment group mice were administered with LK, SC, or the combination of LK and SC for five days per week from the day of receiving AOM. The composition of the gut microbiota was assessed using internal transcribed spacer 2 and gene high-throughput sequencing. Furthermore, the biomarkers associated with gut barrier integrity, inflammation, regulators of cell proliferation, and apoptosis were evaluated. The results showed that the administration of LK, SC, and their combination increased the body weights and decreased the disease activity index (DAI) score and tumor multiplicity. As compared to the CRC model group, the three treatment groups positively regulated the gut microbiota. Meanwhile, the three treatments also enhanced the gut barrier, decreased the expression of proinflammatory cytokines and oncocyte proliferation indicators, and increased the expression of terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL)-positive tumor epithelial cells and content of short chain fatty acids in fecal samples. All these results indicated that the LK and SC alleviated the inflammation and colorectal carcinogenesis in AOM/DSS-induced CRC mouse models, and the majority of tested indexes in the combination group were superior to single strain groups.
10.1039/d1fo02939h
Bayesian Unidimensional Scaling for visualizing uncertainty in high dimensional datasets with latent ordering of observations.
BMC bioinformatics
BACKGROUND:Detecting patterns in high-dimensional multivariate datasets is non-trivial. Clustering and dimensionality reduction techniques often help in discerning inherent structures. In biological datasets such as microbial community composition or gene expression data, observations can be generated from a continuous process, often unknown. Estimating data points' 'natural ordering' and their corresponding uncertainties can help researchers draw insights about the mechanisms involved. RESULTS:We introduce a Bayesian Unidimensional Scaling (BUDS) technique which extracts dominant sources of variation in high dimensional datasets and produces their visual data summaries, facilitating the exploration of a hidden continuum. The method maps multivariate data points to latent one-dimensional coordinates along their underlying trajectory, and provides estimated uncertainty bounds. By statistically modeling dissimilarities and applying a DiSTATIS registration method to their posterior samples, we are able to incorporate visualizations of uncertainties in the estimated data trajectory across different regions using confidence contours for individual data points. We also illustrate the estimated overall data density across different areas by including density clouds. One-dimensional coordinates recovered by BUDS help researchers discover sample attributes or covariates that are factors driving the main variability in a dataset. We demonstrated usefulness and accuracy of BUDS on a set of published microbiome 16S and RNA-seq and roll call data. CONCLUSIONS:Our method effectively recovers and visualizes natural orderings present in datasets. Automatic visualization tools for data exploration and analysis are available at: https://nlhuong.shinyapps.io/visTrajectory/ .
10.1186/s12859-017-1790-x
A genus in the bacterial phylum Aquificota appears to be endemic to Aotearoa-New Zealand.
Nature communications
Allopatric speciation has been difficult to examine among microorganisms, with prior reports of endemism restricted to sub-genus level taxa. Previous microbial community analysis via 16S rRNA gene sequencing of 925 geothermal springs from the Taupō Volcanic Zone (TVZ), Aotearoa-New Zealand, revealed widespread distribution and abundance of a single bacterial genus across 686 of these ecosystems (pH 1.2-9.6 and 17.4-99.8 °C). Here, we present evidence to suggest that this genus, Venenivibrio (phylum Aquificota), is endemic to Aotearoa-New Zealand. A specific environmental niche that increases habitat isolation was identified, with maximal read abundance of Venenivibrio occurring at pH 4-6, 50-70 °C, and low oxidation-reduction potentials. This was further highlighted by genomic and culture-based analyses of the only characterised species for the genus, Venenivibrio stagnispumantis CP.B2, which confirmed a chemolithoautotrophic metabolism dependent on hydrogen oxidation. While similarity between Venenivibrio populations illustrated that dispersal is not limited across the TVZ, extensive amplicon, metagenomic, and phylogenomic analyses of global microbial communities from DNA sequence databases indicates Venenivibrio is geographically restricted to the Aotearoa-New Zealand archipelago. We conclude that geographic isolation, complemented by physicochemical constraints, has resulted in the establishment of an endemic bacterial genus.
10.1038/s41467-023-43960-2
Changes in the Human Gut Microbiota Associated With Colonization by sp. and spp. in Non-Industrialized Populations.
Even Gaël,Lokmer Ana,Rodrigues Jules,Audebert Christophe,Viscogliosi Eric,Ségurel Laure,Chabé Magali
Frontiers in cellular and infection microbiology
Human gut microbial communities are mainly composed of bacteria, but also include fungi, viruses, archaea, and protozoa, whose role in the gut ecosystem has only recently begun to be recognized. For example, humans colonized by (a gut protozoan with controversial pathogenicity) host a more diverse bacterial microbiota than individuals not carrying it, suggesting that its presence may be beneficial for the host. In parallel, the presence of non-pathogenic spp. has been associated with an increased diversity and compositional shifts in the bacterial microbiota of healthy rural individuals in Cameroon. However, and , the two most prevalent human gut protozoa, have never been studied in the same individuals, preventing the study of their interaction. As is one of the few gut protozoa commonly found in industrialized populations, which are otherwise mostly devoid of gut eukaryotes, we need to focus on rural "traditional" populations, who harbor a higher diversity of gut eukaryotes (whether pathogenic or commensal) in order to study protozoa interactions in the gut ecosystem. To this end, we profiled the gut bacterial microbiota of 134 healthy Cameroonian adults using 16S rRNA gene amplicon sequencing data. and presence and co-occurrence pattern in the same individuals were determined using metagenomic shotgun data. We found that, when taking into account both protozoa jointly, was associated with both a higher richness and a higher evenness of the gut bacterial microbiota, while was associated only with a higher richness. We demonstrated a cumulative influence of these protozoa on bacterial microbiome diversity. Furthermore, while the abundance of several common taxa (for example, , and ) varied according to colonization, only a single amplicon sequence variant was found to be differentially abundant between -negative and -positive samples. Given the specific signature of each protozoan on the gut microbiota and the seemingly stronger association for , our results suggest that and interact with gut bacteria each in its own way, but experimental studies are needed to explore the precise mechanisms of these interactions.
10.3389/fcimb.2021.533528
from human breast milk ameliorates ulcerative colitis in mice gut microbiota modulation.
Food & function
Gut microbiota imbalance is one of the major causes of ulcerative colitis (UC). L. rhamnosus SHA113 (LRS), a strain isolated from healthy human milk, influences the regulation of gut flora. This study aims to determine whether this strain can ameliorate UC by modulating gut microbiota. Mouse models of UC were established using C57BL/6Cnc mice with intragastric administration of 3.0% (w/v) dextran sodium sulfate (DSS). LRS was used to treat the mouse models of UC with 109 cfu mL-1 cell suspension via intragastric administration. To verify the effect of gut microbiota on UC, fecal microbiota collected from the mice after the treatment with LRS were also used to treat the UC mouse models (FMT). The severity of UC was evaluated based on body weight, colon length, disease activity index (DAI), and hematoxylin-eosin staining. The microbial composition was analyzed by 16S rRNA sequencing. The mRNA expression levels of cytokines, mucins, tight junction proteins, and antimicrobial peptides in the gastrointestinal tract were detected by quantitative real-time polymerase chain reaction. The short-chain fatty acid (SCFAs) in the cecal contents of all mice were quantitatively detected by gas chromatography and mass spectrometry. Both LRS and FMT exerted excellent therapeutic effects on UC, as evidenced by the reduction in body weight loss, colon length, and colon structural integrity, as well as the increase in the DAI (disease activity index). LRS and FMT treatments showed similar effects: (1) an increase of total SCFA production in the cecal contents and the abundance of gut microbial diversity and flora composition; (2) decreases in two genera (Parabacteroides and Escherichia/Shigella) related to the DAI and the enhancement of SCFAs and IL-10 positively related genera in the gut microbiota (Bilophila, Roseburia, Akkermansia, and Bifidobacterium); (3) downregulation of the expression of tumor necrosis factor-α, interleukin IL-6, and IL-1β, and upregulation of the expression of the anti-inflammatory cytokine IL-10; and (4) upregulation of the expression of mucins (Muc1-4) and tight junction protein ZO-1. Overall, L. rhamnosus SHA113 relieves UC via the regulation of gut microbiota: increases in SCFA-producing genera and decreases in UC-related genera. In addition, a single strain is sufficient to induce a significant change in the gut microbiota and exert therapeutic effects on UC.
10.1039/d0fo03479g
Impact of in-feed sodium butyrate or sodium heptanoate protected with medium-chain fatty acids on gut health in weaned piglets challenged with F4.
López-Colom Paola,Castillejos Lorena,Rodríguez-Sorrento Agustina,Puyalto Mónica,Mallo Juan José,Martín-Orúe Susana M
Archives of animal nutrition
Short and medium-chain fatty acids (SCFA and MCFA, respectively) are commonly used as feed additives in piglets to promote health and prevent post-weaning diarrhoea. Considering that the mechanism and site of action of these fatty acids can differ, a combined supplementation could result in a synergistic action. Considering this, it was aimed to assess the potential of two new in-feed additives based on butyrate or heptanoate, protected with sodium salts of MCFA from coconut distillates, against enterotoxigenic (ETEC) F4 using an experimental disease model. Two independent trials were performed in 48 early-weaned piglets fed a control diet (CTR) or a diet supplemented with MCFA-protected sodium butyrate (BUT+; Trial 1) or sodium heptanoate (HPT+; Trial 2). After 1 week of adaptation, piglets were challenged with a single oral inoculum of ETEC F4 (minimum 1.4 · 10 cfu). One animal per pen was euthanised on days 4 and 8 post-inoculation (PI) and the following variables assessed: growth performance, clinical signs, gut fermentation, intestinal morphology, inflammatory mediators, pathogen excretion and colon microbiota. None of the additives recovered growth performance or reduced diarrhoea when compared to the respective negative controls. However, both elicited different responses against ETEC F4. The BUT+ additive did not lead to reduce F4 colonisation but enterobacterial counts and goblet cell numbers in the ileum were increased on day 8 PI and this followed higher serum TNF-α concentrations on day 4 PI. The Firmicutes:Bacteroidetes ratio was nevertheless increased. Findings in the HPT+ treatment trial included fewer animals featuring F4 in the colon and reduced Enterobacteriaceae (determined by 16S RNA sequencing) on day 4 PI. In addition, while goblet cell numbers were lower on day 8 PI, total SCFA levels were reduced in the colon. Results indicate the efficacy of MCFA-protected heptanoate against ETEC F4 and emphasise the potential trophic effect of MCFA-protected butyrate on the intestinal epithelium likely reinforcing the gut barrier.
10.1080/1745039X.2020.1726719
Oral treatment with Lactobacillus rhamnosus attenuates behavioural deficits and immune changes in chronic social stress.
Bharwani Aadil,Mian M Firoz,Surette Michael G,Bienenstock John,Forsythe Paul
BMC medicine
BACKGROUND:Stress-related disorders involve systemic alterations, including disruption of the intestinal microbial community. Given the putative connections between the microbiota, immunity, neural function, and behaviour, we investigated the potential for microbe-induced gut-to-brain signalling to modulate the impact of stress on host behaviour and immunoregulation. METHODS:Male C57BL/6 mice treated orally over 28 days with either Lactobacillus rhamnosus (JB-1) ™ or vehicle were subjected to chronic social defeat and assessed for alterations in behaviour and immune cell phenotype. 16S rRNA sequencing and mass spectrometry were employed to analyse the faecal microbial community and metabolite profile. RESULTS:Treatment with JB-1 decreased stress-induced anxiety-like behaviour and prevented deficits in social interaction with conspecifics. However, JB-1 did not alter development of aggressor avoidance following social defeat. Microbial treatment attenuated stress-related activation of dendritic cells while increasing IL-10+ regulatory T cells. Furthermore, JB-1 modulated the effect of stress on faecal metabolites with neuroactive and immunomodulatory properties. Exposure to social defeat altered faecal microbial community composition and reduced species richness and diversity, none of which was prevented by JB-1. Stress-related microbiota disruptions persisted in vehicle-treated mice for 3 weeks following stressor cessation. CONCLUSIONS:These data demonstrate that despite the complexity of the gut microbiota, exposure to a single microbial strain can protect against certain stress-induced behaviours and systemic immune alterations without preventing dysbiosis. This work supports microbe-based interventions for stress-related disorders.
10.1186/s12916-016-0771-7
Composition and predictive functional analysis of bacterial communities inhabiting Chinese Cordyceps insight into conserved core microbiome.
Xia Fei,Zhou Xin,Liu Yan,Li Yuling,Bai Xiaohui,Zhou Xuanwei
BMC microbiology
BACKGROUND:Over the past few decades, most attention to Chinese Cordyceps-associated endogenous microorganism was focused on the fungal community that creates critical bioactive components. Bacterial community associated with Chinese Cordyceps has been previously described; however, most studies were only presenting direct comparisons in the Chinese Cordyceps and its microenvironments. In the current study, our objectives were to reveal the bacterial community structure composition and predict their function. RESULTS:We collected samples of Chinese Cordyceps from five sites located in the Qinghai-Tibet Plateau and used a high throughput sequencing method to compare Chinese Cordyceps-associated bacterial community composition and diversity quantitatively across sites. The results indicated that for the Chinese Cordyceps-associated bacterial community there is no single core microbiome, which was dominated by the both Proteobacteria and Actinobacteria. Predictive functional profiling suggested a location specific function pattern for Chinese Cordyceps and bacteria in the external mycelial cortices involved in the biosynthesis of active constituents. CONCLUSIONS:This study is firstly used high throughput sequencing method to compare the bacterial communities inhabiting Chinese Cordyceps and its microhabitat and to reveal composition functional capabilities of the bacteria, which will accelerate the study of the functions of bacterial communities in the micro-ecological system of Chinese Cordyceps.
10.1186/s12866-019-1472-0
Microbial succession in response to pollutants in batch-enrichment culture.
Jiao Shuo,Chen Weimin,Wang Entao,Wang Junman,Liu Zhenshan,Li Yining,Wei Gehong
Scientific reports
As a global problem, environmental pollution is an important factor to shape the microbial communities. The elucidation of the succession of microbial communities in response to pollutants is essential for developing bioremediation procedures. In the present study, ten batches of soil-enrichment subcultures were subjected to four treatments: phenanthrene, n-octadecane, phenanthrene + n-octadecane, or phenanthrene + n-octadecane + CdCl2. Forty pollutant-degrading consortia, corresponding to each batch of the four treatments were obtained. High-throughput sequencing of the 16S rRNA gene revealed that the diversity, richness and evenness of the consortia decreased throughout the subculturing procedure. The well-known hydrocarbon degraders Acinetobacter, Gordonia, Sphingobium, Sphingopyxis, and Castellaniella and several other genera, including Niabella and Naxibacter, were detected in the enriched consortia. The predominant microbes varied and the microbial community in the consortia gradually changed during the successive subculturing depending on the treatment, indicating that the pollutants influenced the microbial successions. Comparison of the networks in the treatments indicated that organic pollutants and CdCl2 affected the co-occurrence patterns in enriched consortia. In conclusion, single environmental factors, such as the addition of nutrients or selection pressure, can shape microbial communities and partially explain the extensive differences in microbial community structures among diverse environments.
10.1038/srep21791
Marked Changes in Gut Microbiota in Cardio-Surgical Intensive Care Patients: A Longitudinal Cohort Study.
Aardema Heleen,Lisotto Paola,Kurilshikov Alexander,Diepeveen Janneke R J,Friedrich Alex W,Sinha Bhanu,de Smet Anne Marie G A,Harmsen Hermie J M
Frontiers in cellular and infection microbiology
Virtually no studies on the dynamics of the intestinal microbiota in patients admitted to the intensive care unit (ICU) are published, despite the increasingly recognized important role of microbiota on human physiology. Critical care patients undergo treatments that are known to influence the microbiota. However, dynamics and extent of such changes are not yet fully understood. To address this topic, we analyzed the microbiota before, during and after planned major cardio surgery that, for the first time, allowed us to follow the microbial dynamics of critical care patients. In this prospective, observational, longitudinal, single center study, we analyzed the fecal microbiota using 16S rRNA gene sequencing. Samples of 97 patients admitted between April 2015 and November 2016 were included. In 32 patients, data of all three time points (before, during and after admission) were available for analysis. We found a large intra-individual variation in composition of gut microbiota. During admission, a significant change in microbial composition occurred in most patients, with a significant increase in pathobionts combined with a decrease in strictly anaerobic gut bacteria, typically beneficial for health. A lower bacterial diversity during admission was associated with longer hospitalization. In most patients analyzed at all three time points, the change in microbiota during hospital stay reverted to the original composition post-discharge. Our study shows that, even with a short ICU stay, patients present a significant change in microbial composition shortly after admission. The unique longitudinal setup of this study displayed a restoration of the microbiota in most patients to baseline composition post-discharge, which demonstrated its great restorative capacity. A relative decrease in benign or even beneficial bacteria and increase of pathobionts shifts the microbial balance in the gut, which could have clinical relevance. In future studies, the microbiota of ICU patients should be considered a good target for optimisation.
10.3389/fcimb.2019.00467
Differential effects of monensin and a blend of essential oils on rumen microbiota composition of transition dairy cows.
Schären M,Drong C,Kiri K,Riede S,Gardener M,Meyer U,Hummel J,Urich T,Breves G,Dänicke S
Journal of dairy science
In response to oral application, monensin alters the rumen microbiota, increasing ruminal propionate production and energy availability in the animal. Data from different studies indicate that the susceptibility of rumen bacteria to monensin is mainly cell-wall dependent but tracing its activity to specific microbial groups has been challenging. Several studies have shown a similar effect for essential oils but results are inconsistent. To investigate the influence of monensin and a blend of essential oils (BEO, containing thymol, guaiacol, eugenol, vanillin, salicylaldehyde, and limonene) on the rumen microbiome, rumen liquid samples were collected orally on d 56 postpartum from cows that had either received a monensin controlled-release capsule 3 wk antepartum, a diet containing a BEO from 3 wk antepartum onward, or a control diet (n = 12). The samples were analyzed for pH, volatile fatty acid, ammonia, and lipopolysaccharide concentrations and protozoal counts. A 16S rRNA gene fingerprinting analysis (PCR-single-strand conformation polymorphism) and sequencing revealed that the BEO treatment had no effect on the rumen microbiota, whereas monensin decreased bacterial diversity. Twenty-three bacterial species-level operational taxonomic units were identified for which monensin caused a significant decrease in their relative abundance, all belonging to the phyla Bacteroidetes (uncultured BS11 gut group and BS9 gut group) and Firmicutes (Lachnospiraceae, Ruminococcaceae, and Erysipelotrichaceae). Ten bacterial operational taxonomic units belonging to the phyla Actinobacteria (Coriobacteriaceae), Bacteroidetes (Prevotella), Cyanobacteria (SHA-109), and Firmicutes (Lachnospiraceae and Ruminococcaceae) increased in relative abundance due to the monensin treatment. These results confirm the hypothesis that varying effects depending on cell-wall constitution and thickness might apply for monensin sensitivity rather than a clear-cut difference between gram-negative and gram-positive bacteria. No effect of monensin on the archaea population was observed, confirming the assumption that reported inhibition of methanogenesis is most likely caused through a decrease in substrate availability, rather than by a direct effect on the methanogens. The data support the hypothesis that the observed increase in ruminal molar propionate proportions due to monensin may be caused by a decrease in abundance of non-producers and moderate producers of propionate and an increase in abundance of succinate and propionate producers.
10.3168/jds.2016-11994
Characteristics of the Intestinal Flora of TPOAb-Positive Women With Subclinical Hypothyroidism in the Second Trimester of Pregnancy: A Single-Center Prospective Cohort Study.
Frontiers in cellular and infection microbiology
Pregnant women are at high risk of developing subclinical hypothyroidism (SCH), and anti-thyroid peroxidase antibody (TPOAb) positivity can further inhibit thyroxine synthesis. Emerging evidence indicates that intestinal flora can modulate metabolic and immune homeostasis. The characteristics of intestinal flora of TPOAb-positive women with SCH in their second trimester of pregnancy have not been reported. This single-center prospective observational cohort study investigated gut microbial composition and metabolic function using sequencing of the 16S rRNA gene in fecal samples from 75 TPOAb-positive women with SCH and 90 TPOAb-negative women with SCH during their second trimester of pregnancy. Women were treated with no levothyroxine (LT), low-dose LT (≤50ug/d), or high-dose LT (>50ug/d). Taxonomic analysis showed and were the dominant phyla, followed by and , , , , , , and were the predominant genera. The intestinal flora of TPOAb-positive women with SCH who received no LT was characterized by bacterial amplicon sequence variants (ASVs)/operational taxonomic units (OTUs) enriched in the genus . The intestinal flora of TPOAb-positive women with SCH who received low-dose or high-dose LT were characterized by bacterial ASVs/OTUs depleted of the species sp.or , respectively. A total of 19 metabolic functions of intestinal flora, mainly involving lipid and amino acid metabolism, discriminated TPOAb-positive and TPOAb-negative women with SCH. Our study suggests that there are differences in the composition and metabolic function of intestinal flora of TPOAb-positive and TPOAb-negative women with SCH treated with different doses of LT in the second trimester of pregnancy. The findings provide insight into intestinal flora as novel targets for the treatment of TPOAb-positive women with SCH during pregnancy.
10.3389/fcimb.2022.794170
Impact of DNA extraction method and targeted 16S-rRNA hypervariable region on oral microbiota profiling.
Teng Fei,Darveekaran Nair Sree Sankar,Zhu Pengfei,Li Shanshan,Huang Shi,Li Xiaolan,Xu Jian,Yang Fang
Scientific reports
Amplification and sequencing of 16S amplicons are widely used for profiling the structure of oral microbiota. However, it remains not clear whether and to what degree DNA extraction and targeted 16S rRNA hypervariable regions influence the analysis. Based on a mock community consisting of five oral bacterial species in equal abundance, we compared the 16S amplicon sequencing results on the Illumina MiSeq platform from six frequently employed DNA extraction procedures and three pairs of widely used 16S rRNA hypervariable primers targeting different 16S rRNA regions. Technical reproducibility of selected 16S regions was also assessed. DNA extraction method exerted considerable influence on the observed bacterial diversity while hypervariable regions had a relatively minor effect. Protocols with beads added to the enzyme-mediated DNA extraction reaction produced more accurate bacterial community structure than those without either beads or enzymes. Hypervariable regions targeting V3-V4 and V4-V5 seemed to produce more reproducible results than V1-V3. Neither sequencing batch nor change of operator affected the reproducibility of bacterial diversity profiles. Therefore, DNA extraction strategy and 16S rDNA hypervariable regions both influenced the results of oral microbiota biodiversity profiling, thus should be carefully considered in study design and data interpretation.
10.1038/s41598-018-34294-x
Co-infections of Klebsiella pneumoniae and Elizabethkingia miricola in black-spotted frogs (Pelophylax nigromaculatus).
Microbial pathogenesis
Pelophylax nigromaculatus is a common commercial specie of frogs that generally cultured throughout China. With the application of high-density culture, P. nigromaculatus can be co-infected by two or more pathogens, which thereby induce synergistic influence on the virulence of the infection. In this study, two bacterial strains were simultaneously isolated from diseased frogs by incubating on Luria-Bertani (LB) agar. Isolates were identified as Klebsiella pneumoniae and Elizabethkingia miricola by morphological, physiological and biochemical features, as well as 16S rRNA sequencing and phylogenetic analysis. The whole genome of K. pneumoniae and E. miricola isolates consist single circular chromosome of 5,419,557 bp and 4,215,349 bp, respectively. The genomic sequence analysis further indicated that K. pneumoniae isolate conserved 172 virulent and 349 antibiotic-resistance genes, whereas E. miricola contained 24 virulent and 168 antibiotic resistance genes. In LB broth, both isolates could grow well at 0%-1% NaCl concentration and pH 5-7. Antibiotic susceptibility testing revealed that both K. pneumoniae and E. miricola were resistant to kanamycin, neomycin, ampicillin, piperacillin, carbenicillin, enrofloxacin, norfloxacin and sulfisoxazole. Histopathological studies showed that co-infection caused considerable lesions in the tissues of brain, eye, muscle, spleen, kidney and liver, including cell degeneration, necrosis, hemorrhage and inflammatory cell infiltration. The LD of K. pneumoniae and E. miricola isolates were 6.31 × 10 CFU/g and 3.98 × 10 CFU/g frog weight, respectively. Moreover, experimentally infected frogs exhibited quick and higher mortality under coinfection with K. pneumoniae and E. miricola than those single challenge of each bacterium. To date, no natural co-infection by these two bacteria has been reported from frogs and even amphibians. The results will not only shed light on the feature and pathogenesis of K. pneumoniae and E. miricola, but also highlight that co-infection of these two pathogen is a potential threat to black-spotted frog farming.
10.1016/j.micpath.2023.106150
Amphibian skin-associated Pigmentiphaga: Genome sequence and occurrence across geography and hosts.
Bletz Molly C,Bunk Boyke,Spröer Cathrin,Biwer Peter,Reiter Silke,Rabemananjara Falitiana C E,Schulz Stefan,Overmann Jörg,Vences Miguel
PloS one
The bacterial communities colonizing amphibian skin have been intensively studied due to their interactions with pathogenic chytrid fungi that are causing drastic amphibian population declines. Bacteria of the family Alcaligenaceae, and more specifically of the genus Pigmentiphaga, have been found to be associated specifically to arboreal frogs. Here we analyze their occurrence in a previously assembled global skin microbiome dataset from 205 amphibian species. Pigmentiphaga made up about 5% of the total number of reads in this global dataset. They were mostly found in unrelated arboreal frogs from Madagascar (Mantellidae and Hyperoliidae), but also occurred at low abundances on Neotropical frogs. Based on their 16S sequences, most of the sequences belong to a clade within Pigmentiphaga not assignable to any type strains of the five described species of the genus. One isolate from Madagascar clustered with Pigmentiphaga aceris (>99% sequence similarity on 16S rRNA gene level). Here, we report the full genome sequence of this bacterium which, based on 16S sequences of >97% similarity, has previously been found on human skin, floral nectar, tree sap, stream sediment and soil. Its genome consists of a single circular chromosome with 6,165,255 bp, 5,300 predicted coding sequences, 57 tRNA genes, and three rRNA operons. In comparison with other known Pigmentiphaga genomes it encodes a higher number of genes associated with environmental information processing and cellular processes. Furthermore, it has a biosynthetic gene cluster for a nonribosomal peptide syntethase, and bacteriocin biosynthetic genes can be found, but clusters for β-lactones present in other comparative Pigmentiphaga genomes are lacking.
10.1371/journal.pone.0223747
Oral colostrum priming shortens hospitalization without changing the immunomicrobial milieu.
Romano-Keeler J,Azcarate-Peril M A,Weitkamp J-H,Slaughter J C,McDonald W H,Meng S,Latuga M S,Wynn J L
Journal of perinatology : official journal of the California Perinatal Association
OBJECTIVE:Oral colostrum priming (OCP) after birth in preterm infants is associated with improved weight gain and modification of the oral immunomicrobial environment. We hypothesized that OCP would modify salivary immune peptides and the oral microbiota in preterm infants. STUDY DESIGN:We conducted a prospective, randomized clinical trial to determine the effects of OCP on salivary immune peptide representation in preterm infants (<32 weeks completed gestation at birth). Saliva samples were collected before and after OCP. Salivary immune peptide representation was determined via mass spectroscopy. Oral microbiota representation was determined via sequencing of the 16S rRNA gene. RESULTS:Neonates who received OCP (n=48) had a 16-day reduction in the median length of hospitalization as compared with infants who did not receive OCP (n=51). No differences in salivary immune peptide sequence representation before OCP between groups were found. Longitudinal changes in peptides were detected (lysozyme C, immunoglobulin A, lactoferrin) but were limited to a single peptide difference (α-defensin 1) between primed and unprimed infants after OCP. We found no difference in microbial diversity between treatment groups at any time point, but diversity decreased significantly over time in both groups. OCP treatment marginally modified oral taxa with a decline in abundance of Streptococci in the OCP group at 30 days of life. CONCLUSIONS:OCP had neither an effect on the salivary peptides we examined nor on overall oral bacterial diversity and composition. Infants who received OCP had a reduced length of hospitalization and warrants further investigation.
10.1038/jp.2016.161
Effects of DNA preservation solution and DNA extraction methods on microbial community profiling of soil.
Iturbe-Espinoza Paul,Brandt Bernd W,Braster Martin,Bonte Matthijs,Brown David M,van Spanning Rob J M
Folia microbiologica
Microbial community profiling using high-throughput sequencing relies in part on the preservation of the DNA and the effectiveness of the DNA extraction method. This study aimed at understanding to what extent these parameters affect the profiling. We obtained samples treated with and without a preservation solution. Also, we compared DNA extraction kits from Qiagen and Zymo-Research. The types of samples were defined strains, both as single species and mixtures, as well as undefined indigenous microbial communities from soil. We show that the use of a preservation solution resulted in substantial changes in the 16S rRNA gene profiles either due to an overrepresentation of Gram-positive bacteria or to an underrepresentation of Gram-negative bacteria. In addition, 16S rRNA gene profiles were substantially different depending on the type of kit that was used for extraction. The kit from Zymo extracted DNA from different types of bacteria in roughly equal amounts. In contrast, the kit from Qiagen preferentially extracted DNA from Gram-negative bacteria while DNA from Gram-positive bacteria was extracted less effectively. These differences in kit performance strongly influenced the interpretation of our microbial ecology studies.
10.1007/s12223-021-00866-0
Combined Non-Invasive Prediction and New Biomarkers of Oral and Fecal Microbiota in Patients With Gastric and Colorectal Cancer.
Frontiers in cellular and infection microbiology
Background:There is no information on the commonality and specificity of oral and fecal microbiota in patients with gastric cancer (GC) and colorectal cancer (CRC). Methods:The high-throughput 16S rRNA gene V4 region sequencing was used to perform bioinformatics analysis of oral, fecal, and tissue microbiota in GC (76 subjects), CRC (53), and healthy controls (HC, 70). Furthermore, we determined the microbial characteristics of each part, constructed and verified three classifiers for GC and CRC, and evaluated curves of receiver operating characteristic and precision-recall with probability of disease. Results:Compared to HC, the microbial richness and diversity of GC and CRC decreased in oral cavity and increased in stool; additionally, these indexes in GC tissue were higher than those in CRC tissue. In GC and CRC patients, , , , and were significantly reduced compared to the relative abundance value of oral or fecal bacterial genera in the HC group, while the , , , and were significantly increased. The oral and tissue microbiota have similar and abundant shared bacterial networks. The single and combined microbial detection have good AUC values based on POD indices for predicting GC, CRC, and gastrointestinal (GI) cancers (GC and CRC). Conclusion:This study is the first to examine the characteristics of oral, fecal, and tumor microbiota in GC and CRC patients, and the similarities and differences in their microbial changes are reported. These oral or fecal bacteria (, , , , , , , and ) may be involved in tumor evolution as potentially characteristic genera. In addition, both oral and fecal microbial detection may provide a solid theoretical foundation for the non-invasive prediction of these cancers.
10.3389/fcimb.2022.830684
Characterization of boar semen microbiome and association with sperm quality parameters.
Journal of animal science
Elevated levels of bacteria within fresh extended boar semen are associated with decreased sperm longevity, therefore reducing the fertility of a semen dose. The objective of this study was to characterize the bacterial communities using 16S rRNA sequencing in freshly extended boar semen samples and relate the prevalence and diversity of the microbial population to sperm quality parameters 1) between studs, 2) between pooled and single-sire doses, and 3) over a 5-day period. Eight single-sire (n = 4 per stud) and eight pooled (n = 4 per stud) non-frozen extended semen doses were obtained from two boar studs (A and B). Pooled doses were the composite of the boar's ejaculates used in single-sire doses. Doses were subsampled for 5 d post-collection. Ten negative controls of each pooled dose (n = 2) and single-sire dose (n = 8) remained sealed until the last day. Microbiome analysis was achieved by examining the V4 hypervariable region of the 16S rRNA gene of flash-frozen samples. Two evaluators determined the average sperm motility and agglutination (0: no adhesion to 3: >50% adhesion) by averaging their estimates together at 10 random locations per slide. Stud A had greater sperm agglutination (1.6 vs. 1.0 ± 0.1; P < 0.01) than stud B. Sperm motility decreased over the 5-day period (P < 0.01) and tended (P = 0.09) to be greater in stud B than A (67.4% vs. 61.5% ± 0.02%). Compared with stud A, stud B had a greater relative abundance of Proteobacteria (60.0% vs. 47.2% ± 1.5%; P < 0.01) and a lower relative abundance of Firmicutes (22.5% vs. 31.9% ± 1.4%; P < 0.01). Moreover, stud A had a greater relative abundance of Bacteroidetes (6.3% vs. 5.3% ± 0.4%; P < 0.01) and Actinobacteria (11.5% vs. 10.1% ± 0.5%; P = 0.05) than stud B. Differences were found in alpha diversity for both Chao1 (P < 0.01) and Shannon (P < 0.01) diversity indexes among days 2, 3, 4, and 5 post-collection to day 1. For beta diversity, unweighted UniFrac metric on days 2, 3, 4, and 5 post-collection differed from those on day 1 (P < 0.01). There were significant correlations between sperm motility and relative abundance of Prevotella (r = -0.29), Ruminococcus (r = -0.24), and Bacteroides (r = -0.32). Additionally, there were significant correlations between sperm motility and Chao1 (r = -0.50) and Shannon's index (r = -0.36). These results demonstrate that differences in bacterial communities over time and between boar studs can be associated with variation in sperm quality.
10.1093/jas/skad243
Metagenomic Signatures of Microbial Communities in Deep-Sea Hydrothermal Sediments of Azores Vent Fields.
Cerqueira Teresa,Barroso Cristina,Froufe Hugo,Egas Conceição,Bettencourt Raul
Microbial ecology
The organisms inhabiting the deep-seafloor are known to play a crucial role in global biogeochemical cycles. Chemolithoautotrophic prokaryotes, which produce biomass from single carbon molecules, constitute the primary source of nutrition for the higher organisms, being critical for the sustainability of food webs and overall life in the deep-sea hydrothermal ecosystems. The present study investigates the metabolic profiles of chemolithoautotrophs inhabiting the sediments of Menez Gwen and Rainbow deep-sea vent fields, in the Mid-Atlantic Ridge. Differences in the microbial community structure might be reflecting the distinct depth, geology, and distance from vent of the studied sediments. A metagenomic sequencing approach was conducted to characterize the microbiome of the deep-sea hydrothermal sediments and the relevant metabolic pathways used by microbes. Both Menez Gwen and Rainbow metagenomes contained a significant number of genes involved in carbon fixation, revealing the largely autotrophic communities thriving in both sites. Carbon fixation at Menez Gwen site was predicted to occur mainly via the reductive tricarboxylic acid cycle, likely reflecting the dominance of sulfur-oxidizing Epsilonproteobacteria at this site, while different autotrophic pathways were identified at Rainbow site, in particular the Calvin-Benson-Bassham cycle. Chemolithotrophy appeared to be primarily driven by the oxidation of reduced sulfur compounds, whether through the SOX-dependent pathway at Menez Gwen site or through reverse sulfate reduction at Rainbow site. Other energy-yielding processes, such as methane, nitrite, or ammonia oxidation, were also detected but presumably contributing less to chemolithoautotrophy. This work furthers our knowledge of the microbial ecology of deep-sea hydrothermal sediments and represents an important repository of novel genes with potential biotechnological interest.
10.1007/s00248-018-1144-x
Combining Laser Capture Microdissection and Microfluidic qPCR to Analyze Transcriptional Profiles of Single Cells: A Systems Biology Approach to Opioid Dependence.
O'Sullivan Sean J,Reyes Beverly A S,Vadigepalli Rajanikanth,Van Bockstaele Elisabeth J,Schwaber James S
Journal of visualized experiments : JoVE
Profound transcriptional heterogeneity in anatomically adjacent single cells suggests that robust tissue functionality may be achieved by cellular phenotype diversity. Single-cell experiments investigating the network dynamics of biological systems demonstrate cellular and tissue responses to various conditions at biologically meaningful resolution. Herein, we explain our methods for gathering single cells from anatomically specific locations and accurately measuring a subset of their gene expression profiles. We combine laser capture microdissection (LCM) with microfluidic reverse transcription quantitative polymerase chain reactions (RT-qPCR). We also use this microfluidic RT-qPCR platform to measure the microbial abundance of gut contents.
10.3791/60612
NEC-like intestinal injury is ameliorated by Lactobacillus rhamnosus GG in parallel with SIGIRR and A20 induction in neonatal mice.
Cuna Alain,Yu Wei,Menden Heather L,Feng Linda,Srinivasan Pugazhendhi,Chavez-Bueno Susana,Ahmed Ishfaq,Umar Shahid,Sampath Venkatesh
Pediatric research
BACKGROUND:Exaggerated Toll-like receptor (TLR) signaling and intestinal dysbiosis are key contributors to necrotizing enterocolitis (NEC). Lactobacillus rhamnosus GG (LGG) decreases NEC in preterm infants, but underlying mechanisms of protection remain poorly understood. We hypothesized that LGG alleviates dysbiosis and upregulates TLR inhibitors to protect against TLR-mediated gut injury. METHODS:Effects of LGG (low- and high-dose) on intestinal pro-inflammatory TLR signaling and injury in neonatal mice subjected to formula feeding (FF) and NEC were determined. 16S sequencing of stool and expression of anti-TLR mediators SIGIRR (single immunoglobulin interleukin-1-related receptor) and A20 were analyzed. RESULTS:FF induced mild intestinal injury with increased expression of interleukin-1β (IL-1β) and Kupffer cell (KC) (mouse homolog of IL-8) compared to controls. LGG decreased IL-1β and KC in association with attenuated TLR signaling and increased SIGIRR and A20 expression in a dose-dependent manner. Low- and high-dose LGG had varying effects on gut microbiome despite both doses providing gut protection. Subsequent experiments of LGG on NEC revealed that pro-inflammatory TLR signaling and intestinal injury were also decreased, and SIGIRR and A20 expression increased, in a dose-dependent manner with LGG pre-treatment. CONCLUSIONS:LGG protects against intestinal TLR-mediated injury by upregulating TLR inhibitors without major changes in gut microbiome composition.
10.1038/s41390-020-0797-6
Aromatic amino acid metabolites alter interferon signaling and influenza pathogenesis.
Frontiers in molecular biosciences
The ability of gut microbial metabolites to influence the host is increasingly recognized. The microbiota extensively metabolizes the three aromatic amino acids, tryptophan, tyrosine, and phenylalanine. Previously we have found that a metabolite of tyrosine, 4-OH-phenylpropionic acid, can enhance type I interferon (IFN) signaling and protect from influenza pathogenesis in a murine model. Herein we screened 17 related aromatic amino acid metabolites for effects on IFN signaling in human lung epithelial cells and monocytes alone and in the presence of IFN-β, influenza, and LPS. While the tryptophan family metabolites reduced IFN signaling in both cell types, the tyrosine and phenylalanine metabolites had varied effects, which were cell-type dependent. Pooled treatment of all these metabolites reduced IFN signaling in both cell types and suggested a tryptophan metabolite effect dominance. Strikingly, when all the metabolites were pooled together, we found reduced influenza recovery in both cell types. RNA sequencing further validated reduced viral loads and decreased IFN signaling. Single gene silencing of significantly upregulated genes identified by RNA sequencing (, , , and ) did not completely abrogate the metabolite induced decrease in IFN signaling. However, these upregulated targets suggested a mechanistic link to TGF-beta signaling. Treatment with a TGF-beta inhibitor and combined targeted gene silencing led to a significant reversal of metabolite induced IFN signaling suppression. Finally, we demonstrated that intranasal administration of these metabolites prior to influenza infection led to reduced animal morbidity, viral titers, and inflammation. Our work implies that microbial metabolites can alter IFN signaling mechanistically through TGF-beta and promote beneficial outcomes during influenza infection.
10.3389/fmolb.2023.1232573
DNA transfer between two different species mediated by heterologous cell fusion in coculture.
mBio
Prokaryotic evolution is driven by random mutations and horizontal gene transfer (HGT). HGT occurs via transformation, transduction, or conjugation. We have previously shown that in syntrophic cocultures of and , heterologous cell fusion leads to a large-scale exchange of proteins and RNA between the two organisms. Here, we present evidence that heterologous cell fusion facilitates the exchange of DNA between the two organisms. Using selective subculturing, we isolated cells which acquired and integrated into their genome portions of plasmid DNA from a plasmid-carrying strain. Limiting-dilution plating and DNA methylation data based on PacBio Single-Molecule Real Time (SMRT) sequencing support the existence of hybrid / cells. These findings expand our understanding of multi-species microbiomes, their survival strategies, and evolution.IMPORTANCEInvestigations of natural multispecies microbiomes and synthetic microbial cocultures are attracting renewed interest for their potential application in biotechnology, ecology, and medical fields. Previously, we have shown the syntrophic coculture of and undergoes heterologous cell-to-cell fusion, which facilitates the exchange of cytoplasmic protein and RNA between the two organisms. We now show that heterologous cell fusion between the two Clostridium organisms can facilitate the exchange of DNA. By applying selective pressures to this coculture system, we isolated clones of wild-type which acquired the erythromycin resistance (erm) gene from the strain carrying a plasmid with the erm gene. Single-molecule real-time sequencing revealed that the erm gene was integrated into the genome in a mosaic fashion. Our data also support the persistence of hybrid / cells displaying hybrid DNA-methylation patterns.
10.1128/mbio.03133-23
The glyphosate formulation Roundup® LB plus influences the global metabolome of pig gut microbiota in vitro.
The Science of the total environment
Glyphosate is the world's most widely used herbicide, and its potential side effects on the intestinal microbiota of various animals, from honeybees to livestock and humans, are currently under discussion. Pigs are among the most abundant livestock animals worldwide and an impact of glyphosate on their intestinal microbiota function can have serious consequences on their health, not to mention the economic effects. Recent studies that addressed microbiota-disrupting effects focused on microbial taxonomy but lacked functional information. Therefore, we chose an experimental design with a short incubation time in which effects on the community structure are not expected, but functional effects can be detected. We cultivated intestinal microbiota derived from pig colon in chemostats and investigated the acute effect of 228 mg/d glyphosate acid equivalents from Roundup® LB plus, a frequently applied glyphosate formulation. The applied glyphosate concentration resembles a worst-case scenario for an 8-9 week-old pig and relates to the maximum residue levels of glyphosate on animal fodder. The effects were determined on the functional level by metaproteomics, targeted and untargeted meta-metabolomics, while variations in community structure were analyzed by 16S rRNA gene profiling and on the single cell level by microbiota flow cytometry. Roundup® LB plus did not affect the community taxonomy or the enzymatic repertoire of the cultivated microbiota in general or on the expression of the glyphosate target enzyme 5-enolpyruvylshikimate-3-phosphate synthase in detail. On the functional level, targeted metabolite analysis of short chain fatty acids (SCFAs), free amino acids and bile acids did not reveal significant changes, whereas untargeted meta-metabolomics did identify some effects on the functional level. This multi-omics approach provides evidence for subtle metabolic effects of Roundup® LB plus under the conditions applied.
10.1016/j.scitotenv.2020.140932
Application of culture, PCR, and PacBio sequencing for determination of microbial composition of milk from subclinical mastitis dairy cows of smallholder farms.
Khasapane Ntelekwane G,Nkhebenyane Jane S,Kwenda Stanford,Khumalo Zamantungwa T H,Mtshali Phillip S,Taioe Moeti O,Thekisoe Oriel M M
Open life sciences
Mastitis is a cow disease usually signalized by irritation, swelling, and soreness of the udder. It is characterized by physical, chemical, and biological changes in the udder and milk. The aim of this study was to detect and characterize pathogens causing subclinical mastitis (SCM) from the milk of dairy cows of small-scale farmers through culture and molecular techniques. Milk was collected from 32 cows belonging to 8 small-scale farmers around Harrismith District, South Africa. The results showed that screening of SCM by California mastitis test and somatic cell counts (SCC) was 21.87 and 25%, respectively. Culture methods revealed the presence of at 93% followed by spp. and at 36.4 and 13.3%, respectively. The PCR could only detect , while single-molecule real-time sequencing showed a total of 2 phyla, 5 families, 7 genera, and 131 species. Clostridiaceae was the most abundant family, while was the most abundant genus followed by spp. The present study has documented the occurrence of SCM causing pathogens in milk collected from cows of small-scale farmers in Harrismith, indicating that SCM may be present at higher levels than expected.
10.1515/biol-2021-0080
Changes in Microbiota Profiles After Prolonged Frozen Storage of Stool Suspensions.
Dorsaz Stéphane,Charretier Yannick,Girard Myriam,Gaïa Nadia,Leo Stefano,Schrenzel Jacques,Harbarth Stephan,Huttner Benedikt,Lazarevic Vladimir
Frontiers in cellular and infection microbiology
Fecal microbiota transplantation (FMT) is recommended as safe and effective treatment for recurrent infections. Freezing the FMT preparation simplifies the process, allowing a single stool sample to be used for multiple receivers and over an extended period of time. We aimed to assess the effect of long-term frozen storage on bacterial taxonomic profiles of a stool suspension prepared for FMT. DNA was extracted from a stool suspension before freezing and sequentially during the 18-month storage period at -80°C. Two different protocols were used for DNA extraction. The first relied on a classical mechanical and chemical cell disruption to extract both intra- and extracellular DNA; the second included specific pre-treatments aimed at removing free DNA and DNA from human and damaged bacterial cells. Taxonomic profiling of bacterial communities was performed by sequencing of V3-V4 16S rRNA gene amplicons. Microbiota profiles obtained by whole DNA extraction procedure remained relatively stable during frozen storage. When DNA extraction procedure included specific pre-treatments, microbiota similarity between fresh and frozen samples progressively decreased with longer frozen storage times; notably, the abundance of Bacteroidetes decreased in a storage duration-dependent manner. The abundance of Firmicutes, the main butyrate producers in the colon, were not much affected by frozen storage for up to 1 year. Our data show that metataxonomic analysis of frozen stool suspensions subjected to specific pre-treatments prior to DNA extractions might provide an interesting indication of bacterial resistance to stress conditions and thus of chances of survival in FMT recipients.
10.3389/fcimb.2020.00077
The allometry of cellular DNA and ribosomal gene content among microbes and its use for the assessment of microbiome community structure.
Gonzalez-de-Salceda Luis,Garcia-Pichel Ferran
Microbiome
BACKGROUND:The determination of taxon-specific composition of microbiomes by combining high-throughput sequencing of ribosomal genes with phyloinformatic analyses has become routine in microbiology and allied sciences. Systematic biases to this approach based on the demonstrable variability of ribosomal operon copy number per genome were recognized early. The more recent realization that polyploidy is probably the norm, rather than the exception, among microbes from all domains of life, points to an even larger source bias. RESULTS:We found that the number of 16S or 18S RNA genes per cell, a combined result of the number of RNA gene loci per genome and ploidy level, follows an allometric power law of cell volume with an exponent of 2/3 across 6 orders of magnitude in small subunit copy number per cell and 9 orders of magnitude in cell size. This stands in contrast to cell DNA content, which follows a power law with an exponent of ¾. CONCLUSION:In practical terms, that relationship allows for a single, simple correction for variations in both copy number per genome and ploidy level in ribosomal gene analyses of taxa-specific abundance. In biological terms, it points to the uniqueness of ribosomal gene content among microbial properties that scale with size. Video Abstract.
10.1186/s40168-021-01111-z
The transcriptome of the rumen ciliate Entodinium caudatum reveals some of its metabolic features.
Wang Lingling,Abu-Doleh Anas,Plank Johanna,Catalyurek Umit V,Firkins Jeffrey L,Yu Zhongtang
BMC genomics
BACKGROUND:Rumen ciliates play important roles in rumen function by digesting and fermenting feed and shaping the rumen microbiome. However, they remain poorly understood due to the lack of definitive direct evidence without influence by prokaryotes (including symbionts) in co-cultures or the rumen. In this study, we used RNA-Seq to characterize the transcriptome of Entodinium caudatum, the most predominant and representative rumen ciliate species. RESULTS:Of a large number of transcripts, > 12,000 were annotated to the curated genes in the NR, UniProt, and GO databases. Numerous CAZymes (including lysozyme and chitinase) and peptidases were represented in the transcriptome. This study revealed the ability of E. caudatum to depolymerize starch, hemicellulose, pectin, and the polysaccharides of the bacterial and fungal cell wall, and to degrade proteins. Many signaling pathways, including the ones that have been shown to function in E. caudatum, were represented by many transcripts. The transcriptome also revealed the expression of the genes involved in symbiosis, detoxification of reactive oxygen species, and the electron-transport chain. Overall, the transcriptomic evidence is consistent with some of the previous premises about E. caudatum. However, the identification of specific genes, such as those encoding lysozyme, peptidases, and other enzymes unique to rumen ciliates might be targeted to develop specific and effective inhibitors to improve nitrogen utilization efficiency by controlling the activity and growth of rumen ciliates. The transcriptomic data will also help the assembly and annotation in future genomic sequencing of E. caudatum. CONCLUSION:As the first transcriptome of a single species of rumen ciliates ever sequenced, it provides direct evidence for the substrate spectrum, fermentation pathways, ability to respond to various biotic and abiotic stimuli, and other physiological and ecological features of E. caudatum. The presence and expression of the genes involved in the lysis and degradation of microbial cells highlight the dependence of E. caudatum on engulfment of other rumen microbes for its survival and growth. These genes may be explored in future research to develop targeted control of Entodinium species in the rumen. The transcriptome can also facilitate future genomic studies of E. caudatum and other related rumen ciliates.
10.1186/s12864-019-6382-x
Alterations in Urobiome in Patients With Bladder Cancer and Implications for Clinical Outcome: A Single-Institution Study.
Zeng Jiarong,Zhang Guihao,Chen Chunxiao,Li Kun,Wen Yuehui,Zhao Jie,Wu Peng
Frontiers in cellular and infection microbiology
Numerous studies indicate that resident microbiome exists in urine of healthy individuals and dysbiosis of the urobiome (urinary microbiome) may be associated with pathological conditions. This study was performed to characterize the alterations in urobiome and explore its implications of clinical outcome in male patients with bladder cancer. 62 male patients with bladder cancer and 19 non-neoplastic controls were recruited. The follow-up study cohort included 40 patients who were diagnosed with non-muscle invasive bladder cancer (NMIBC) and underwent transurethral resection of bladder tumor (TURBT). Mid-stream urine samples were collected from all the participants the day before cystoscopy. DNA was extracted from urine pellet samples and processed for high throughput 16S rRNA amplicon sequencing of the V4 region using Illumina MiSeq. Sequencing reads were filtered using QIIME and clustered using UPARSE. We found bacterial richness indices (Observed Species index, Chao1 index, Ace index; all < 0.01) increased in cancer group when compared with non-neoplastic group, while there were no differences in Shannon and Simpson index between two groups. During a median follow-up time of 12 (5.25-25) months, 5/40 (12.5%)of the patients developed recurrence and no patient suffered from progression to muscle-invasive disease. Species diversity of the microbiome was significantly higher in the recurrence group compared with non-recurrence group in patients with NMIBC after TURBT. The LEfSe analysis demonstrated that 9 genera were increased (e.g., and ) in recurrence group. To our knowledge we report the relative comprehensive study to date of the male bladder cancer urinary microbiome and its relationship to pathogenesis and clinical outcomes. Given our preliminary data, additional studies evaluating the urine microbiome in relation to clinical outcomes are warranted to improve our understanding of tumor recurrence after TURBT.
10.3389/fcimb.2020.555508
Factors determining microbial colonization of liquid nitrogen storage tanks used for archiving biological samples.
Bajerski F,Bürger A,Glasmacher B,Keller E R J,Müller K,Mühldorfer K,Nagel M,Rüdel H,Müller T,Schenkel J,Overmann J
Applied microbiology and biotechnology
The availability of bioresources is a precondition for life science research, medical applications, and diagnostics, but requires a dedicated quality management to guarantee reliable and safe storage. Anecdotal reports of bacterial isolates and sample contamination indicate that organisms may persist in liquid nitrogen (LN) storage tanks. To evaluate the safety status of cryocollections, we systematically screened organisms in the LN phase and in ice layers covering inner surfaces of storage tanks maintained in different biobanking facilities. We applied a culture-independent approach combining cell detection by epifluorescence microscopy with the amplification of group-specific marker genes and high-throughput sequencing of bacterial ribosomal genes. In the LN phase, neither cells nor bacterial 16S rRNA gene copy numbers were detectable (detection limit, 10 cells per ml, 10 gene copies per ml). In several cases, small numbers of bacteria of up to 10 cells per ml and up to 10 gene copies per ml, as well as Mycoplasma, or fungi were detected in the ice phase formed underneath the lids or accumulated at the bottom. The bacteria most likely originated from the stored materials themselves (Elizabethingia, Janthibacterium), the technical environment (Pseudomonas, Acinetobacter, Methylobacterium), or the human microbiome (Bacteroides, Streptococcus, Staphylococcus). In single cases, bacteria, Mycoplasma, fungi, and human cells were detected in the debris at the bottom of the storage tanks. In conclusion, the limited microbial load of the ice phase and in the debris of storage tanks can be effectively avoided by minimizing ice formation and by employing hermetically sealed sample containers.
10.1007/s00253-019-10242-1
Does Day-to-Day Variability in Stool Consistency Link to the Fecal Microbiota Composition?
Frontiers in cellular and infection microbiology
Introduction:Stool consistency has been associated with fecal microbial composition. Stool consistency often varies over time, in subjects with and without gastrointestinal disorders, raising the question whether variability in the microbial composition should be considered in microbiota studies. We evaluated within-subject day-to-day variability in stool consistency and the association with the fecal microbiota in irritable bowel syndrome (IBS) and healthy subjects, over seven days. Methods:Twelve IBS patients and 12 healthy subjects collected fecal samples during seven consecutive days. Stool consistency was determined by the patient-reported Bristol Stool Scale (BSS) and fecal dry weight percentage. 16S rRNA V4 gene sequencing was performed and microbial richness (alpha diversity; Chao1 index, observed number of species, effective Shannon index) and microbial community structure (beta diversity; Bray-Curtis distance, generalized UniFrac, and taxa abundance on family level) were determined. Results:Linear mixed-effects models showed significant associations between stool consistency and microbial richness, but no time effect. This implies that between-subject but not within-subject variation in microbiota over time can partially be explained by variation in stool consistency. Redundancy analysis showed a significant association between stool consistency and microbial community structure, but additional linear mixed-effects models did not demonstrate a time effect on this. Conclusion:This study supports an association between stool consistency and fecal microbiota, but no effect of day-to-day fluctuations in stool consistency within seven days. This consolidates the importance of considering stool consistency in gut microbiota research, though confirms the validity of single fecal sampling to represent an individual's microbiota at a given time point. NCT00775060.
10.3389/fcimb.2021.639667
The effect of quercetin on genetic expression of the commensal gut microbes Bifidobacterium catenulatum, Enterococcus caccae and Ruminococcus gauvreauii.
Firrman Jenni,Liu LinShu,Zhang Liqing,Arango Argoty Gustavo,Wang Minqian,Tomasula Peggy,Kobori Masuko,Pontious Sherri,Xiao Weidong
Anaerobe
Quercetin is one of the most abundant polyphenols found in fruits and vegetables. The ability of the gut microbiota to metabolize quercetin has been previously documented; however, the effect that quercetin may have on commensal gut microbes remains unclear. In the present study, the effects of quercetin on the commensal gut microbes Ruminococcus gauvreauii, Bifidobacterium catenulatum and Enterococcus caccae were determined through evaluation of growth patterns and cell morphology, and analysis of genetic expression profiles between quercetin treated and non-treated groups using Single Molecule RNA sequencing via Helicos technology. Results of this study revealed that phenotypically, quercetin did not prevent growth of Ruminococcus gauvreauii, mildly suppressed growth of Bifidobacterium catenulatum, and moderately inhibited growth of Enterococcus caccae. Genetic analysis revealed that in response to quercetin, Ruminococcus gauvreauii down regulated genes responsible for protein folding, purine synthesis and metabolism. Bifidobacterium catenulatum increased expression of the ABC transport pathway and decreased metabolic pathways and cell wall synthesis. Enterococcus caccae upregulated genes responsible for energy production and metabolism, and downregulated pathways of stress response, translation and sugar transport. For the first time, the effect of quercetin on the growth and genetic expression of three different commensal gut bacteria was documented. The data provides insight into the interactions between genetic regulation and growth. This is also a unique demonstration of how RNA single molecule sequencing can be used to study the gut microbiota.
10.1016/j.anaerobe.2016.10.004
Short-Chain Fatty Acid-Producing Gut Microbiota Is Decreased in Parkinson's Disease but Not in Rapid-Eye-Movement Sleep Behavior Disorder.
mSystems
Gut dysbiosis has been repeatedly reported in Parkinson's disease (PD) but only once in idiopathic rapid-eye-movement sleep behavior disorder (iRBD) from Germany. Abnormal aggregation of α-synuclein fibrils causing PD possibly starts from the intestine, although this is still currently under debate. iRBD patients frequently develop PD. Early-stage gut dysbiosis that is causally associated with PD is thus expected to be observed in iRBD. We analyzed gut microbiota in 26 iRBD patients and 137 controls by 16S rRNA sequencing (16S rRNA-seq). Our iRBD data set was meta-analyzed with the German iRBD data set and was compared with gut microbiota in 223 PD patients. Unsupervised clustering of gut microbiota by LIGER, a topic model-based tool for single-cell RNA sequencing (RNA-seq) analysis, revealed four enterotypes in controls, iRBD, and PD. Short-chain fatty acid (SCFA)-producing bacteria were conserved in an enterotype observed in controls and iRBD, whereas they were less conserved in enterotypes observed in PD. Genus and family were consistently increased in both iRBD in two countries and PD in five countries. Short-chain fatty acid (SCFA)-producing bacteria were not significantly decreased in iRBD in two countries. In contrast, we previously reported that recognized or putative SCFA-producing genera , , and were consistently decreased in PD in five countries. In α-synucleinopathy, increase of mucin-layer-degrading genus is observed at the stage of iRBD, whereas decrease of SCFA-producing genera becomes obvious with development of PD. Twenty studies on gut microbiota in PD have been reported, whereas only one study has been reported on iRBD from Germany. iRBD has the highest likelihood ratio to develop PD. Our meta-analysis of iRBD in Japan and Germany revealed increased mucin-layer-degrading genus in iRBD. Genus may increase the intestinal permeability, as we previously observed in PD patients, and may make the intestinal neural plexus exposed to oxidative stress, which can lead to abnormal aggregation of prion-like α-synuclein fibrils in the intestine. In contrast to PD, SCFA-producing bacteria were not decreased in iRBD. As SCFA induces regulatory T (Treg) cells, a decrease of SCFA-producing bacteria may be a prerequisite for the development of PD. We propose that prebiotic and/or probiotic therapeutic strategies to increase the intestinal mucin layer and to increase intestinal SCFA potentially retard the development of iRBD and PD.
10.1128/mSystems.00797-20
Exposure to the gut microbiota drives distinct methylome and transcriptome changes in intestinal epithelial cells during postnatal development.
Genome medicine
BACKGROUND:The interplay of epigenetic processes and the intestinal microbiota may play an important role in intestinal development and homeostasis. Previous studies have established that the microbiota regulates a large proportion of the intestinal epithelial transcriptome in the adult host, but microbial effects on DNA methylation and gene expression during early postnatal development are still poorly understood. Here, we sought to investigate the microbial effects on DNA methylation and the transcriptome of intestinal epithelial cells (IECs) during postnatal development. METHODS:We collected IECs from the small intestine of each of five 1-, 4- and 12 to 16-week-old mice representing the infant, juvenile, and adult states, raised either in the presence or absence of a microbiota. The DNA methylation profile was determined using reduced representation bisulfite sequencing (RRBS) and the epithelial transcriptome by RNA sequencing using paired samples from each individual mouse to analyze the link between microbiota, gene expression, and DNA methylation. RESULTS:We found that microbiota-dependent and -independent processes act together to shape the postnatal development of the transcriptome and DNA methylation signatures of IECs. The bacterial effect on the transcriptome increased over time, whereas most microbiota-dependent DNA methylation differences were detected already early after birth. Microbiota-responsive transcripts could be attributed to stage-specific cellular programs during postnatal development and regulated gene sets involved primarily immune pathways and metabolic processes. Integrated analysis of the methylome and transcriptome data identified 126 genomic loci at which coupled differential DNA methylation and RNA transcription were associated with the presence of intestinal microbiota. We validated a subset of differentially expressed and methylated genes in an independent mouse cohort, indicating the existence of microbiota-dependent "functional" methylation sites which may impact on long-term gene expression signatures in IECs. CONCLUSIONS:Our study represents the first genome-wide analysis of microbiota-mediated effects on maturation of DNA methylation signatures and the transcriptional program of IECs after birth. It indicates that the gut microbiota dynamically modulates large portions of the epithelial transcriptome during postnatal development, but targets only a subset of microbially responsive genes through their DNA methylation status.
10.1186/s13073-018-0534-5
Characterization of Wnt signaling pathway under treatment of Lactobacillus acidophilus postbiotic in colorectal cancer using an integrated in silico and in vitro analysis.
Scientific reports
Colorectal cancer (CRC) is a prevalent and life-threatening cancer closely associated with the gut microbiota. Probiotics, as a vital microbiota group, interact with the host's colonic epithelia and immune cells by releasing a diverse range of metabolites named postbiotics. The present study examined the effects of postbiotics on CRC's prominent differentially expressed genes (DEGs) using in silico and in vitro analysis. Through single-cell RNA sequencing (scRNA-seq), we identified four DEGs in CRC, including secreted frizzled-related protein 1 (SFRP1), secreted frizzled-related protein 2 (SFRP2), secreted frizzled-related protein 4 (SFRP4), and matrix metallopeptidase 7 (MMP7). Enrichment analysis and ExpiMap, a novel deep learning-based method, determined that these DEGs are involved in the Wnt signaling pathway as a primary cascade in CRC. Also, spatial transcriptome analysis showed specific expression patterns of the SFRP2 gene in fibroblast cell type. The expression of selected DEGs was confirmed on CRC and normal adjacent tissues using Real-Time quantitative PCR (RT-qPCR). Moreover, we examined the effects of postbiotics extracted from Lactobacillus acidophilus (L. acidophilus) on the proliferation, migration, and cell cycle distribution of HT-29 cells using MTT, scratch, and flow cytometry assays. Our results showed that L. acidophilus postbiotics induce cell cycle arrest at G1 phase and also had anti-proliferative and anti-migration effects on HT-29 cells, while it did not exert anti-proliferative activity on control fibroblasts. Finally, we revealed that treating HT-29 cells with postbiotics can affect the expression of selected DEGs. We suggested that L. acidophilus postbiotics have therapeutic potential in CRC by modulating key genes in the Wnt pathway.
10.1038/s41598-023-50047-x
Irradiation at Ultra-High (FLASH) Dose Rates Reduces Acute Normal Tissue Toxicity in the Mouse Gastrointestinal System.
International journal of radiation oncology, biology, physics
PURPOSE:Preclinical studies using ultra-high dose rate (FLASH) irradiation have demonstrated reduced normal tissue toxicity compared with conventional dose rate (CONV) irradiation, although this finding is not universal. We investigated the effect of temporal pulse structure and average dose rate of FLASH compared with CONV irradiation on acute intestinal toxicity. MATERIALS AND METHODS:Whole abdomens of C3H mice were irradiated with a single fraction to various doses, using a 6 MeV electron linear accelerator with single pulse FLASH (dose rate = 2-6 × 10 Gy/s) or conventional (CONV; 0.25 Gy/s) irradiation. At 3.75 days postirradiation, fresh feces were collected for 16S rRNA sequencing to assess changes in the gut microbiota. A Swiss roll-based crypt assay was used to quantify acute damage to the intestinal crypts to determine how tissue toxicity was affected by the different temporal pulse structures of FLASH delivery. RESULTS:We found statistically significant improvements in crypt survival for mice irradiated with FLASH at doses between 7.5 and 12.5 Gy, with a dose modifying factor of 1.1 for FLASH (7.5 Gy, P < .01; 10 Gy, P < .05; 12.5 Gy, P < .01). This sparing effect was lost when the delivery time was increased, either by increasing the number of irradiation pulses or by prolonging the time between 2 successive pulses. Sparing was observed for average dose rates of ≥280 Gy/s. Fecal microbiome analysis showed that FLASH irradiation caused fewer changes to the microbiota than CONV irradiation. CONCLUSIONS:This study demonstrates that FLASH irradiation can spare mouse small intestinal crypts and reduce changes in gut microbiome composition compared with CONV irradiation. The higher the average dose rate, the larger the FLASH effect, which is also influenced by temporal pulse structure of the delivery.
10.1016/j.ijrobp.2021.08.004
Interleukin 1 beta and Matrix Metallopeptidase 3 Contribute to Development of Epidermal Growth Factor Receptor-Dependent Serrated Polyps in Mouse Cecum.
He Zhengxiang,Chen Lili,Chen Grace,Smaldini Paola,Bongers Gerold,Catalan-Dibene Jovani,Furtado Glaucia C,Lira Sergio A
Gastroenterology
BACKGROUND & AIMS:Transgenic mice (HBUS) that express the epidermal growth factor receptor (EGFR) ligand HBEGF (heparin-binding epidermal growth factor-like growth factor) and a constitutively active G protein-coupled receptor (US28) in intestinal epithelial cells develop serrated polyps in the cecum. Development of serrated polyps depends on the composition of the gut microbiota and is associated with bacterial invasion of the lamina propria, accompanied by induction of inflammation and up-regulation of interleukin 1 beta (IL1B) and matrix metalloproteinase (MMP) 3 in the cecum. We investigated the mechanisms by which these changes contribute to development of serrated polyps. METHODS:We performed studies with C57BL/6 (control) and HBUS mice. To accelerate polyp development, we increased the exposure of the bacteria to the lamina propria by injecting HBUS mice with diphtheria toxin, which binds transgenic HBEGF expressed by the epithelial cells and causes apoptosis. Mice were given injections of IL1B-neutralizing antibody and the MMP inhibitor N-isobutyl-N-(4-methoxyphenylsulfonyl)glycyl hydroxamic acid. Intestinal tissues were collected from mice and analyzed by histology, reverse-transcription polymerase chain reaction, enzyme-linked immunosorbent assay, immunofluorescence, and flow cytometry. We examined fibroblast subsets in polyps using single-cell RNA sequencing. RESULTS:Administration of diphtheria toxin to HBUS mice accelerated development of serrated polyps (95% of treated mice developed polyps before 100 days of age, compared with 53% given vehicle). IL1B stimulated subsets of platelet-derived growth factor receptor alpha (PDGRFA) fibroblasts isolated from cecum, resulting in increased expression of MMP3. Neutralizing antibodies against IL1B or administration of the MMP inhibitor reduced the number of serrated polyps that formed in the HBUS mice. Single-cell RNA sequencing analysis showed subsets of fibroblasts in serrated polyps that express genes that regulate matrix fibroblasts and inflammation. CONCLUSIONS:In studies of mice, we found that barrier breakdown and expression of inflammatory factors contribute to development of serrated polyps. Subsets of cecal PDGFRA fibroblasts are activated by release of IL1B from myeloid cells during the early stages of serrated polyp development. MMP3 produced by PDGFRA fibroblasts is important for serrated polyp development. Our findings confirm the functions of previously identified serrated polyp-associated molecules and indicate roles for immune and stromal cells in serrated polyp development.
10.1053/j.gastro.2019.08.025
Episodic Aspiration with Oral Commensals Induces a MyD88-dependent, Pulmonary T-Helper Cell Type 17 Response that Mitigates Susceptibility to .
American journal of respiratory and critical care medicine
Cross-sectional human data suggest that enrichment of oral anaerobic bacteria in the lung is associated with an increased T-helper cell type 17 (Th17) inflammatory phenotype. In this study, we evaluated the microbial and host immune-response dynamics after aspiration with oral commensals using a preclinical mouse model. Aspiration with a mixture of human oral commensals (MOC; , , and ) was modeled in mice followed by variable time of killing. The genetic backgrounds of mice included wild-type, MyD88-knockout, and STAT3C backgrounds. 16S-rRNA gene sequencing characterized changes in microbiota. Flow cytometry, cytokine measurement via Luminex and RNA host-transcriptome sequencing was used to characterize the host immune phenotype. Although MOC aspiration correlated with lower-airway dysbiosis that resolved within 5 days, it induced an extended inflammatory response associated with IL-17-producing T cells lasting at least 14 days. MyD88 expression was required for the IL-17 response to MOC aspiration, but not for T-cell activation or IFN-γ expression. MOC aspiration before a respiratory challenge with led to a decrease in hosts' susceptibility to this pathogen. Thus, in otherwise healthy mice, a single aspiration event with oral commensals is rapidly cleared from the lower airways but induces a prolonged Th17 response that secondarily decreases susceptibility to . Translationally, these data implicate an immunoprotective role of episodic microaspiration of oral microbes in the regulation of the lung immune phenotype and mitigation of host susceptibility to infection with lower-airway pathogens.
10.1164/rccm.202005-1596OC
Irradiation-Induced Intestinal Damage Is Recovered by the Indigenous Gut Bacteria .
Sittipo Panida,Pham Huy Quang,Park Chang Eon,Kang Gi-Ung,Zhi Yong,Ji Hyun Jung,Jang Ayeung,Seo Ho Seong,Shin Jae-Ho,Lee Yun Kyung
Frontiers in cellular and infection microbiology
The intestinal tract is one of the most sensitive organs following irradiation. The protective effect of specific indigenous microbiota on irradiation-induced damage to intestinal epithelial cells has not been reported. Mice were irradiated with a single dose of 6 Gy of gamma rays. The intestinal damage was analyzed by histopathology. Intestinal stemness and differentiation were determined by intestinal organoid culture. Microbiota community was observed by high-throughput 16S rRNA gene sequencing and oligotyping analysis. We showed that distal small intestine was damaged by sublethal dose of gamma irradiation. Intestinal organoids derived from the irradiated mice showed defects in budding and mucin expression, suggesting the detrimental effect of irradiation on the intestinal stemness and differentiation. In addition, irradiation reduced intestinal immunoglobulin A level, concomitant with decreased microbiota diversity based on our high-throughput 16S rRNA gene sequencing data. Especially, the relative abundance of was reduced at early time point post-irradiation; however, it was recovered at late time point. Oligotyping analysis within the genus indicated that -related oligotype 1 (OT1) including might drive recovery after irradiation as it was associated with increased long-term numbers post-exposure. We showed that treatment with heat-killed rescued the budding-impaired organoids and induced sufficient differentiation in epithelial cells, and particularly mucin-producing cells, in intestinal organoids. This study provides the first evidence that the indigenous gut bacteria enhance intestinal epithelial function with respect to irradiation-induced intestinal damage by improving intestinal stem cell function and cell differentiation.
10.3389/fcimb.2020.00415
Keystone pathobionts associated with colorectal cancer promote oncogenic reprograming.
PloS one
Fusobacterium nucleatum (Fn) and enterotoxigenic Bacteroides fragilis (ETBF) are two pathobionts consistently enriched in the gut microbiomes of patients with colorectal cancer (CRC) compared to healthy counterparts and frequently observed for their direct association within tumors. Although several molecular mechanisms have been identified that directly link these organisms to features of CRC in specific cell types, their specific effects on the epithelium and local immune compartment are not well-understood. To fill this gap, we leveraged single-cell RNA sequencing (scRNA-seq) on wildtype mice and mouse model of CRC. We find that Fn and ETBF exacerbate cancer-like transcriptional phenotypes in transit-amplifying and mature enterocytes in a mouse model of CRC. We also observed increased T cells in the pathobiont-exposed mice, but these pathobiont-specific differences observed in wildtype mice were abrogated in the mouse model of CRC. Although there are similarities in the responses provoked by each organism, we find pathobiont-specific effects in Myc-signaling and fatty acid metabolism. These findings support a role for Fn and ETBF in potentiating tumorigenesis via the induction of a cancer stem cell-like transit-amplifying and enterocyte population and the disruption of CTL cytotoxic function.
10.1371/journal.pone.0297897
Targeting the Cutaneous Microbiota in Atopic Dermatitis by Coal Tar via AHR-Dependent Induction of Antimicrobial Peptides.
Smits Jos P H,Ederveen Thomas H A,Rikken Gijs,van den Brink Noa J M,van Vlijmen-Willems Ivonne M J J,Boekhorst Jos,Kamsteeg Marijke,Schalkwijk Joost,van Hijum Sacha A F T,Zeeuwen Patrick L J M,van den Bogaard Ellen H
The Journal of investigative dermatology
Skin colonization by Staphylococcus aureus and its relative abundance is associated with atopic dermatitis (AD) disease severity and treatment response. Low levels of antimicrobial peptides in AD skin may be related to the microbial dysbiosis. Therapeutic targeting of the skin microbiome and antimicrobial peptide expression can, therefore, restore skin homeostasis and combat AD. In this study, we analyzed the cutaneous microbiome composition in 7 patients with AD and 10 healthy volunteers upon topical coal tar or vehicle treatment. We implemented and validated a Staphylococcus-specific single-locus sequence typing approach combined with classic 16S ribosomal RNA marker gene sequencing to study the bacterial composition. During coal tar treatment, Staphylococcus abundance decreased, and Propionibacterium abundance increased, suggesting a shift of the microbiota composition toward that of healthy controls. We, furthermore, identified a hitherto unknown therapeutic mode of action of coal tar, namely the induction of keratinocyte-derived antimicrobial peptides via activation of the aryl hydrocarbon receptor. Restoring antimicrobial peptide levels in AD skin via aryl hydrocarbon receptor-dependent transcription regulation can be beneficial by creating a (anti)microbial milieu that is less prone to infection and inflammation. This underscores the importance of coal tar in the therapeutic aryl hydrocarbon receptor armamentarium and highlights the aryl hydrocarbon receptor as a target for drug development.
10.1016/j.jid.2019.06.142
Distribution of P2Y and P2X purinergic receptor expression within the intestine.
American journal of physiology. Gastrointestinal and liver physiology
Nucleotides are potent extracellular signaling molecules during homeostasis, infection, and injury due to their ability to activate purinergic receptors. The nucleotide ATP activates P2X receptors (P2RXs), whereas the nucleotides ADP, ATP, UTP, and UDP-glucose selectively activate different P2Y receptors (P2RYs). Several studies have established crucial roles for P2 receptors during intestinal inflammatory and infectious diseases, yet the most extensive characterization of purinergic signaling has focused on immune cells and the central and enteric nervous systems. As epithelial cells serve as the first barrier against irritants and infection, we hypothesized that the gut epithelium may express multiple purinergic receptors that respond to extracellular nucleotide signals. Using the Human Protein Atlas and Gut Cell Survey, we queried single-cell RNA sequencing (RNAseq) data for the P2 purinergic receptors in the small and large intestines. In silico analysis reveals robust mRNA expression of P2RY1, P2RY2, P2RY11, and P2RX4 throughout the gastrointestinal tract. Human intestinal organoids exhibited a similar expression pattern with a prominent expression of P2RY1, P2RY2, and P2RX4, but this purinergic receptor repertoire was not conserved in T84, Caco2, and HT29 intestinal epithelial cell lines. Finally, P2YR1 and P2YR2 agonists elicited robust calcium responses in human intestinal organoids, but calcium responses were weaker or absent in the cell lines. These findings suggest that the gastrointestinal epithelia respond to extracellular purinergic signaling via P2RY1, P2RY2, P2RY11, and P2RX4 receptors and highlight the benefit of using intestinal organoids as a model of intestinal purinergic signaling. Several studies have revealed crucial roles for P2 receptors during inflammatory and infectious diseases, however, these have largely been demonstrated in immune cells and the enteric nervous system. Although epithelial cells serve as the first barrier against infection and inflammation, the role of purinergic signaling within the gastrointestinal tract remains largely unknown. This work expands our knowledge of purinergic receptor distribution and relative expression along the intestine.
10.1152/ajpgi.00108.2023
Neonatal gut colonization by is associated with higher childhood cytokine responses.
Rabe Hardis,Lundell Anna-Carin,Sjöberg Fei,Ljung Annika,Strömbeck Anna,Gio-Batta Monica,Maglio Cristina,Nordström Inger,Andersson Kerstin,Nookaew Intawat,Wold Agnes E,Adlerberth Ingegerd,Rudin Anna
Gut microbes
The gut microbiota is a major stimulus for the immune system, and late acquisition of bacteria and/or reduced complexity of the gut flora may delay adaptive immune maturation. However, it is unknown how the gut bacterial colonization pattern in human infants is related to T cell activation during early childhood. We followed 65 Swedish children in the FARMFLORA cohort, from birth up to 3 years of age. In fecal samples collected at several time points during the first year of life, the gut colonization pattern was investigated with the use of both 16S rRNA next generation sequencing (NGS) and culture-based techniques. This was related to production of IL-13, IL-5, IL-6, TNF, IL-1β and IFN-γ by PHA-stimulated fresh mononuclear cells and to proportions of CD4 T cells that expressed CD45RO at 36 months of age. Both NGS and culture-based techniques showed that colonization by at 1 week of age associated with higher production of IL-5, IL-6, IL-13, TNF and IL-1β at 36 months of age. By contrast, gut colonization by or in early infancy related inversely to induced IL-13, IL-5 and TNF at 3 years of age. Infants with elder siblings produced more cytokines and had a larger fraction of CD45RO T cells compared to single children. However, controlling for these factors did not abolish the effect of colonization by on immune maturation. Thus, gut colonization in early infancy affects T cell maturation and may be especially prone to induce infantile immune maturation.
10.1080/19490976.2020.1847628
Gut Microbiota Predict Pulmonary Infiltrates after Allogeneic Hematopoietic Cell Transplantation.
American journal of respiratory and critical care medicine
RATIONALE:Pulmonary complications (PCs) cause significant morbidity and mortality after allogeneic hematopoietic stem cell transplantation (HCT). Shifts in gut microbiota have been linked to HCT outcomes; however, their effect on PCs is unknown. OBJECTIVES:To investigate whether changes in gut microbiota are associated with PCs after HCT. METHODS:A single-center observational study was performed on 94 patients who underwent HCT from 2009 to 2011 and who were previously enrolled in a protocol for 16S ribosomal RNA sequencing of fecal microbiota. The primary endpoint, PC, was defined by new abnormal parenchymal findings on chest imaging in the setting of respiratory signs and/or symptoms. Outcomes were collected up to 40 months after transplant. Clinical and microbiota risk factors for PCs and mortality were evaluated using survival analysis. MEASUREMENTS AND MAIN RESULTS:One hundred twelve PCs occurred in 66 (70.2%) subjects. A high comorbidity index (hazard ratio [HR], 2.30; 95% confidence interval [CI], 1.30-4.00; P = 0.004), fluoroquinolones (HR, 2.29, 95% CI, 1.32-3.98; P = 0.003), low baseline diversity (HR, 2.63; 95% CI, 1.22-5.32; P = 0.015), and γ-proteobacteria domination of fecal microbiota (HR, 2.64; 95% CI, 1.10-5.65; P = 0.031), which included common respiratory pathogens, predicted PCs. In separate analyses, low baseline diversity was associated with PCs that occurred preengraftment (HR, 6.30; 95% CI, 1.42-31.80; P = 0.016), whereas γ-proteobacteria domination predicted PCs postengraftment (HR, 3.68; 95% CI, 1.49-8.21; P = 0.006) and overall mortality (HR, 3.52; 95% CI, 1.28-9.21; P = 0.016). Postengraftment PCs were also independent predictors of death (HR, 2.50; 95% CI, 1.25-5.22; P = 0.009). CONCLUSIONS:This is the first study to demonstrate prospective changes in gut microbiota associated with PCs after HCT. Postengraftment PCs and γ-proteobacteria domination were predictive of mortality. This suggests an adverse relationship between the graft and lung, which is perhaps mediated by bacterial composition in the gut. Further study is warranted.
10.1164/rccm.201507-1491OC
Different Engineering Designs Have Profoundly Different Impacts on the Microbiome and Nitrifying Bacterial Populations in Municipal Wastewater Treatment Bioreactors.
Kim Taegyu,Behrens Sebastian F,LaPara Timothy M
Applied and environmental microbiology
Numerous wastewater treatment processes are designed by engineers to achieve specific treatment goals. However, the impact of these different process designs on bacterial community composition is poorly understood. In this study, 24 different municipal wastewater treatment facilities (37 bioreactors) with various system designs were analyzed by sequencing of PCR-amplified 16S rRNA gene fragments. Although a core microbiome was observed in all of the bioreactors, the overall microbial community composition (analysis of molecular variance; 0.001) as well as that of a specific population of spp. (0.04) was significantly different between A/O (anaerobic/aerobic) systems and conventional activated sludge (CAS) systems. Community α-diversity (number of observed operational taxonomic units [OTUs] and Shannon diversity index) was also significantly higher in A/O systems than in CAS systems (Wilcoxon; 2 × 10). In addition, wastewater bioreactors with short mean cell residence time (<2 days) had very low community α-diversity and fewer nitrifying bacteria compared to those of other system designs. spp. (0.71%) and spp. (0.41%) were the most prominent nitrite-oxidizing bacteria (NOB); because these two genera were rarely prominent at the same time, these populations appeared to be functionally redundant. Weak evidence (AOB:NOB « 2; substantial quantities of sublineage II) was also obtained suggesting that complete ammonia oxidation by a single organism was occurring in system designs known to impose stringent nutrient limitation. This research demonstrates that design decisions made by wastewater treatment engineers significantly affect the microbiome of wastewater treatment bioreactors. Municipal wastewater treatment facilities rely on the application of numerous "activated sludge" process designs to achieve site-specific treatment goals. A plethora of microbiome studies on municipal wastewater treatment bioreactors have been performed previously; however, the role of process design on the municipal wastewater treatment microbiome is poorly understood. In fact, wastewater treatment engineers have attempted to control the microbiome of wastewater bioreactors for decades without sufficient empirical evidence to support their design paradigms. Our research demonstrates that engineering decisions with respect to system design have a significant impact on the microbiome of wastewater treatment bioreactors.
10.1128/AEM.01044-21
A Subset of Type I Conventional Dendritic Cells Controls Cutaneous Bacterial Infections through VEGFα-Mediated Recruitment of Neutrophils.
Immunity
Skin conventional dendritic cells (cDCs) exist as two distinct subsets, cDC1s and cDC2s, which maintain the balance of immunity to pathogens and tolerance to self and microbiota. Here, we examined the roles of dermal cDC1s and cDC2s during bacterial infection, notably Propionibacterium acnes (P. acnes). cDC1s, but not cDC2s, regulated the magnitude of the immune response to P. acnes in the murine dermis by controlling neutrophil recruitment to the inflamed site and survival and function therein. Single-cell mRNA sequencing revealed that this regulation relied on secretion of the cytokine vascular endothelial growth factor α (VEGF-α) by a minor subset of activated EpCAMCD59Ly-6D cDC1s. Neutrophil recruitment by dermal cDC1s was also observed during S. aureus, bacillus Calmette-Guérin (BCG), or E. coli infection, as well as in a model of bacterial insult in human skin. Thus, skin cDC1s are essential regulators of the innate response in cutaneous immunity and have roles beyond classical antigen presentation.
10.1016/j.immuni.2019.03.001
Stratification of the Gut Microbiota Composition Landscape across the Alzheimer's Disease Continuum in a Turkish Cohort.
mSystems
Alzheimer's disease (AD) is a heterogeneous disorder that spans a continuum with multiple phases, including preclinical, mild cognitive impairment, and dementia. Unlike for most other chronic diseases, human studies reporting on AD gut microbiota in the literature are very limited. With the scarcity of approved drugs for AD therapies, the rational and precise modulation of gut microbiota composition using diet and other tools is a promising approach to the management of AD. Such an approach could be personalized if an AD continuum can first be deconstructed into multiple strata based on specific microbiota features by using single or multiomics techniques. However, stratification of AD gut microbiota has not been systematically investigated before, leaving an important research gap for gut microbiota-based therapeutic approaches. Here, we analyze 16S rRNA amplicon sequencing of stool samples from 27 patients with mild cognitive impairment, 47 patients with AD, and 51 nondemented control subjects by using tools compatible with the compositional nature of microbiota. To stratify the AD gut microbiota community, we applied four machine learning techniques, including partitioning around the medoid clustering and fitting a probabilistic Dirichlet mixture model, the latent Dirichlet allocation model, and we performed topological data analysis for population-scale microbiome stratification based on the Mapper algorithm. These four distinct techniques all converge on and stratification of the gut microbiota across the AD continuum, while some methods provided fine-scale resolution in stratifying the community landscape. Finally, we demonstrate that the signature taxa and neuropsychometric parameters together robustly classify the groups. Our results provide a framework for precision nutrition approaches aiming to modulate the AD gut microbiota. The prevalence of AD worldwide is estimated to reach 131 million by 2050. Most disease-modifying treatments and drug trials have failed, due partly to the heterogeneous and complex nature of the disease. Recent studies demonstrated that gut dybiosis can influence normal brain function through the so-called "gut-brain axis." Modulation of the gut microbiota, therefore, has drawn strong interest in the clinic in the management of the disease. However, there is unmet need for microbiota-informed stratification of AD clinical cohorts for intervention studies aiming to modulate the gut microbiota. Our study fills in this gap and draws attention to the need for microbiota stratification as the first step for microbiota-based therapy. We demonstrate that while and clusters are the consensus partitions, the newly developed probabilistic methods can provide fine-scale resolution in partitioning the AD gut microbiome landscape.
10.1128/msystems.00004-22
Evaluating Prophylactic Effect of Bovine Colostrum on Intestinal Barrier Function in Zonulin Transgenic Mice: A Transcriptomic Study.
International journal of molecular sciences
The intestinal barrier comprises a single layer of epithelial cells tightly joined to form a physical barrier. Disruption or compromise of the intestinal barrier can lead to the inadvertent activation of immune cells, potentially causing an increased risk of chronic inflammation in various tissues. Recent research has suggested that specific dietary components may influence the function of the intestinal barrier, potentially offering a means to prevent or mitigate inflammatory disorders. However, the precise mechanism underlying these effects remains unclear. Bovine colostrum (BC), the first milk from cows after calving, is a natural source of nutrients with immunomodulatory, anti-inflammatory, and gut-barrier fortifying properties. This novel study sought to investigate the transcriptome in BC-treated Zonulin transgenic mice (Ztm), characterized by dysbiotic microbiota, intestinal hyperpermeability, and mild hyperactivity, applying RNA sequencing. Seventy-five tissue samples from the duodenum, colon, and brain of Ztm and wild-type (WT) mice were dissected, processed, and RNA sequenced. The expression profiles were analyzed and integrated to identify differentially expressed genes (DEGs) and differentially expressed transcripts (DETs). These were then further examined using bioinformatics tools. RNA-seq analysis identified 1298 DEGs and 20,952 DETs in the paired (Ztm treatment vs. Ztm control) and reference (WT controls) groups. Of these, 733 DEGs and 10,476 DETs were upregulated, while 565 DEGs and 6097 DETs were downregulated. BC-treated Ztm female mice showed significant upregulation of cingulin () and claudin 12 () duodenum and protein interactions, as well as molecular pathways and interactions pertaining to tight junctions, while BC-treated Ztm males displayed an upregulation of transcripts like occludin () and Rho/Rac guanine nucleotide exchange factor 2 () and cellular structures and interfaces, protein-protein interactions, and organization and response mechanisms. This comprehensive analysis reveals the influence of BC treatment on tight junctions (TJs) and Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kB) signaling pathway gene expressions. The present study is the first to analyze intestinal and brain samples from BC-treated Ztm mice applying high-throughput RNA sequencing. This study revealed molecular interaction in intestinal barrier function and identified hub genes and their functional pathways and biological processes in response to BC treatment in Ztm mice. Further research is needed to validate these findings and explore their implications for dietary interventions aimed at improving intestinal barrier integrity and function. The MGH Institutional Animal Care and Use Committee authorized the animal study (2013N000013).
10.3390/ijms241914730
Understanding the burden of interstitial lung disease post-COVID-19: the UK Interstitial Lung Disease-Long COVID Study (UKILD-Long COVID).
BMJ open respiratory research
INTRODUCTION:The COVID-19 pandemic has led to over 100 million cases worldwide. The UK has had over 4 million cases, 400 000 hospital admissions and 100 000 deaths. Many patients with COVID-19 suffer long-term symptoms, predominantly breathlessness and fatigue whether hospitalised or not. Early data suggest potentially severe long-term consequence of COVID-19 is development of long COVID-19-related interstitial lung disease (LC-ILD). METHODS AND ANALYSIS:The UK Interstitial Lung Disease Consortium (UKILD) will undertake longitudinal observational studies of patients with suspected ILD following COVID-19. The primary objective is to determine ILD prevalence at 12 months following infection and whether clinically severe infection correlates with severity of ILD. Secondary objectives will determine the clinical, genetic, epigenetic and biochemical factors that determine the trajectory of recovery or progression of ILD. Data will be obtained through linkage to the Post-Hospitalisation COVID platform study and community studies. Additional substudies will conduct deep phenotyping. The Xenon MRI investigation of Alveolar dysfunction Substudy will conduct longitudinal xenon alveolar gas transfer and proton perfusion MRI. The POST COVID-19 interstitial lung DiseasE substudy will conduct clinically indicated bronchoalveolar lavage with matched whole blood sampling. Assessments include exploratory single cell RNA and lung microbiomics analysis, gene expression and epigenetic assessment. ETHICS AND DISSEMINATION:All contributing studies have been granted appropriate ethical approvals. Results from this study will be disseminated through peer-reviewed journals. CONCLUSION:This study will ensure the extent and consequences of LC-ILD are established and enable strategies to mitigate progression of LC-ILD.
10.1136/bmjresp-2021-001049
HAMSAB diet ameliorates dysfunctional signaling in pancreatic islets in autoimmune diabetes.
iScience
An altered gut microbiota is associated with type 1 diabetes (T1D), affecting the production of short-chain fatty acids (SCFA) and glucose homeostasis. We previously demonstrated that enhancing serum acetate and butyrate using a dietary supplement (HAMSAB) improved glycemia in non-obese diabetic (NOD) mice and patients with established T1D. The effects of SCFA on immune-infiltrated islet cells remain to be clarified. Here, we performed single-cell RNA sequencing on islet cells from NOD mice fed an HAMSAB or control diet. HAMSAB induced a regulatory gene expression profile in pancreas-infiltrated immune cells. Moreover, HAMSAB maintained the expression of β-cell functional genes and decreased cellular stress. HAMSAB-fed mice showed preserved pancreatic endocrine cell identity, evaluated by decreased numbers of poly-hormonal cells. Finally, SCFA increased insulin levels in human β-like cells and improved transplantation outcome in NOD/SCID mice. Our findings support the use of metabolite-based diet as attractive approach to improve glucose control in T1D.
10.1016/j.isci.2023.108694
Microbiota regulates bone marrow mesenchymal stem cell lineage differentiation and immunomodulation.
Xiao E,He Linhai,Wu Qiong,Li Junxiang,He Yang,Zhao Lu,Chen Shuo,An Jingang,Liu Yansong,Chen Chider,Zhang Yi
Stem cell research & therapy
Health is dependent on the homeostasis of both inner and external microenvironments. The microbiota as the external microenvironment plays a critical role in regulation of several organ systems in mammals. However, it is unclear whether the microbiota regulates homeostasis of the skeletal system and bone marrow mesenchymal stem cells (BMMSCs). Here, using a well-established germ-free (GF) mouse model, we show that the microbiota significantly alters the stemness of BMMSCs in comparison to specific-pathogen-free (SPF)-derived BMMSCs. Colonization of GF mice with SPF microbiota (conventionalized (ConvD)) normalizes the proliferation and differentiation abilities of BMMSCs. On the other hand, normal microbiota is required to maintain immunomodulatory properties of BMMSCs through induction of activated T-cell apoptosis and cytokine secretion. GF-derived BMMSCs lose the capacity to ameliorate disease phenotypes in dextran sulfate sodium-induced experimental colitis mice. Mechanistically, single-cell RNA-sequencing analysis shows that ConvD BMMSCs have a similar gene expression pattern to SPF-derived BMMSCs, which have a distinct gene distribution from GF-derived BMMSCs.
10.1186/s13287-017-0670-7
The Spectrum and Regulatory Landscape of Intestinal Innate Lymphoid Cells Are Shaped by the Microbiome.
Gury-BenAri Meital,Thaiss Christoph A,Serafini Nicolas,Winter Deborah R,Giladi Amir,Lara-Astiaso David,Levy Maayan,Salame Tomer Meir,Weiner Assaf,David Eyal,Shapiro Hagit,Dori-Bachash Mally,Pevsner-Fischer Meirav,Lorenzo-Vivas Erika,Keren-Shaul Hadas,Paul Franziska,Harmelin Alon,Eberl Gérard,Itzkovitz Shalev,Tanay Amos,Di Santo James P,Elinav Eran,Amit Ido
Cell
Innate lymphoid cells (ILCs) are critical modulators of mucosal immunity, inflammation, and tissue homeostasis, but their full spectrum of cellular states and regulatory landscapes remains elusive. Here, we combine genome-wide RNA-seq, ChIP-seq, and ATAC-seq to compare the transcriptional and epigenetic identity of small intestinal ILCs, identifying thousands of distinct gene profiles and regulatory elements. Single-cell RNA-seq and flow and mass cytometry analyses reveal compartmentalization of cytokine expression and metabolic activity within the three classical ILC subtypes and highlight transcriptional states beyond the current canonical classification. In addition, using antibiotic intervention and germ-free mice, we characterize the effect of the microbiome on the ILC regulatory landscape and determine the response of ILCs to microbial colonization at the single-cell level. Together, our work characterizes the spectrum of transcriptional identities of small intestinal ILCs and describes how ILCs differentially integrate signals from the microbial microenvironment to generate phenotypic and functional plasticity.
10.1016/j.cell.2016.07.043
Modulation of the porcine intestinal microbiota in the course of Ascaris suum infection.
Parasites & vectors
BACKGROUND:The porcine roundworm Ascaris suum impairs feed conversion and weight gain, but its effects on intestinal microbiota remain largely unexplored. METHODS:Modulation of the intestinal microbiota was assessed in pigs that were infected once with 10,000 A. suum eggs and pigs that received a trickle infection (1000 eggs/day over 10 days), compared with a non-infected control group. Six pigs each were sacrificed per group at days 21, 35 and 49 post-infection (p.i.). Faecal samples taken weekly until slaughter and ingesta samples from different intestinal compartments were subjected to next-generation sequencing of the bacterial 16S rRNA gene. RESULTS:The results revealed marked differences between the single- and the trickle-infected group. Single infection caused a remarkable but transient decrease in microbial diversity in the caecum, which was not observed in the trickle-infected group. However, an increase in short-chain fatty acid-producing genera in the caecum on day 21 p.i., which shifted to a decrease on day 35 p.i., was common to both groups, possibly related to changes in excretory-secretory products following the parasite's final moult. Faecal microbial interaction networks were more similar between the single-infected and control group than the trickle-infected group. In addition, a lower degree of similarity over time indicated that A. suum trickle infection prevented microbiota stabilization. CONCLUSIONS:These different patterns may have important implications regarding the comparability of experimental infections with natural scenarios characterized by continuous exposure, and should be confirmed by further studies.
10.1186/s13071-022-05535-w
SSU-rRNA Gene Sequencing Survey of Benthic Microbial Eukaryotes from Guaymas Basin Hydrothermal Vent.
Pasulka Alexis,Hu Sarah K,Countway Peter D,Coyne Kathryn J,Cary Stephen C,Heidelberg Karla B,Caron David A
The Journal of eukaryotic microbiology
Microbial eukaryotes have important roles in marine food webs, but their diversity and activities in hydrothermal vent ecosystems are poorly characterized. In this study, we analyzed microbial eukaryotic communities associated with bacterial (Beggiatoa) mats in the 2,000 m deep-sea Guaymas Basin hydrothermal vent system using 18S rRNA gene high-throughput sequencing of the V4 region. We detected 6,954 distinct Operational Taxonomic Units (OTUs) across various mat systems. Of the sequences that aligned with known protistan phylotypes, most were affiliated with alveolates (especially dinoflagellates and ciliates) and cercozoans. OTU richness and community structure differed among sediment habitats (e.g. different mat types and cold sediments away from mats). Additionally, full-length 18S rRNA genes amplified and cloned from single cells revealed the identities of some of the most commonly encountered, active ciliates in this hydrothermal vent ecosystem. Observations and experiments were also conducted to demonstrate that ciliates were trophically active and ingesting fluorescent bacteria or Beggiatoa trichomes. Our work suggests that the active and diverse protistan community at the Guaymas Basin hydrothermal vent ecosystem likely consumes substantial amounts of bacterial biomass, and that the different habitats, often defined by distances of just a few 10s of cm, select for particular assemblages and levels of diversity.
10.1111/jeu.12711
A Single Dose of Nitrate Increases Resilience Against Acidification Derived From Sugar Fermentation by the Oral Microbiome.
Frontiers in cellular and infection microbiology
Tooth decay starts with enamel demineralization due to an acidic pH, which arises from sugar fermentation by acidogenic oral bacteria. Previous work has demonstrated that nitrate limits acidification when incubating complex oral communities with sugar for short periods (e.g., 1-5 h), driven by changes in the microbiota metabolism and/or composition. To test whether a single dose of nitrate can reduce acidification derived from sugar fermentation , 12 individuals received a nitrate-rich beetroot supplement, which was compared to a placebo in a blinded crossover setting. Sucrose-rinses were performed at baseline and 2 h after supplement or placebo intake, and the salivary pH, nitrate, nitrite, ammonium and lactate were measured. After nitrate supplement intake, the sucrose-induced salivary pH drop was attenuated when compared with the placebo (p < 0.05). Salivary nitrate negatively correlated with lactate production and positively with ΔpH after sucrose exposure (r= -0.508 and 0.436, respectively, both p < 0.05). Two additional pilot studies were performed to test the effect of sucrose rinses 1 h (n = 6) and 4 h (n = 6) after nitrate supplement intake. In the 4 h study, nitrate intake was compared with water intake and bacterial profiles were analysed using 16S rRNA gene Illumina sequencing and qPCR detection of . Sucrose rinses caused a significant pH drop (p < 0.05), except 1 h and 4 h after nitrate supplement intake. After 4 h of nitrate intake, there was less lactate produced compared to water intake (p < 0.05) and one genus; , increased in abundance. This small but significant increase was confirmed by qPCR (p < 0.05). The relative abundance of and negatively correlated with lactate production (r = -0.601 and -0.669, respectively) and positively correlated with pH following sucrose intake (r = 0.669, all p < 0.05). Together, these results show that nitrate can acutely limit acidification when sugars are fermented, which appears to result from lactate usage by nitrate-reducing bacteria. Future studies should assess the longitudinal impact of daily nitrate-rich vegetable or supplement intake on dental health.
10.3389/fcimb.2021.692883
Alterations of the Gut Microbiome Composition and Lipid Metabolic Profile in Radiation Enteritis.
Li Yiyi,Yan Hongmei,Zhang Yaowei,Li Qingping,Yu Lu,Li Qianyu,Liu Cuiting,Xie Yuwen,Chen Keli,Ye Feng,Wang Kai,Chen Longhua,Ding Yi
Frontiers in cellular and infection microbiology
Radiation enteritis (RE) is a common complication in cancer patients receiving radiotherapy. Although studies have shown the changes of this disease at clinical, pathological and other levels, the dynamic characteristics of local microbiome and metabolomics are hitherto unknown. We aimed to examine the multi-omics features of the gut microecosystem, determining the functional correlation between microbiome and lipid metabolites during RE activity. By delivering single high-dose irradiation, a RE mouse model was established. High-throughput 16S rDNA sequencing and global lipidomics analysis were performed to examine microbial and lipidomic profile changes in the gut microecosystem. Spearman correlation analysis was used to determine the functional correlation between bacteria and metabolites. Clinical samples were collected to validate the above observations. During RE activity, the intestinal inflammation of the mice was confirmed by typical signs, symptoms, imaging findings and pathological evidences. 16S datasets revealed that localized irradiation dramatically altered the gut microbial composition, resulting in a decrease ratio of to . Lipidomics analysis indicated the remarkable lipidomic profile changes in enteric epithelial barrier, determining that glycerophospholipids metabolism was correlated to RE progression with the highest relevance. Spearman correlation analysis identified that five bacteria-metabolite pairs showed the most significant functional correlation in RE, including -PC(36:0e), -DG(18:0/20:4), -PC(35:2), -PC(35:6), and -TG(18:2/18:2/20:4). These observations were partly confirmed in human specimens. Our study provided a comprehensive description of microbiota dysbiosis and lipid metabolic disorders in RE, suggesting strategies to change local microecosystem to relieve radiation injury and maintain homeostasis.
10.3389/fcimb.2020.541178
Anti-PD-L1 Antibody and/or 17β-Estradiol Treatment Induces Changes in the Gut Microbiome in MC38 Colon Tumor Model.
Cancer research and treatment
PURPOSE:17β-Estradiol (E2) supplementation suppresses MC38 tumor growth by downregulating the expression of programmed death-ligand 1 (PD-L1). This study aims to figure out the gut microbiota that respond to anti-PD-L1 and/or estrogen treatment in MC38 colon cancer model. Materials and Methods:A syngeneic colon tumor model was developed by injection of MC38 cells into C57BL/6 background male and female mice. Three days before MC38 cells injection, E2 was supplemented to male mice daily for 1 week. Male and female mice with MC38 tumors (50-100 mm3) were injected with anti-PD-L1 antibody. Fresh feces were collected 26 days after injection of MC38 cells and 16S rRNA metagenomics sequencing of DNA extracted from feces was used to assess gut microbial composition. RESULTS:At the taxonomic family level, Muribaculaceae was enriched only in the MC38 male control group. In male mice, linear discriminant analysis effect size analysis at the species level revealed that the four microorganisms were commonly regulated in single and combination treatment with anti-PD-L1 and/or E2; a decrease in PAC001068_g_uc and PAC001070_s (family Muribaculaceae) and increase in PAC001716_s and PAC001785_s (family Ruminococcaceae). Interestingly, in the anti-PD-L1 plus E2 group, a decrease in opportunistic pathogens (Enterobacteriaceae group) and an increase in commensal bacteria (Lactobacillus murinus group and Parabacteroides goldsteinii) were observed. Furthermore, the abundance of Parabacteroides goldsteinii was increased in both males and females in the anti-PD-L1 group. CONCLUSION:Our results suggest that gut microbial changes induced by the pretreatment of estrogen before anti-PD-L1 might contribute to treatment of MC38 colon cancer.
10.4143/crt.2022.1427
Direct detection of mRNA expression in microbial cells by fluorescence in situ hybridization using RNase H-assisted rolling circle amplification.
Takahashi Hirokazu,Horio Kyohei,Kato Setsu,Kobori Toshiro,Watanabe Kenshi,Aki Tsunehiro,Nakashimada Yutaka,Okamura Yoshiko
Scientific reports
Meta-analyses using next generation sequencing is a powerful strategy for studying microbiota; however, it cannot clarify the role of individual microbes within microbiota. To know which cell expresses what gene is important for elucidation of the individual cell's function in microbiota. In this report, we developed novel fluorescence in situ hybridization (FISH) procedure using RNase-H-assisted rolling circle amplification to visualize mRNA of interest in microbial cells without reverse transcription. Our results show that this method is applicable to both Gram-negative and Gram-positive microbes without any noise from DNA, and it is possible to visualize the target mRNA expression directly at the single-cell level. Therefore, our procedure, when combined with data of meta-analyses, can help to understand the role of individual microbes in the microbiota.
10.1038/s41598-020-65864-7
The Complete Protist Symbiont Communities of Coptotermes formosanus and Coptotermes gestroi: Morphological and Molecular Characterization of Five New Species.
Jasso-Selles Daniel E,De Martini Francesca,Velenovsky Joseph F,Mee Evan D,Montoya Samantha J,Hileman Jonathon T,Garcia Mikaela D,Su Nan-Yao,Chouvenc Thomas,Gile Gillian H
The Journal of eukaryotic microbiology
Coptotermes formosanus Shiraki and Coptotermes gestroi (Wasmann) (Blattoidea: Rhinotermitidae) are invasive subterranean termite pest species with a major global economic impact. However, the descriptions of the mutualistic protist communities harbored in their respective hindguts remain fragmentary. The C. formosanus hindgut has long been considered to harbor three protist species, Pseudotrichonympha grassii (Trichonymphida), Holomastigotoides hartmanni, and Cononympha (Spirotrichonympha) leidyi (Spirotrichonymphida), but molecular data have suggested that the diversity may be higher. Meanwhile, the C. gestroi community remains undescribed except for Pseudotrichonympha leei. To complete the characterization of these communities, hindguts of workers from both termite species were investigated using single-cell PCR, microscopy, cell counts, and 18S rRNA amplicon sequencing. The two hosts were found to harbor intriguingly parallel protist communities, each consisting of one Pseudotrichonympha species, two Holomastigotoides species, and two Cononympha species. All protist species were unique to their respective hosts, which last shared a common ancestor ~18 MYA. The relative abundances of protist species in each hindgut differed remarkably between cell count data and 18S rRNA profiles, calling for caution in interpreting species abundances from amplicon data. This study will enable future research in C. formosanus and C. gestroi hybrids, which provide a unique opportunity to study protist community inheritance, compatibility, and potential contribution to hybrid vigor.
10.1111/jeu.12815
BIPES, a cost-effective high-throughput method for assessing microbial diversity.
Zhou Hong-Wei,Li Dong-Fang,Tam Nora Fung-Yee,Jiang Xiao-Tao,Zhang Hai,Sheng Hua-Fang,Qin Jin,Liu Xiao,Zou Fei
The ISME journal
Pyrosequencing of 16S rRNA (16S) variable tags has become the most popular method for assessing microbial diversity, but the method remains costly for the evaluation of large numbers of environmental samples with high sequencing depths. We developed a barcoded Illumina paired-end (PE) sequencing (BIPES) method that sequences each 16S V6 tag from both ends on the Illumina HiSeq 2000, and the PE reads are then overlapped to obtain the V6 tag. The average accuracy of Illumina single-end (SE) reads was only 97.9%, which decreased from ∼99.9% at the start of the read to less than 85% at the end of the read; nevertheless, overlapping of the PE reads significantly increased the sequencing accuracy to 99.65% by verifying the 3' end of each SE in which the sequencing quality was degraded. After the removal of tags with two or more mismatches within the medial 40-70 bases of the reads and of tags with any primer errors, the overall base sequencing accuracy of the BIPES reads was further increased to 99.93%. The BIPES reads reflected the amounts of the various tags in the initial template, but long tags and high GC tags were underestimated. The BIPES method yields 20-50 times more 16S V6 tags than does pyrosequencing in a single-flow cell run, and each of the BIPES reads costs less than 1/40 of a pyrosequencing read. As a laborsaving and cost-effective method, BIPES can be routinely used to analyze the microbial ecology of both environmental and human microbiomes.
10.1038/ismej.2010.160
Alterations in the Gut Microbiome of Individuals With Tuberculosis of Different Disease States.
Frontiers in cellular and infection microbiology
Objective:There is evidence that the gut microbiota play a regulatory role in the occurrence and progression of tuberculosis. The purpose of the current study was to explore the alterations in gut microbiome under different tuberculosis disease stages in the Uyghur population, clarify the composition of microbial taxonomy, search for microbial biomarkers and provide innovative ideas for individual immune prevention and for control strategies. Design:A case-control study of Uyghur individuals was performed using 56 cases of pulmonary tuberculosis (PTB), 36 cases of latent tuberculosis infection (LTBI) and 50 healthy controls (HC), from which stool samples were collected for 16S rRNA gene sequencing. Results:The results showed that the alpha diversity indexes of the PTB group were lower than those of the other two groups (P <0.001), while only observed species were different between LTBI and HC (P <0.05). Beta diversity showed differences among the three groups (P = 0.001). At the genus level, the relative abundance of and increased, while and decreased in the PTB group, when compared with the other two groups, but the changes between the LTBI and HC groups were not significant. The classifier in the test set showed that the ability of the combined genus to distinguish between each two groups was 81.73, 87.26, and 86.88%, respectively, and the validation efficiency was higher than that of a single screened genus. Conclusion:The gut microbiota of PTB patients was significantly disordered compared with LTBI and HC, while the changes of LTBI and HC were not significant. In the future, gut microbiota could be used as a non-invasive biomarker to assess disease activity.
10.3389/fcimb.2022.836987
High-throughput identification and quantification of bacterial cells in the microbiota based on 16S rRNA sequencing with single-base accuracy using BarBIQ.
Nature protocols
Bacteria often function as a community, called the microbiota, consisting of many different bacterial species. The accurate identification of bacterial types and the simultaneous quantification of the cells of each bacterial type will advance our understanding of microbiota; however, this cannot be performed by conventional 16S rRNA sequencing methods as they only identify and quantify genes, which do not always represent cells. Here, we present a protocol for our developed method, barcoding bacteria for identification and quantification (BarBIQ). In BarBIQ, the 16S rRNA genes of single bacterial cells are amplified and attached to a unique cellular barcode in a droplet. Sequencing the tandemly linked cellular barcodes and 16S rRNA genes from many droplets (representing many cells with unique cellular barcodes) and clustering the sequences using the barcodes determines both the bacterial type for each cell based on 16S rRNA gene and the number of cells for each bacterial type based on the quantity of barcode types sequenced. Single-base accuracy for 16S rRNA sequencing is achieved via the barcodes and by avoiding chimera formation from 16S rRNA genes of different bacteria using droplets. For data processing, an easy-to-use bioinformatic pipeline is available ( https://github.com/Shiroguchi-Lab/BarBIQ_Pipeline_V1_2_0 ). This protocol allows researchers with experience in molecular biology but without bioinformatics experience to perform the process in ~2 weeks. We show the application of BarBIQ in mouse gut microbiota analysis as an example; however, this method is also applicable to other microbiota samples, including those from the mouth and skin, marine environments, soil and plants, as well as those from other terrestrial environments.
10.1038/s41596-023-00906-8
A single alcohol binge impacts on neutrophil function without changes in gut barrier function and gut microbiome composition in healthy volunteers.
Stadlbauer Vanessa,Horvath Angela,Komarova Irina,Schmerboeck Bianca,Feldbacher Nicole,Wurm Sonja,Klymiuk Ingeborg,Durdevic Marija,Rainer Florian,Blesl Andreas,Stryeck Sarah,Madl Tobias,Stiegler Philipp,Leber Bettina
PloS one
Alcohol binge drinking is a dangerous drinking habit, associated with neurological problems and inflammation. The impact of a single alcohol binge on innate immunity, gut barrier and gut microbiome was studied. In this cohort study 15 healthy volunteers received 2 ml vodka 40% v/v ethanol/kg body weight. Neutrophil function was studied by flow cytometry; markers of gut permeability and inflammation (lactulose/mannitol/sucrose test, zonulin, calprotectin, diamino-oxidase) were studied with NMR spectroscopy and enzyme-linked immunosorbent assay in urine, stool and serum respectively. Bacterial products in serum were quantified using different reporter cell lines. Gut microbiome composition was studied by 16S rDNA sequencing and bioinformatics analysis. After a single alcohol binge, neutrophils were transiently primed and the response to E.coli stimulation with reactive oxygen species (ROS) production was transiently increased, on the other hand the percentage of neutrophils that did not perform phagocytosis increased. No changes in gut permeability, inflammatory biomarker, bacterial translocation and microbiome composition could be detected up to 4 hours after a single alcohol binge or on the next day. A single alcohol binge in young, healthy volunteers transiently impacts on neutrophil function. Although the exact biological consequence of this finding is not clear yet, we believe that this strengthens the importance to avoid any alcohol binge drinking, even in young, otherwise healthy persons.
10.1371/journal.pone.0211703
Lactobacillus rhamnosus HN001 Ameliorates BEZ235-Induced Intestinal Dysbiosis and Prolongs Cardiac Transplant Survival.
Microbiology spectrum
Cardiac allograft rejection remains a major factor limiting long-term engraftment after transplantation. A novel phosphoinositide 3-kinase (PI3K)/mTOR dual inhibitor, BEZ235, prolonged cardiac allograft survival by effectively suppressing activation of the PI3K/serine/threonine kinase (AKT)/mTOR pathway. However, long-term usage of pharmacological immunosuppressant drugs can cause intestinal microbiota dysbiosis. We established mouse models of allogeneic heterotopic heart transplantation with different treatments. Fecal samples were collected and subjected to 16S rRNA sequencing and targeted fecal metabolomic analysis. Graft samples were taken for immune cell detection by flow cytometry. Inflammatory cytokines in serum were quantified by enzyme-linked immunosorbent assay (ELISA). Compared to single-target approaches (IC-87114 and rapamycin), BEZ235 more efficiently prolongs cardiac transplant survival. Interestingly, BEZ235 reduces the diversity and abundance of the intestinal microbiota community. We demonstrated that Lactobacillus rhamnosus HN001 rescues the intestinal microbiota imbalance induced by BEZ235. Our data confirmed that the combination of BEZ235 and Lactobacillus rhamnosus HN001 significantly prolongs cardiac transplant survival. A main metabolic product of Lactobacillus rhamnosus HN001, propionic acid (PA), enriches regulatory T (Treg) cells and serves as a potent immunomodulatory supplement to BEZ235. Our study provides a novel and efficient therapeutic strategy for transplant recipients.
10.1128/spectrum.00794-22
Differential CpG methylation at in the early establishment of beta cell heterogeneity.
bioRxiv : the preprint server for biology
Aims/hypothesis:Beta cells within the pancreatic islet represent a heterogenous population wherein individual sub-groups of cells make distinct contributions to the overall control of insulin secretion. These include a subpopulation of highly-connected 'hub' cells, important for the propagation of intercellular Ca waves. Functional subpopulations have also been demonstrated in human beta cells, with an altered subtype distribution apparent in type 2 diabetes. At present, the molecular mechanisms through which beta cell hierarchy is established are poorly understood. Changes at the level of the epigenome provide one such possibility which we explore here by focussing on the imprinted gene neuronatin (), which is required for normal insulin synthesis and secretion. Methods:Single cell RNA-seq datasets were examined using Seurat 4.0 and ClusterProfiler running under R. Transgenic mice expressing eGFP under the control of the enhancer/promoter regions were generated for fluorescence-activated cell (FAC) sorting of beta cells and downstream analysis of CpG methylation by bisulphite and RNA sequencing, respectively. Animals deleted for the de novo methyltransferase, DNMT3A from the pancreatic progenitor stage were used to explore control of promoter methylation. Proteomics was performed using affinity purification mass spectrometry and Ca dynamics explored by rapid confocal imaging of Cal-520 and Cal-590. Insulin secretion was measured using Homogeneous Time Resolved Fluorescence Imaging. Results: mRNA was differentially expressed in a discrete beta cell population in a developmental stage- and DNA methylation (DNMT3A)-dependent manner. Thus, pseudo-time analysis of embryonic data sets demonstrated the early establishment of -positive and negative subpopulations during embryogenesis. NNAT expression is also restricted to a subset of beta cells across the human islet that is maintained throughout adult life. NNAT beta cells also displayed a discrete transcriptome at adult stages, representing a sub-population specialised for insulin production, reminiscent of recently-described "β" cells and were diminished in mice. 'Hub' cells were less abundant in the NNAT population, consistent with epigenetic control of this functional specialization. Conclusions/interpretation:These findings demonstrate that differential DNA methylation at represents a novel means through which beta cell heterogeneity is established during development. We therefore hypothesise that changes in methylation at this locus may thus contribute to a loss of beta cell hierarchy and connectivity, potentially contributing to defective insulin secretion in some forms of diabetes.
10.1101/2023.02.04.527050
Inflammation status modulates the effect of host genetic variation on intestinal gene expression in inflammatory bowel disease.
Nature communications
More than 240 genetic risk loci have been associated with inflammatory bowel disease (IBD), but little is known about how they contribute to disease development in involved tissue. Here, we hypothesized that host genetic variation affects gene expression in an inflammation-dependent way, and investigated 299 snap-frozen intestinal biopsies from inflamed and non-inflamed mucosa from 171 IBD patients. RNA-sequencing was performed, and genotypes were determined using whole exome sequencing and genome wide genotyping. In total, 28,746 genes and 6,894,979 SNPs were included. Linear mixed models identified 8,881 independent intestinal cis-expression quantitative trait loci (cis-eQTLs) (FDR < 0.05) and interaction analysis revealed 190 inflammation-dependent intestinal cis-eQTLs (FDR < 0.05), including known IBD-risk genes and genes encoding immune-cell receptors and antibodies. The inflammation-dependent cis-eQTL SNPs (eSNPs) mainly interact with prevalence of immune cell types. Inflammation-dependent intestinal cis-eQTLs reveal genetic susceptibility under inflammatory conditions that can help identify the cell types involved in and the pathways underlying inflammation, knowledge that may guide future drug development and profile patients for precision medicine in IBD.
10.1038/s41467-021-21458-z
Invasive Pathobionts Contribute to Colon Cancer Initiation by Counterbalancing Epithelial Antimicrobial Responses.
Yu Linda Chia-Hui,Wei Shu-Chen,Li Yi-Hsuan,Lin Po-Yu,Chang Xin-Yu,Weng Jui-Ping,Shue Yin-Wen,Lai Liang-Chuan,Wang Jin-Town,Jeng Yung-Ming,Ni Yen-Hsuan
Cellular and molecular gastroenterology and hepatology
BACKGROUND & AIMS:Microbiota dysbiosis and mucosa-associated bacteria are involved in colorectal cancer progression. We hypothesize that an interaction between virulent pathobionts and epithelial defense promotes tumorigenesis. METHODS:Chemical-induced CRC mouse model was treated with antibiotics at various phases. Colonic tissues and fecal samples were collected in a time-serial mode and analyzed by gene microarray and 16S rRNA sequencing. Intraepithelial bacteria were isolated using a gentamicin resistance assay, and challenged in epithelial cultures. RESULTS:Our study showed that antibiotic treatment at midphase but not early or late phase reduced mouse tumor burden, suggesting a time-specific host-microbe interplay. A unique antimicrobial transcriptome profile showing an inverse relationship between autophagy and oxidative stress genes was correlated with a transient surge in microbial diversity and virulence emergence in mouse stool during cancer initiation. Gavage with fimA/fimH/htrA-expressing invasive Escherichia coli isolated from colonocytes increased tumor burden in recipient mice, whereas inoculation of bacteria deleted of htrA or triple genes did not. The invasive E.coli suppressed epithelial autophagy activity through reduction of microtubule-associated protein 1 light-chain 3 transcripts and caused dual oxidase 2-dependent free radical overproduction and tumor cell hyperproliferation. A novel alternating spheroid culture model was developed for sequential bacterial challenge to address the long-term changes in host-microbe interaction for chronic tumor growth. Epithelial cells with single bacterial encounter showed a reduction in transcript levels of autophagy genes while those sequentially challenged with invasive E.coli showed heightened autophagy gene expression to eliminate intracellular microbes, implicating that bacteria-dependent cell hyperproliferation could be terminated at late phases. Finally, the presence of bacterial htrA and altered antimicrobial gene expression were observed in human colorectal cancer specimens. CONCLUSIONS:Invasive pathobionts contribute to cancer initiation during a key time frame by counterbalancing autophagy and oxidative stress in the colonic epithelium. Monitoring gut microbiota and antimicrobial patterns may help identify the window of opportunity for intervention with bacterium-targeted precision medicine.
10.1016/j.jcmgh.2021.08.007
The Immune Barrier of Porcine Uterine Mucosa Differs Dramatically at Proliferative and Secretory Phases and Could Be Positively Modulated by Colonizing Microbiota.
Han Deping,Sun Peng,Hu Yanxin,Wang Jing,Hua Guoying,Chen Jianfei,Shao Chuyun,Tian Fan,Darwish Hesham Y A,Tai Yurong,Yang Xue,Chang Jianyu,Ma Yunfei
Frontiers in immunology
Endometrial immune response is highly associated with the homeostatic balance of the uterus and embryo development; however, the underlying molecular regulatory mechanisms are not fully elucidated. Herein, the porcine endometrium showed significant variation in mucosal immunity in proliferative and secretory phases by single-cell RNA sequencing. The loose arrangement and high motility of the uterine epithelium in the proliferative phase gave opportunities for epithelial cells and dendritic cells to cross talk with colonizing microbial community, guiding lymphocyte migration into the mucosal and glandular epithelium. The migrating lymphocytes were primarily NK and CD8 T cells, which were robustly modulated by the chemokine signaling. In the secretory phase, the significantly strengthened mechanical mucosal barrier and increased immunoglobulin A alleviated the migration of lymphocytes into the epithelium when the neuro-modulation, mineral uptake, and amino acid metabolism were strongly upregulated. The noticeably increased intraepithelial lymphocytes were positively modulated by the bacteria in the uterine cavity. Our findings illustrated that significant mucosal immunity variation in the endometrium in the proliferative and secretory phases was closely related to intraepithelial lymphocyte migration, which could be modulated by the colonizing bacteria after cross talk with epithelial cells with higher expressions of chemokine.
10.3389/fimmu.2021.750808
The validation of the existence of the entero-mammary pathway and the assessment of the differences of the pathway between first and third parity sows.
Translational animal science
Forty sows (PIC Camborough 1050) from a single farm were randomly selected at 112 days of gestation to evaluate if gut bacteria transverse the blood system of the sow to deposit gut microbiota into the colostrum for piglet gut inoculation via the entero-mammary pathway. Fourteen first-parity gilts and 20 third-parity sows were used for the study. At the time of farrowing, colostrum, fecal samples, and blood samples were collected to evaluate the presence of bacteria in each sample. Colostrum and blood samples were processed via centrifugation to separate the immune cell fraction. Total DNA was extracted from fecal, colostrum, and white blood cell fractions. 16S ribosomal RNA gene amplicon sequencing was conducted at the Iowa State University DNA Facility (Ames, IA) to further characterize the bacterial and archaeal taxa present within each sample. Data were analyzed using Mothur and using R v4.0.3 (R Core Team, 2020). The experimental unit was the sow. Tables were generated to demonstrate the relative abundances of bacteria and archaea present in each type of sample and also identify organisms differentially abundant between sample types. were the most abundant phylum in colostrum and fecal samples and had the greatest abundance in blood comparative to other phyla. Further evaluation of the classification of bacteria present demonstrated that a few genera of bacteria are present in all three samples. was present in high relative abundance in colostrum and moderate abundance in the feces while also being present within the blood. Other genera present in all three sample types include and . In conclusion, the data suggest that there are bacteria present in all three locations of the sow at the time of farrowing and that first parity sows have different microbial populations than third parity sows.
10.1093/tas/txac047
Decreased Intestinal Microbiome Diversity in Pediatric Sepsis: A Conceptual Framework for Intestinal Dysbiosis to Influence Immunometabolic Function.
Weiss Scott L,Bittinger Kyle,Lee Jung-Jin,Friedman Elliot S,Mattei Lisa M,Graham Kathryn,Zhang Donglan,Bush Jeny,Balamuth Fran,McGowan Francis X,Bushman Frederic D,Baldassano Robert N,Wu Gary D,Wallace Douglas C,Collman Ronald G
Critical care explorations
Objectives:The intestinal microbiome can modulate immune function through production of microbial-derived short-chain fatty acids. We explored whether intestinal dysbiosis in children with sepsis leads to changes in microbial-derived short-chain fatty acids in plasma and stool that are associated with immunometabolic dysfunction in peripheral blood mononuclear cells. Design:Prospective observational pilot study. Setting:Single academic PICU. Patients:Forty-three children with sepsis/septic shock and 44 healthy controls. Measurements and Main Results:Stool and plasma samples were serially collected for sepsis patients; stool was collected once for controls. The intestinal microbiome was assessed using 16S ribosomal RNA sequencing and alpha- and beta-diversity were determined. We measured short-chain fatty acids using liquid chromatography, peripheral blood mononuclear cell mitochondrial respiration using high-resolution respirometry, and immune function using ex vivo lipopolysaccharide-stimulated whole blood tumor necrosis factor-α. Sepsis patients exhibited reduced microbial diversity compared with healthy controls, with lower alpha- and beta-diversity. Reduced microbial diversity among sepsis patients (mainly from lower abundance of commensal obligate anaerobes) was associated with increased acetic and propionic acid and decreased butyric, isobutyric, and caproic acid. Decreased levels of plasma butyric acid were further associated with lower peripheral blood mononuclear cell mitochondrial respiration, which in turn, was associated with lower lipopolysaccharide-stimulated tumor necrosis factor-α. However, neither intestinal dysbiosis nor specific patterns of short-chain fatty acids were associated with lipopolysaccharide-stimulated tumor necrosis factor-α. Conclusions:Intestinal dysbiosis was associated with altered short-chain fatty acid metabolites in children with sepsis, but these findings were not linked directly to mitochondrial or immunologic changes. More detailed mechanistic studies are needed to test the role of microbial-derived short-chain fatty acids in the progression of sepsis.
10.1097/CCE.0000000000000360
Comparison of rectal swab, glove tip, and participant-collected stool techniques for gut microbiome sampling.
BMC microbiology
BACKGROUND:Studies of the gut microbiome are becoming increasingly important. Such studies require stool collections that can be processed or frozen in a timely manner so as not to alter the microbial content. Due to the logistical difficulties of home-based stool collection, there has been a challenge in selecting the appropriate sample collection technique and comparing results from different microbiome studies. Thus, we compared stool collection and two alternative clinic-based fecal microbiome collection techniques, including a newer glove-based collection method. RESULTS:We prospectively enrolled 22 adult men from our prostate cancer screening cohort SABOR (San Antonio Biomarkers of Risk for prostate cancer) in San Antonio, TX, from 8/2018 to 4/2019. A rectal swab and glove tip sample were collected from each participant during a one-time visit to our clinics. A single stool sample was collected at the participant's home. DNA was isolated from the fecal material and 16 s rRNA sequencing of the V1-V2 and V3-V4 regions was performed. We found the gut microbiome to be similar in richness and evenness, noting no differences in alpha diversity among the collection methods. The stool collection method, which remains the gold-standard method for the gut microbiome, proved to have different community composition compared to swab and glove tip techniques (p< 0.001) as measured by Bray-Curtis and unifrac distances. There were no significant differences in between the swab and glove tip samples with regard to beta diversity (p> 0.05). Despite differences between home-based stool and office-based fecal collection methods, we noted that the distance metrics for the three methods cluster by participant indicating within-person similarities. Additionally, no taxa differed among the methods in a Linear Discriminant Analysis Effect Size (LEfSe) analysis comparing all-against-all sampling methods. CONCLUSION:The glove tip method provides similar gut microbiome results as rectal swab and stool microbiome collection techniques. The addition of a new office-based collection technique could help easy and practical implementation of gut microbiome research studies and clinical practice.
10.1186/s12866-020-02080-3
Neonatal Rhesus Macaques Have Distinct Immune Cell Transcriptional Profiles following HIV Envelope Immunization.
Cell reports
HIV-1-infected infants develop broadly neutralizing antibodies (bnAbs) more rapidly than adults, suggesting differences in the neonatal versus adult responses to the HIV-1 envelope (Env). Here, trimeric forms of HIV-1 Env immunogens elicit increased gp120- and gp41-specific antibodies more rapidly in neonatal macaques than adult macaques. Transcriptome analyses of neonatal versus adult immune cells after Env vaccination reveal that neonatal macaques have higher levels of the apoptosis regulator BCL2 in T cells and lower levels of the immunosuppressive interleukin-10 (IL-10) receptor alpha (IL10RA) mRNA transcripts in T cells, B cells, natural killer (NK) cells, and monocytes. In addition, immunized neonatal macaques exhibit increased frequencies of activated blood T follicular helper-like (Tfh) cells compared to adults. Thus, neonatal macaques have transcriptome signatures of decreased immunosuppression and apoptosis compared with adult macaques, providing an immune landscape conducive to early-life immunization prior to sexual debut.
10.1016/j.celrep.2019.12.091
How to Verify Non-Presence-The Challenge of Axenic Algae Cultivation.
Cells
Many phycological applications require the growth and maintenance of pure algae cultures. In some research areas, such as biochemistry and physiology, axenic growth is essential to avoid misinterpretations caused by contaminants. Nonetheless, axenicity-defined as the state of only a single strain being present, free of any other organism-needs to be verified. We compare the available methods to assess axenicity. We first purified unialgal cultures with an established series of axenicity treatments, and by including two additional treatment steps. The presumable axenic cultures were then tested for their axenic state by applying conventional tests on LB (lysogeny broth) agar-plates, 16S rRNA gene amplicon sequencing, flow-cytometry and epifluorescence microscopy. Only the plate tests indicated axenic conditions. We found a linear relationship between total cell counts of contaminants achieved by flow cytometry and epifluorescence microscopy, with flow cytometry counts being consistently higher. In addition, 16S rRNA gene amplicon sequencing demonstrated its superiority by not only being an efficient tool for axenicity testing, but also for identification of persistent contaminants. Although classic plate tests are still commonly used to verify axenicity, we found the LB-agar-plate technique to be inappropriate. Cultivation-independent methods are highly recommended to test for axenic conditions. A combination of flow-cytometry and 16S rRNA gene amplicon sequencing complement each other and will yield the most reliable result.
10.3390/cells11162594
Fungal networks shape dynamics of bacterial dispersal and community assembly in cheese rind microbiomes.
Zhang Yuanchen,Kastman Erik K,Guasto Jeffrey S,Wolfe Benjamin E
Nature communications
Most studies of bacterial motility have examined small-scale (micrometer-centimeter) cell dispersal in monocultures. However, bacteria live in multispecies communities, where interactions with other microbes may inhibit or facilitate dispersal. Here, we demonstrate that motile bacteria in cheese rind microbiomes use physical networks created by filamentous fungi for dispersal, and that these interactions can shape microbial community structure. Serratia proteamaculans and other motile cheese rind bacteria disperse on fungal networks by swimming in the liquid layers formed on fungal hyphae. RNA-sequencing, transposon mutagenesis, and comparative genomics identify potential genetic mechanisms, including flagella-mediated motility, that control bacterial dispersal on hyphae. By manipulating fungal networks in experimental communities, we demonstrate that fungal-mediated bacterial dispersal can shift cheese rind microbiome composition by promoting the growth of motile over non-motile community members. Our single-cell to whole-community systems approach highlights the interactive dynamics of bacterial motility in multispecies microbiomes.
10.1038/s41467-017-02522-z
The Variant c.461G>A (p.Trp154*) Is Associated With Differentially Expressed Genes and Nasopharyngeal Microbiota Shifts in Patients With Otitis Media.
Frontiers in cellular and infection microbiology
Otitis media (OM) is a leading cause of childhood hearing loss. Variants in , which encodes alpha-(1,2)-fucosyltransferase, were identified to increase susceptibility to OM, potentially through shifts in the middle ear (ME) or nasopharyngeal (NP) microbiotas as mediated by transcriptional changes. Greater knowledge of differences in relative abundance of otopathogens in carriers of pathogenic variants can help determine risk for OM in patients. In order to determine the downstream effects of variation, we examined gene expression in relation to carriage of a common pathogenic c.461G>A (p.Trp154*) variant using RNA-sequence data from saliva samples from 28 patients with OM. Differential gene expression was also examined in bulk mRNA and single-cell RNA-sequence data from wildtype mouse ME mucosa after inoculation with non-typeable (NTHi). In addition, microbiotas were profiled from ME and NP samples of 65 OM patients using 16S rRNA gene sequencing. In human carriers of the variant, and were downregulated while was upregulated. Post-infectious expression in the mouse ME recapitulated these transcriptional differences, with the exception of upregulation after NTHi-inoculation. In the NP, Candidate Division TM7 was associated with wildtype genotype (FDR-adj-=0.009). Overall, the c.461G>A variant was associated with transcriptional changes in processes related to response to infection and with increased load of potential otopathogens in the ME and decreased commensals in the NP. These findings provide increased understanding of how variants influence gene transcription and the mucosal microbiota, and thus contribute to the pathology of OM.
10.3389/fcimb.2021.798246
Quantifying and identifying the active and damaged subsets of indigenous microbial communities.
Maurice Corinne Ferrier,Turnbaugh Peter James
Methods in enzymology
Flow cytometry and fluorescent dyes represent valuable experimental tools for studying complex microbial communities, enabling the quantification and sorting of cells with distinct levels of activity or damage, and providing information that can be difficult to infer from metagenomic sequencing alone. Despite this potential, these single-cell methods have seldom been applied to the study of host-associated microbial communities. Here, we present our recently developed protocols utilizing four distinct fluorescent dyes that label cells based on nucleic acid content, respiratory activity, and membrane damage. These methods have been successfully applied to study the trillions of microorganisms inhabiting the human gastrointestinal tract (the gut microbiota), in addition to a collection of isolates from five common gut-associated bacterial phyla. By merging these protocols with fluorescence-activated cell sorting and downstream multiplex 16S rRNA gene sequencing, it is possible to rapidly assess the taxonomic composition of each physiological category. These methods provide an initial step toward a robust toolkit allowing a rapid, culture-independent, and comprehensive assessment of the physiology and metabolic activity of host-associated microbial communities.
10.1016/B978-0-12-407863-5.00005-8
Flow cytometry can reliably capture gut microbial composition in healthy adults as well as dysbiosis dynamics in patients with aggressive B-cell non-Hodgkin lymphoma.
Gut microbes
Modulation of commensal gut microbiota is increasingly recognized as a promising strategy to reduce mortality in patients with malignant diseases, but monitoring for dysbiosis is generally not routine clinical practice due to equipment, expertise and funding required for sequencing analysis. A low-threshold alternative is microbial diversity profiling by single-cell flow cytometry (FCM), which we compared to 16S rRNA sequencing in human fecal samples and employed to characterize longitudinal changes in the microbiome composition of patients with aggressive B-cell non-Hodgkin lymphoma undergoing chemoimmunotherapy. Diversity measures obtained from both methods were correlated and captured identical trends in microbial community structures, finding no difference in patients' pretreatment alpha or beta diversity compared to healthy controls and a significant and progressive loss of alpha diversity during chemoimmunotherapy. Our results highlight the potential of FCM-based microbiome profiling as a reliable and accessible diagnostic tool that can provide novel insights into cancer therapy-associated dysbiosis dynamics.
10.1080/19490976.2022.2081475
Impaired immune signaling and changes in the lung microbiome precede secondary bacterial pneumonia in COVID-19.
medRxiv : the preprint server for health sciences
Secondary bacterial infections, including ventilator-associated pneumonia (VAP), lead to worse clinical outcomes and increased mortality following viral respiratory infections including in patients with coronavirus disease 2019 (COVID-19). Using a combination of tracheal aspirate bulk and single-cell RNA sequencing we assessed lower respiratory tract immune responses and microbiome dynamics in 23 COVID-19 patients, 10 of whom developed VAP, and eight critically ill uninfected controls. At a median of three days (range: 2-4 days) before VAP onset we observed a transcriptional signature of bacterial infection. At a median of 15 days prior to VAP onset (range: 8-38 days), we observed a striking impairment in immune signaling in COVID-19 patients who developed VAP. Longitudinal metatranscriptomic analysis revealed disruption of lung microbiome community composition in patients with VAP, providing a connection between dysregulated immune signaling and outgrowth of opportunistic pathogens. These findings suggest that COVID-19 patients who develop VAP have impaired antibacterial immune defense detectable weeks before secondary infection onset.
10.1101/2021.03.23.21253487
Orthogonal outlier detection and dimension estimation for improved MDS embedding of biological datasets.
Frontiers in bioinformatics
Conventional dimensionality reduction methods like Multidimensional Scaling (MDS) are sensitive to the presence of orthogonal outliers, leading to significant defects in the embedding. We introduce a robust MDS method, called (Detection and Correction of Orthogonal outliers using MDS), based on the geometry and statistics of simplices formed by data points, that allows to detect orthogonal outliers and subsequently reduce dimensionality. We validate our methods using synthetic datasets, and further show how it can be applied to a variety of large real biological datasets, including cancer image cell data, human microbiome project data and single cell RNA sequencing data, to address the task of data cleaning and visualization.
10.3389/fbinf.2023.1211819
Systemic translocation of Staphylococcus drives autoantibody production in HIV disease.
Luo Zhenwu,Li Min,Wu Yongxia,Meng Zhefeng,Martin Lisa,Zhang Lumin,Ogunrinde Elizabeth,Zhou Zejun,Qin Shenghui,Wan Zhuang,Westerink Maria Anna Julia,Warth Stephanie,Liu Hui,Jin Ping,Stroncek David,Li Quan-Zhen,Wang Ena,Wu Xueling,Heath Sonya L,Li Zihai,Alekseyenko Alexander V,Jiang Wei
Microbiome
BACKGROUND:Increased autoreactive antibodies have been reported in HIV disease; however, the mechanism accounting for autoantibody induction in HIV remains unknown. RESULTS:Herein, we show that seasonal influenza vaccination induces autoantibody production (e.g., IgG anti-nuclear antibody (ANA) and anti-double-stranded DNA antibody (anti-dsDNA)) in some viral-suppressed antiretroviral therapy (ART)-treated HIV+ subjects, but not in healthy controls. These autoantibodies were not derived from antigen-specific B cells but from activated "bystander" B cells analyzed by single-cell assay and by study of purified polyclonal ANAs from plasma. To explore the mechanism of autoantibody generation in HIV+ subjects, plasma level of microbial products, gene expression profile of B cells, and B cell receptor (BCR) repertoires were analyzed. We found that autoantibody production was associated with increased plasma level of microbial translocation; the patients with high autoantibodies had skewed B cell repertoires and upregulation of genes related to innate immune activation in response to microbial translocation. By analyzing circulating microbial 16S rDNA in plasma, the relative abundance of Staphylococcus was found to be associated with autoantibody production in HIV+ subjects. Finally, we found that injection of heat-killed Staphylococcus aureus promoted germinal center B cell responses and autoantibody production in mice, consistent with the notion that autoantibody production in HIV+ patients is triggered by microbial products. CONCLUSIONS:Our results showed that translocation of Staphylococcus can promote B cell activation through enhancing germinal center response and induces autoantibody production. It uncovers a potential mechanism linking microbial translocation and autoimmunity in HIV+ disease and provides a strong rationale for targeting Staphylococcus to prevent autoantibody production.
10.1186/s40168-019-0646-1
Pyroptosis-Related Signature as Potential Biomarkers for Predicting Prognosis and Therapy Response in Colorectal Cancer Patients.
Frontiers in genetics
Abnormal mucosal inflammation is a critical risk factor for pathogenesis and progression of colorectal cancer (CRC). As a type of proinflammatory death, pyroptosis can recast a suitable microenvironment to promote tumor growth. However, the potential role of pyroptosis in CRC remains unclear. A total of 38 pyroptosis-related gene (PRG) expression profiles and clinical information were collected from multiple public datasets. Bioinformatics methods were used to analyze the clinical significance, functional status, immune infiltration, genomic alteration, and drug sensitivity in different subgroups. Whole-genome microarray analysis was performed to analyze the regulation of gut microbiota on the expression of PRGs. Two distinct molecular subtypes were identified and suggested that multilayer PRG alterations were associated with patient clinicopathological features, prognosis, and tumor microenvironment (TME) infiltrating characteristics. Furthermore, we obtained eight PRG signatures by applying differential expression analysis and univariate Cox and Lasso regression analyses. A risk prognosis model was constructed for predicting overall survival (OS) and recurrence-free survival (RFS) based on the PRG signature. There were significant differences in clinical characteristics, 22 immune cells, and immune functions between the high- and low-risk groups. In addition, the PRG signature was significantly associated with the microsatellite instability (MSI), tumor mutation burden (TMB), cancer stem cell (CSC) index, immunotherapeutic characteristics, and chemotherapeutic drug sensitivity. Moreover, the experiments had shown that () could affect the CASP6 expression, which was associated with the chemoresistance to 5-fluorouracil (5-Fu) in CRC. Our findings provided a foundation for future research targeting pyroptosis and a new insight into the prognosis and immune cell infiltration of CRC, and they suggested that might influence CRC progression through pyroptosis.
10.3389/fgene.2022.925338
GPR109A expressed on medullary thymic epithelial cells affects thymic Treg development.
European journal of immunology
Regulatory T cells (Treg) maintain immune homeostasis due to their anti-inflammatory functions. They can be generated either centrally in the thymus or in peripheral organs. Metabolites such as short-chain fatty acids produced by intestinal microbiota can induce peripheral Treg differentiation, by activating G-protein-coupled-receptors like GPR109A. In this study, we identified a novel role for GPR109A in thymic Treg development. We found that Gpr109a mice had increased Treg under basal conditions in multiple organs compared with WT mice. GPR109A was not expressed on T cells but on medullary thymic epithelial cells (mTECs), as revealed by single-cell RNA sequencing in both mice and humans and confirmed by flow cytometry in mice. mTECs isolated from Gpr109a mice had higher expression of autoimmune regulator (AIRE), the key regulator of Treg development, while the subset of mTECs that did not express Gpr109a in the WT displayed increased Aire expression and also enhanced signaling related to mTEC functionality. Increased thymic Treg in Gpr109a mice was associated with protection from experimental autoimmune encephalomyelitis, with ameliorated clinical signs and reduced inflammation. This work identifies a novel role for GPR109A and possibly the gut microbiota, on thymic Treg development via its regulation of mTECs.
10.1002/eji.202350521
POSTINJURY FECAL MICROBIOME TRANSPLANT DECREASES LESION SIZE AND NEUROINFLAMMATION IN TRAUMATIC BRAIN INJURY.
Shock (Augusta, Ga.)
ABSTRACT:Background: Traumatic brain injury (TBI) is an underrecognized public health threat. The constitutive activation of microglia after TBI has been linked to long-term neurocognitive deficits and the progression of neurodegenerative disease. Evolving evidence indicates a critical role for the gut-brain axis in this process. Specifically, TBI has been shown to induce the depletion of commensal gut bacteria. The resulting gut dysbiosis is associated with neuroinflammation and disease. Hypothesis: We hypothesized that fecal microbiota transplantation would attenuate microglial activation and improve neuropathology after TBI. Methods: C57Bl/6 mice were subjected to severe TBI (n = 10) or sham injury (n = 10) via an open-head controlled cortical impact. The mice underwent fecal microbiota transplantation (FMT) or vehicle alone via oral gavage once weekly for 4 weeks after injury. At 59 days after TBI, mice underwent three-dimensional, contrast-enhanced magnetic resonance imaging. Following imaging, mice were killed, brains harvested at 60 DPI, and CD45+ cells isolated via florescence-activated cell sorting. cDNA libraries were prepared using the 10x Genomics Chromium Single Cell 3' Reagent kit followed by sequencing on a HiSeq4000 instrument, and computational analysis was performed. Results: Fecal microbiota transplantation resulted in a >marked reduction of ventriculomegaly (P < 0.002) and preservation of white matter connectivity at 59 days after TBI (P < 0.0001). In addition, microglia from FMT-treated mice significantly reduced inflammatory gene expression and enriched pathways involving the heat-shock response compared with mice treated with vehicle alone. Conclusions: We hypothesized that restoring gut microbial community structure via FMT would attenuate microglial activation and reduce neuropathology after TBI. Our data demonstrated significant preservation of cortical volume and white matter connectivity after an injury compared with mice treated with vehicle alone. This preservation of neuroanatomy after TBI was associated with a marked reduction in inflammatory gene expression within the microglia of FMT-treated mice. Microglia from FMT-treated mice enriched pathways in the heat-shock response, which is known to play a neuroprotective role in TBI and other neurodegenerative disease processes.
10.1097/SHK.0000000000001979
Ecological and functional capabilities of an uncultured Kordia sp.
Royo-Llonch M,Sánchez P,González J M,Pedrós-Alió C,Acinas S G
Systematic and applied microbiology
Cultivable bacteria represent only a fraction of the diversity in microbial communities. However, the official procedures for classification and characterization of a novel prokaryotic species still rely on isolates. Nevertheless, due to single cell genomics, it is possible to retrieve genomes from environmental samples by sequencing them individually, and to assign specific genes to a specific taxon, regardless of their ability to grow in culture. In this study, a complete description was performed for uncultured Kordia sp. TARA_039_SRF, a proposed novel species within the genus Kordia, using culture-independent techniques. The type material was a high-quality draft genome (94.97% complete, 4.65% gene redundancy) co-assembled using ten nearly identical single amplified genomes (SAGs) from surface seawater in the North Indian Ocean during the Tara Oceans Expedition. The assembly process was optimized to obtain the best possible assembly metrics and a less fragmented genome. The closest relative of the species was Kordia periserrulae, which shared 97.56% similarity of the 16S rRNA gene, 75% orthologs and 89.13% average nucleotide identity. The functional potential of the proposed novel species included proteorhodopsin, the ability to incorporate nitrate, cytochrome oxidases with high affinity for oxygen, and CAZymes that were unique features within the genus. Its abundance at different depths and size fractions was also evaluated together with its functional annotation, revealing that its putative ecological niche could be particles of phytoplanktonic origin. It could putatively attach to these particles and consume them while sinking to the deeper and oxygen depleted layers of the North Indian Ocean.
10.1016/j.syapm.2019.126045
Ginsenoside Rg3 treats acute radiation proctitis through the TLR4/MyD88/NF-κB pathway and regulation of intestinal flora.
Frontiers in cellular and infection microbiology
Objectives:This study aimed to investigate the protective effect of ginsenoside Rg3 (GRg3) against acute radiation proctitis (ARP) in rats. Methods:Wistar rats were randomly divided into control, model, dexamethasone-positive, GRg3 low-dose, GRg3 medium-dose, and GRg3 high-dose groups. The ARP rat model was established by a single 22-Gy irradiation of 6 MV) X-rays. The distribution and function of intestinal flora were detected using 16S rRNA high-throughput sequencing, rectal tissue was observed by hematoxylin and eosin (H&E) staining, the expression of interleukin 1β (IL-1β) and IL-10 inflammatory factors was detected by ELISA, and mRNA and protein expression of toll-like receptor 4 (TLR4), myeloid differentiation primary response 88 (MyD88), and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) were detected by RT-qPCR and Western blotting, respectively. Results:GRg3 improved the symptoms of ARP in rats in a dose-dependent manner. The species distribution of intestinal flora in GRg3 rats was significantly different from that in ARP rats. These differences were more significant in the high-dose group, where the numbers of , , and other beneficial bacteria were significantly increased, whereas those of , , and other harmful bacteria were decreased. In addition, GRg3 was closely related to amino acid metabolism. After GRg3 treatment, the mRNA and protein expression of TLR4, MyD88, and NF-κB in rectal tissue was significantly down-regulated, and the level of downstream inflammatory factor IL-1β decreased, whereas that of IL-10 increased. Conclusion:Our study indicated GRg3 as a new compound for the treatment of ARP by inhibiting the TLR4/MyD88/NF-κB pathway, down-regulating the expression of proinflammatory factors, thus effectively regulating intestinal flora and reducing inflammatory reactions.
10.3389/fcimb.2022.1028576
Possible clinical outcomes using early enteral nutrition in individuals with allogeneic hematopoietic stem cell transplantation: A single-center retrospective study.
Iyama Satoshi,Tatsumi Hiroomi,Shiraishi Tsukasa,Yoshida Masahiro,Tatekoshi Ayumi,Endo Akihito,Ishige Taichiro,Shiwa Yuh,Ibata Soushi,Goto Akari,Nagashima Kana,Horiguchi Hiroto,Fujita Chisa,Ikeda Hiroshi,Takada Kohichi,Nobuoka Takayuki,Kamihara Yusuke,Kikuchi Shohei,Sato Tsutomu,Ohnishi Hirofumi,Yokota Shin-Ichi,Kobune Masayoshi
Nutrition (Burbank, Los Angeles County, Calif.)
OBJECTIVES:Intensive nutritional support during allogeneic hematopoietic stem cell transplantation (allo-HSCT) yields improved clinical outcomes. However, the clinical implications of early enteral nutrition (EN) in allo-HSCT remain unclear. This retrospective study was conducted to determine the significance of early EN in individuals who underwent allo-HSCT, and the association between early nutritional intervention and clinical outcomes, including the status of the intestinal microbiome. METHODS:Thirty-one participants received EN before conditioning. The intestinal microbiota was examined by meta 16S rRNA gene sequencing of fecal samples. RESULTS:The median body mass variation was only -0.35 kg on day 60. The probability of 2-y overall survival was 61.1%. The cumulative incidence of treatment-related mortality was 17.4%, and those of acute graft-versus-host disease were 32.3% (grades II-IV) and 3.2% (grades III-IV). Chronic graft-versus-host disease was observed in four participants. Dysbiosis of the intestines and acute graft-versus-host disease occurred simultaneously, and Enterococcus species were abundant. CONCLUSIONS:Our results suggest that early nutritional support can improve the outcomes for individuals who have undergone allo-HSCT and can maintain homeostasis of their intestinal microbiome. Future prospective clinical trials are required to elucidate the role of EN in allo-HSCT and the association between the intestinal microbiome and EN.
10.1016/j.nut.2020.111093
Personalized B cell response to the probiotic in healthy human subjects: a randomized trial.
Bornholdt Jette,Broholm Christa,Chen Yun,Rago Alfredo,Sloth Stine,Hendel Jakob,Melsæther Cathrine,Müller Christina V,Juul Nielsen Maria,Strickertsson Jesper,Engelholm Lars,Vitting-Seerup Kristoffer,Jensen Kim B,Baker Adam,Sandelin Albin
Gut microbes
The specific effects of administering live probiotics in the human gut are not well characterized. To this end, we investigated the immediate effect of GG (LGG) in the jejunum of 27 healthy volunteers 2 h after ingestion using a combination of global RNA sequencing of human biopsies and bacterial DNA sequencing in a multi-visit, randomized, cross-over design (ClinicalTrials.gov number NCT03140878). While LGG was detectable in jejunum after 2 h in treated subjects, the gene expression response vs. placebo was subtle if assessed across all subjects. However, clustering analysis revealed that one-third of subjects exhibited a strong and consistent LGG response involving hundreds of genes, where genes related to B cell activation were upregulated, consistent with prior results in mice. Immunohistochemistry and single cell-based deconvolution analyses showed that this B cell signature likely is due to activation and proliferation of existing B cells rather than B cell immigration to the tissue. Our results indicate that the LGG strain has an immediate effect in the human gut in a subpopulation of individuals. In extension, our data strongly suggest that studies on probiotic effects in humans require large cohorts and must take individual variation into account.
10.1080/19490976.2020.1854639
Approaches for integrating heterogeneous RNA-seq data reveal cross-talk between microbes and genes in asthmatic patients.
Genome biology
Sputum induction is a non-invasive method to evaluate the airway environment, particularly for asthma. RNA sequencing (RNA-seq) of sputum samples can be challenging to interpret due to the complex and heterogeneous mixtures of human cells and exogenous (microbial) material. In this study, we develop a pipeline that integrates dimensionality reduction and statistical modeling to grapple with the heterogeneity. LDA(Latent Dirichlet allocation)-link connects microbes to genes using reduced-dimensionality LDA topics. We validate our method with single-cell RNA-seq and microscopy and then apply it to the sputum of asthmatic patients to find known and novel relationships between microbes and genes.
10.1186/s13059-020-02033-z
Systems Biology Methods Applied to Blood and Tissue for a Comprehensive Analysis of Immune Response to Hepatitis B Vaccine in Adults.
Ben-Othman Rym,Cai Bing,Liu Aaron C,Varankovich Natallia,He Daniel,Blimkie Travis M,Lee Amy H,Gill Erin E,Novotny Mark,Aevermann Brian,Drissler Sibyl,Shannon Casey P,McCann Sarah,Marty Kim,Bjornson Gordean,Edgar Rachel D,Lin David Tse Shen,Gladish Nicole,Maclsaac Julia,Amenyogbe Nelly,Chan Queenie,Llibre Alba,Collin Joyce,Landais Elise,Le Khoa,Reiss Samantha M,Koff Wayne C,Havenar-Daughton Colin,Heran Manraj,Sangha Bippan,Walt David,Krajden Mel,Crotty Shane,Sok Devin,Briney Bryan,Burton Dennis R,Duffy Darragh,Foster Leonard J,Mohn William W,Kobor Michael S,Tebbutt Scott J,Brinkman Ryan R,Scheuermann Richard H,Hancock Robert E W,Kollmann Tobias R,Sadarangani Manish
Frontiers in immunology
Conventional vaccine design has been based on trial-and-error approaches, which have been generally successful. However, there have been some major failures in vaccine development and we still do not have highly effective licensed vaccines for tuberculosis, HIV, respiratory syncytial virus, and other major infections of global significance. Approaches at rational vaccine design have been limited by our understanding of the immune response to vaccination at the molecular level. Tools now exist to undertake in-depth analysis using systems biology approaches, but to be fully realized, studies are required in humans with intensive blood and tissue sampling. Methods that support this intensive sampling need to be developed and validated as feasible. To this end, we describe here a detailed approach that was applied in a study of 15 healthy adults, who were immunized with hepatitis B vaccine. Sampling included ~350 mL of blood, 12 microbiome samples, and lymph node fine needle aspirates obtained over a ~7-month period, enabling comprehensive analysis of the immune response at the molecular level, including single cell and tissue sample analysis. Samples were collected for analysis of immune phenotyping, whole blood and single cell gene expression, proteomics, lipidomics, epigenetics, whole blood response to key immune stimuli, cytokine responses, T cell responses, antibody repertoire analysis and the microbiome. Data integration was undertaken using different approaches-NetworkAnalyst and DIABLO. Our results demonstrate that such intensive sampling studies are feasible in healthy adults, and data integration tools exist to analyze the vast amount of data generated from a multi-omics systems biology approach. This will provide the basis for a better understanding of vaccine-induced immunity and accelerate future rational vaccine design.
10.3389/fimmu.2020.580373
Distinct Transcriptional Programs in Ascitic and Solid Cancer Cells Induce Different Responses to Chemotherapy in High-Grade Serous Ovarian Cancer.
Molecular cancer research : MCR
High-grade serous ovarian cancer (HGSOC) is responsible for the largest number of ovarian cancer deaths. The frequent therapy-resistant relapses necessitate a better understanding of mechanisms driving therapy resistance. Therefore, we mapped more than a hundred thousand cells of HGSOC patients in different phases of the disease, using single-cell RNA sequencing. Within patients, we compared chemonaive with chemotreated samples. As such, we were able to create a single-cell atlas of different HGSOC lesions and their treatment. This revealed a high intrapatient concordance between spatially distinct metastases. In addition, we found remarkable baseline differences in transcriptomics of ascitic and solid cancer cells, resulting in a different response to chemotherapy. Moreover, we discovered different robust subtypes of cancer-associated fibroblasts (CAF) in all patients. Besides inflammatory CAFs, vascular CAFs, and matrix CAFs, we identified a new CAF subtype that was characterized by high expression of STAR, TSPAN8, and ALDH1A1 and clearly enriched after chemotherapy. Together, tumor heterogeneity in both cancer and stromal cells contributes to therapy resistance in HGSOC and could form the basis of novel therapeutic strategies that differentiate between ascitic and solid disease. IMPLICATIONS:The newly characterized differences between ascitic and solid cancer cells before and after chemotherapy could inform novel treatment strategies for metastatic HGSOC.
10.1158/1541-7786.MCR-21-0565
Microbiota-mediated shaping of mouse spleen structure and immune function characterized by scRNA-seq and Stereo-seq.
Journal of genetics and genomics = Yi chuan xue bao
Gut microbes exhibit complex interactions with their hosts and shape an organism's immune system throughout its lifespan. As the largest secondary lymphoid organ, the spleen has a wide range of immunological functions. To explore the role of microbiota in regulating and shaping the spleen, we employ scRNA-seq and Stereo-seq technologies based on germ-free (GF) mice to detect differences in tissue size, anatomical structure, cell types, functions, and spatial molecular characteristics. We identify 18 cell types, 9 subtypes of T cells, and 7 subtypes of B cells. Gene differential expression analysis reveals that the absence of microorganisms results in alterations in erythropoiesis within the red pulp region and congenital immune deficiency in the white pulp region. Stereo-seq results demonstrate a clear hierarchy of immune cells in the spleen, including marginal zone (MZ) macrophages, MZ B cells, follicular B cells and T cells, distributed in a well-defined pattern from outside to inside. However, this hierarchical structure is disturbed in GF mice. Ccr7 and Cxcl13 chemokines are specifically expressed in the spatial locations of T cells and B cells, respectively. We speculate that the microbiota may mediate the structural composition or partitioning of spleen immune cells by modulating the expression levels of chemokines.
10.1016/j.jgg.2023.04.012
Bacterial variability in the mammalian gut captured by a single-cell synthetic oscillator.
Riglar David T,Richmond David L,Potvin-Trottier Laurent,Verdegaal Andrew A,Naydich Alexander D,Bakshi Somenath,Leoncini Emanuele,Lyon Lorena G,Paulsson Johan,Silver Pamela A
Nature communications
Synthetic gene oscillators have the potential to control timed functions and periodic gene expression in engineered cells. Such oscillators have been refined in bacteria in vitro, however, these systems have lacked the robustness and precision necessary for applications in complex in vivo environments, such as the mammalian gut. Here, we demonstrate the implementation of a synthetic oscillator capable of keeping robust time in the mouse gut over periods of days. The oscillations provide a marker of bacterial growth at a single-cell level enabling quantification of bacterial dynamics in response to inflammation and underlying variations in the gut microbiota. Our work directly detects increased bacterial growth heterogeneity during disease and differences between spatial niches in the gut, demonstrating the deployment of a precise engineered genetic oscillator in real-life settings.
10.1038/s41467-019-12638-z
Energy efficiency and biological interactions define the core microbiome of deep oligotrophic groundwater.
Nature communications
While oligotrophic deep groundwaters host active microbes attuned to the low-end of the bioenergetics spectrum, the ecological constraints on microbial niches in these ecosystems and their consequences for microbiome convergence are unknown. Here, we provide a genome-resolved, integrated omics analysis comparing archaeal and bacterial communities in disconnected fracture fluids of the Fennoscandian Shield in Europe. Leveraging a dataset that combines metagenomes, single cell genomes, and metatranscriptomes, we show that groundwaters flowing in similar lithologies offer fixed niches that are occupied by a common core microbiome. Functional expression analysis highlights that these deep groundwater ecosystems foster diverse, yet cooperative communities adapted to this setting. We suggest that these communities stimulate cooperation by expression of functions related to ecological traits, such as aggregate or biofilm formation, while alleviating the burden on microorganisms producing compounds or functions that provide a collective benefit by facilitating reciprocal promiscuous metabolic partnerships with other members of the community. We hypothesize that an episodic lifestyle enabled by reversible bacteriostatic functions ensures the subsistence of the oligotrophic deep groundwater microbiome.
10.1038/s41467-021-24549-z
Restoring periodontal tissue homoeostasis prevents cognitive decline by reducing the number of Serpina3n astrocytes in the hippocampus.
Innovation (Cambridge (Mass.))
Cognitive decline has been linked to periodontitis through an undetermined pathophysiological mechanism. This study aimed to explore the mechanism underlying periodontitis-related cognitive decline and identify therapeutic strategies for this condition. Using single-nucleus RNA sequencing we found that changes in astrocyte number, gene expression, and cell‒cell communication were associated with cognitive decline in mice with periodontitis. In addition, activation of the NOD-like receptor family pyrin domain containing 3 (NLRP3) inflammasome was observed to decrease the phagocytic capability of macrophages and reprogram macrophages to a more proinflammatory state in the gingiva, thus aggravating periodontitis. To further investigate this finding, lipid-based nanoparticles carrying NLRP3 siRNA (NP) were used to inhibit overactivation of the NLRP3 inflammasome in gingival macrophages, restoring the oral microbiome and reducing periodontal inflammation. Furthermore, gingival injection of NP reduced the number of Serpina3n astrocytes in the hippocampus and prevented cognitive decline. This study provides a functional basis for the mechanism by which the destruction of periodontal tissues can worsen cognitive decline and identifies nanoparticle-mediated restoration of gingival macrophage function as a novel treatment for periodontitis-related cognitive decline.
10.1016/j.xinn.2023.100547
Assembling the marine metagenome, one cell at a time.
Woyke Tanja,Xie Gary,Copeland Alex,González José M,Han Cliff,Kiss Hajnalka,Saw Jimmy H,Senin Pavel,Yang Chi,Chatterji Sourav,Cheng Jan-Fang,Eisen Jonathan A,Sieracki Michael E,Stepanauskas Ramunas
PloS one
The difficulty associated with the cultivation of most microorganisms and the complexity of natural microbial assemblages, such as marine plankton or human microbiome, hinder genome reconstruction of representative taxa using cultivation or metagenomic approaches. Here we used an alternative, single cell sequencing approach to obtain high-quality genome assemblies of two uncultured, numerically significant marine microorganisms. We employed fluorescence-activated cell sorting and multiple displacement amplification to obtain hundreds of micrograms of genomic DNA from individual, uncultured cells of two marine flavobacteria from the Gulf of Maine that were phylogenetically distant from existing cultured strains. Shotgun sequencing and genome finishing yielded 1.9 Mbp in 17 contigs and 1.5 Mbp in 21 contigs for the two flavobacteria, with estimated genome recoveries of about 91% and 78%, respectively. Only 0.24% of the assembling sequences were contaminants and were removed from further analysis using rigorous quality control. In contrast to all cultured strains of marine flavobacteria, the two single cell genomes were excellent Global Ocean Sampling (GOS) metagenome fragment recruiters, demonstrating their numerical significance in the ocean. The geographic distribution of GOS recruits along the Northwest Atlantic coast coincided with ocean surface currents. Metabolic reconstruction indicated diverse potential energy sources, including biopolymer degradation, proteorhodopsin photometabolism, and hydrogen oxidation. Compared to cultured relatives, the two uncultured flavobacteria have small genome sizes, few non-coding nucleotides, and few paralogous genes, suggesting adaptations to narrow ecological niches. These features may have contributed to the abundance of the two taxa in specific regions of the ocean, and may have hindered their cultivation. We demonstrate the power of single cell DNA sequencing to generate reference genomes of uncultured taxa from a complex microbial community of marine bacterioplankton. A combination of single cell genomics and metagenomics enabled us to analyze the genome content, metabolic adaptations, and biogeography of these taxa.
10.1371/journal.pone.0005299
Gut bacteria induce IgA expression in pituitary hormone-secreting cells during aging.
iScience
Pituitary hormone decline is a hallmark of aging. However, the precise gene regulation mechanism during pituitary aging is unclear. Here, we characterized the cell population alteration and global transcriptional change during pituitary aging through single-cell RNA sequencing (scRNA-seq). We found that mRNA-encoding components of protein translational machinery declined the most in the pituitary during aging. Remarkably, Immunoglobulin A (IgA) was found to be expressed in hormone-secreting cells, and the IgA expression level increased dramatically in aged pituitary. Moreover, the pituitary IgA expression was regulated by gut microbiota. The non-hematopoietic origin of the IgA+ cells in the pituitary was further confirmed through bone marrow transplantation. Somatotropes were identified as the most prominent IgA-producing cells through lineage tracing. Thus, pituitary hormone-secreting cells can generate IgA in an age-dependent manner, and such a process is influenced by gut bacteria.
10.1016/j.isci.2023.107747
Pretreatment gut microbiome predicts chemotherapy-related bloodstream infection.
Montassier Emmanuel,Al-Ghalith Gabriel A,Ward Tonya,Corvec Stephane,Gastinne Thomas,Potel Gilles,Moreau Phillipe,de la Cochetiere Marie France,Batard Eric,Knights Dan
Genome medicine
BACKGROUND:Bacteremia, or bloodstream infection (BSI), is a leading cause of death among patients with certain types of cancer. A previous study reported that intestinal domination, defined as occupation of at least 30 % of the microbiota by a single bacterial taxon, is associated with BSI in patients undergoing allo-HSCT. However, the impact of the intestinal microbiome before treatment initiation on the risk of subsequent BSI remains unclear. Our objective was to characterize the fecal microbiome collected before treatment to identify microbes that predict the risk of BSI. METHODS:We sampled 28 patients with non-Hodgkin lymphoma undergoing allogeneic hematopoietic stem cell transplantation (HSCT) prior to administration of chemotherapy and characterized 16S ribosomal RNA genes using high-throughput DNA sequencing. We quantified bacterial taxa and used techniques from machine learning to identify microbial biomarkers that predicted subsequent BSI. RESULTS:We found that patients who developed subsequent BSI exhibited decreased overall diversity and decreased abundance of taxa including Barnesiellaceae, Coriobacteriaceae, Faecalibacterium, Christensenella, Dehalobacterium, Desulfovibrio, and Sutterella. Using machine-learning methods, we developed a BSI risk index capable of predicting BSI incidence with a sensitivity of 90 % at a specificity of 90 % based only on the pretreatment fecal microbiome. CONCLUSIONS:These results suggest that the gut microbiota can identify high-risk patients before HSCT and that manipulation of the gut microbiota for prevention of BSI in high-risk patients may be a useful direction for future research. This approach may inspire the development of similar microbiome-based diagnostic and prognostic models in other diseases.
10.1186/s13073-016-0301-4
Commensal bacteria promote type I interferon signaling to maintain immune tolerance in mice.
The Journal of experimental medicine
Type I interferons (IFNs) exert a broad range of biological effects important in coordinating immune responses, which have classically been studied in the context of pathogen clearance. Yet, whether immunomodulatory bacteria operate through IFN pathways to support intestinal immune tolerance remains elusive. Here, we reveal that the commensal bacterium, Bacteroides fragilis, utilizes canonical antiviral pathways to modulate intestinal dendritic cells (DCs) and regulatory T cell (Treg) responses. Specifically, IFN signaling is required for commensal-induced tolerance as IFNAR1-deficient DCs display blunted IL-10 and IL-27 production in response to B. fragilis. We further establish that IFN-driven IL-27 in DCs is critical in shaping the ensuing Foxp3+ Treg via IL-27Rα signaling. Consistent with these findings, single-cell RNA sequencing of gut Tregs demonstrated that colonization with B. fragilis promotes a distinct IFN gene signature in Foxp3+ Tregs during intestinal inflammation. Altogether, our findings demonstrate a critical role of commensal-mediated immune tolerance via tonic type I IFN signaling.
10.1084/jem.20230063
Effects of Orally Administered Cannabidiol on Neuroinflammation and Intestinal Inflammation in the Attenuation of Experimental Autoimmune Encephalomyelitis.
Journal of neuroimmune pharmacology : the official journal of the Society on NeuroImmune Pharmacology
Cannabidiol (CBD) is a bioactive compound isolated from Cannabis plants that has garnered attention within the medical community due to its potent anti-inflammatory properties. To better understand how CBD limits excessive neuroinflammation we administered CBD via oral gavage (20 mg/kg) in a murine model of multiple sclerosis (MS) known as experimental autoimmune encephalomyelitis (EAE). Using single cell RNA sequencing (scRNA Seq) and array-based transcriptomics we were able to delineate how CBD limits excessive inflammation within the central nervous system (CNS) as well as within the intestinal lining in EAE. In-depth scRNA Seq analysis of CNS tissue demonstrated that CBD treatment resulted in a significant reduction in CXCL9, CXCL10 and IL-1β expression within the CNS, leading to inhibited infiltration of inflammatory macrophages. CBD inhibited IL-1β production independent of the classical cannabinoid receptors, CB1 and CB2. CBD treatment also led to induction of Myeloid-derived Suppressor Cells (MDSCs) both in the CNS and periphery. Interestingly, CBD treatment of EAE mice revealed significant suppression of inflammation in the gastrointestinal (GI) tract. The intestinal epithelial cells (IECs) of CBD treated mice demonstrated a transcriptional inhibition of a family of pyroptosis initiators that drive localized inflammation known as gasdermins (GSDMs). Further investigation into the GI tract via 16s sequencing of cecal and fecal contents demonstrated that oral administration of CBD resulted in no significant changes in the intestinal microbiota composition. These findings demonstrate the beneficial effect of CBD treatment on autoimmune neuroinflammation by ablating expression of pro-inflammatory chemoattractants, regulating inflammatory macrophage activity, promoting MDSC expansion, and limiting the systemic low-grade inflammation in the GI tract, culminating in the attenuation of EAE.
10.1007/s11481-021-10023-6
Effects of Consuming Fermented Fish (Surströmming) on the Fecal Microflora in Healthy Individuals.
Journal of medicinal food
, a Swedish fermented fish, loved by some and avoided by others, occurs in many reports on improved or cured gastrointestinal problems even by a single meal. We tested the hypothesis that the microbes of the fermented food might have a potency to modify the gut microbiome. Two groups of voluntary participants (11 male, 8 female; aged 20-80 years) were exposed to a single meal containing the fish. A 7-day dietary intervention was carried out comprising the fish as the main source of protein in a single adult. The microbiome was characterized using 16S rRNA and metagenomic sequencing. Individual community-level changes in the microbiome were compared, as well as the presence of bacteria associated with the fermented fish. We focused on Shannon alpha and UniFrac beta diversity. We did not detect any global changes in the gut microbiome in response to , nor were we able to recover and identify any members of , which were associated with and abundant in the ingested fish, in the stool samples of the participants. Our results suggest that consumption does not alter the microbiome of healthy individuals. However, beneficial effects on a diseased gut, impaired gut microbiome, or other effects in disease remain to be studied.
10.1089/jmf.2021.0195
Commensal microbiota divergently affect myeloid subsets in the mammalian central nervous system during homeostasis and disease.
The EMBO journal
The immune cells of the central nervous system (CNS) comprise parenchymal microglia and at the CNS border regions meningeal, perivascular, and choroid plexus macrophages (collectively called CNS-associated macrophages, CAMs). While previous work has shown that microglial properties depend on environmental signals from the commensal microbiota, the effects of microbiota on CAMs are unknown. By combining several microbiota manipulation approaches, genetic mouse models, and single-cell RNA-sequencing, we have characterized CNS myeloid cell composition and function. Under steady-state conditions, the transcriptional profiles and numbers of choroid plexus macrophages were found to be tightly regulated by complex microbiota. In contrast, perivascular and meningeal macrophages were affected to a lesser extent. An acute perturbation through viral infection evoked an attenuated immune response of all CAMs in germ-free mice. We further assessed CAMs in a more chronic pathological state in 5xFAD mice, a model for Alzheimer's disease, and found enhanced amyloid beta uptake exclusively by perivascular macrophages in germ-free 5xFAD mice. Our results aid the understanding of distinct microbiota-CNS macrophage interactions during homeostasis and disease, which could potentially be targeted therapeutically.
10.15252/embj.2021108605
Keystone pathobionts associated with colorectal cancer promote oncogenic reprograming.
bioRxiv : the preprint server for biology
(Fn) and enterotoxigenic (ETBF) are two pathobionts consistently enriched in the gut microbiomes of patients with colorectal cancer (CRC) compared to healthy counterparts and frequently observed for their direct association within tumors. Although several molecular mechanisms have been identified that directly link these organisms to features of CRC in specific cell types, their specific effects on the epithelium and local immune compartment are not well-understood. To fill this gap, we leveraged single-cell RNA sequencing (scRNA-seq) on wildtype mice and mouse model of CRC. We find that Fn and ETBF exacerbate cancer-like transcriptional phenotypes in transit-amplifying and mature enterocytes in a mouse model of CRC. We also observed increased T cells in the pathobiont-exposed mice, but these pathobiont-specific differences observed in wildtype mice were abrogated in the mouse model of CRC. Although there are similarities in the responses provoked by each organism, we find pathobiont-specific effects in Myc-signaling and fatty acid metabolism. These findings support a role for Fn and ETBF in potentiating tumorigenesis via the induction of a cancer stem cell-like transit-amplifying and enterocyte population and the disruption of CTL cytotoxic function.
10.1101/2023.04.03.535410
Translational activity is uncoupled from nucleic acid content in bacterial cells of the human gut microbiota.
Gut microbes
Changes in bacterial diversity in the human gut have been associated with many conditions, despite not always reflecting changes in bacterial activity. Methods linking bacterial identity to function are needed for improved understanding of how bacterial communities adapt and respond to their environment, including the gut. Here, we optimized bioorthogonal non-canonical amino acid tagging (BONCAT) for the gut microbiota and combined it with fluorescently activated cell sorting and sequencing (FACS-Seq) to identify the translationally active members of the community. We then used this novel technique to compare with other bulk community measurements of activity and viability: relative nucleic acid content and membrane damage. The translationally active bacteria represent about half of the gut microbiota, and are not distinct from the whole community. The high nucleic acid content bacteria also represent half of the gut microbiota, but are distinct from the whole community and correlate with the damaged subset. Perturbing the community with xenobiotics previously shown to alter bacterial activity but not diversity resulted in stronger changes in the distinct physiological fractions than in the whole community. BONCAT is a suitable method to probe the translationally active members of the gut microbiota, and combined with FACS-Seq, allows for their identification. The high nucleic acid content bacteria are not necessarily the protein-producing bacteria in the community; thus, further work is needed to understand the relationship between nucleic acid content and bacterial metabolism in the human gut. Considering physiologically distinct subsets of the gut microbiota may be more informative than whole-community profiling.
10.1080/19490976.2021.1903289
Obtaining genomes from uncultivated environmental microorganisms using FACS-based single-cell genomics.
Rinke Christian,Lee Janey,Nath Nandita,Goudeau Danielle,Thompson Brian,Poulton Nicole,Dmitrieff Elizabeth,Malmstrom Rex,Stepanauskas Ramunas,Woyke Tanja
Nature protocols
Single-cell genomics is a powerful tool for exploring the genetic makeup of environmental microorganisms, the vast majority of which are difficult, if not impossible, to cultivate with current approaches. Here we present a comprehensive protocol for obtaining genomes from uncultivated environmental microbes via high-throughput single-cell isolation by FACS. The protocol encompasses the preservation and pretreatment of differing environmental samples, followed by the physical separation, lysis, whole-genome amplification and 16S rRNA-based identification of individual bacterial and archaeal cells. The described procedure can be performed with standard molecular biology equipment and a FACS machine. It takes <12 h of bench time over a 4-d time period, and it generates up to 1 μg of genomic DNA from an individual microbial cell, which is suitable for downstream applications such as PCR amplification and shotgun sequencing. The completeness of the recovered genomes varies, with an average of ∼50%.
10.1038/nprot.2014.067
Impaired immune signaling and changes in the lung microbiome precede secondary bacterial pneumonia in COVID-19.
Research square
Secondary bacterial infections, including ventilator-associated pneumonia (VAP), lead to worse clinical outcomes and increased mortality following viral respiratory infections including in patients with coronavirus disease 2019 (COVID-19). Using a combination of tracheal aspirate bulk and single-cell RNA sequencing (scRNA-seq) we assessed lower respiratory tract immune responses and microbiome dynamics in 28 COVID-19 patients, 15 of whom developed VAP, and eight critically ill uninfected controls. Two days before VAP onset we observed a transcriptional signature of bacterial infection. Two weeks prior to VAP onset, following intubation, we observed a striking impairment in immune signaling in COVID-19 patients who developed VAP. Longitudinal metatranscriptomic analysis revealed disruption of lung microbiome community composition in patients with VAP, providing a connection between dysregulated immune signaling and outgrowth of opportunistic pathogens. These findings suggest that COVID-19 patients who develop VAP have impaired antibacterial immune defense detectable weeks before secondary infection onset.
10.21203/rs.3.rs-380803/v1
Characterizing the T Cell Repertoire in the Proximal Airway in Health and Disease.
The Laryngoscope
OBJECTIVES:Recent translational scientific efforts in subglottic stenosis (SGS) support a disease model where epithelial alterations facilitate microbiome displacement, dysregulated immune activation, and localized fibrosis. Given the observed immune cell infiltrate in SGS, we sought to test the hypothesis that SGS cases possessed a low diversity (highly clonal) adaptive immune response when compared with healthy controls. METHODS:Single cell RNA sequencing (scRNA-seq) of subglottic mucosal scar in iSGS (n = 24), iLTS (n = 8), and healthy controls (n = 7) was performed. T cell receptor (TCR) sequences were extracted, analyzed, and used to construct repertoire structure, compare diversity, interrogate overlap, and define antigenic targets using the Immunarch bioinformatics pipeline. RESULTS:The proximal airway mucosa in health and disease are equally diverse via Hill framework quantitation (iSGS vs. iLTS vs. Control, p > 0.05). Repertoires do not significantly overlap between individuals (Morisita <0.02). Among iSGS patients, clonality of the TCR repertoire is driven by CD8+ T cells, and iSGS patients possess numerous TCRs targeting viral and intercellular pathogens. High frequency clonotypes do not map to known targets in public datasets. CONCLUSION:SGS cases do not possess a lower diversity adaptive immune infiltrate when compared with healthy controls. Interestingly, the TCR repertoire in both health and disease contains a restricted number of high frequency clonotypes that do not significantly overlap between individuals. The target of the high frequency clonotypes in health and disease remain unresolved. LEVEL OF EVIDENCE:NA Laryngoscope, 134:1757-1764, 2024.
10.1002/lary.31088
Species-resolved sequencing of low-biomass or degraded microbiomes using 2bRAD-M.
Sun Zheng,Huang Shi,Zhu Pengfei,Tzehau Lam,Zhao Helen,Lv Jia,Zhang Rongchao,Zhou Lisha,Niu Qianya,Wang Xiuping,Zhang Meng,Jing Gongchao,Bao Zhenmin,Liu Jiquan,Wang Shi,Xu Jian
Genome biology
Microbiome samples with low microbial biomass or severe DNA degradation remain challenging for amplicon-based or whole-metagenome sequencing approaches. Here, we introduce 2bRAD-M, a highly reduced and cost-effective strategy which only sequences ~ 1% of metagenome and can simultaneously produce species-level bacterial, archaeal, and fungal profiles. 2bRAD-M can accurately generate species-level taxonomic profiles for otherwise hard-to-sequence samples with merely 1 pg of total DNA, high host DNA contamination, or severely fragmented DNA from degraded samples. Tests of 2bRAD-M on various stool, skin, environmental, and clinical FFPE samples suggest a successful reconstruction of comprehensive, high-resolution microbial profiles.
10.1186/s13059-021-02576-9
Nationality and body location alter human skin microbiome.
Wang Yijie,Yu Qiaoling,Zhou Rui,Feng Tianshu,Hilal Mian Gul,Li Huan
Applied microbiology and biotechnology
Skin microbiomes function directly in human health and are affected by various external and internal factors. However, few studies have showed the variation of human skin microbiota at multiple body sites in individuals of different national origin living in the same environment. Here, using 16S rRNA sequencing, we investigated the diversity and function of skin microbiomes in different body locations of Chinese and Pakistani individuals from a single college in China. Body location and nationality significantly affected community structures, while season and gender only impacted community member. Due to different lifestyles and likely genetic characteristics of the hosts, Proteobacteria was more abundant in Pakistanis than in Chinese individuals. There were significant differences in the Shannon diversity of skin microorganisms among different skin sites of Chinese individuals, but not in Pakistanis. PICRUSt prediction indicated that gene functions involved in carbohydrate metabolism, lipid metabolism, and xenobiotics biodegradation and metabolism were higher in bacteria collected from Pakistanis than those from Chinese individuals, but the amino acid metabolism of skin microorganisms in Chinese people was higher. The relative abundances of potential pathogenic bacteria also differed in different body locations, providing a foundation for studying skin-associated bacterial diseases. Through a meta-analysis of 233 human skin samples from eight elevational sites in western China, we found that skin microbial diversity first decreased and then increased with increasing altitude. Network analysis showed positive correlation between altitude and Lactobacillus, Chryseobacterium, or Acinetobacter. Our results uncover the variation of human skin microbiota allowing future explorations of potential significance for human health. KEY POINTS: • Body location and nationality affect skin microbiota diversity and function. • Proteobacteria was more abundant in Pakistanis than in Chinese. • Skin microbial diversity first decreased and then increased with elevated altitude.
10.1007/s00253-021-11387-8
Multimodal Dimension Reduction and Subtype Classification of Head and Neck Squamous Cell Tumors.
Frontiers in oncology
Traditional analysis of genomic data from bulk sequencing experiments seek to group and compare sample cohorts into biologically meaningful groups. To accomplish this task, large scale databases of patient-derived samples, like that of TCGA, have been established, giving the ability to interrogate multiple data modalities per tumor. We have developed a computational strategy employing multimodal integration paired with spectral clustering and modern dimension reduction techniques such as PHATE to provide a more robust method for cancer sub-type classification. Using this integrated approach, we have examined 514 Head and Neck Squamous Carcinoma (HNSC) tumor samples from TCGA across gene-expression, DNA-methylation, and microbiome data modalities. We show that these approaches, primarily developed for single-cell sequencing can be efficiently applied to bulk tumor sequencing data. Our multimodal analysis captures the dynamic heterogeneity, identifies new and refines subtypes of HNSC, and orders tumor samples along well-defined cellular trajectories. Collectively, these results showcase the inherent molecular complexity of tumors and offer insights into carcinogenesis and importance of targeted therapy. Computational techniques as highlighted in our study provide an organic and powerful approach to identify granular patterns in large and noisy datasets that may otherwise be overlooked.
10.3389/fonc.2022.892207
Impaired Exocrine Pancreatic Function Associates With Changes in Intestinal Microbiota Composition and Diversity.
Frost Fabian,Kacprowski Tim,Rühlemann Malte,Bülow Robin,Kühn Jens-Peter,Franke Andre,Heinsen Femke-Anouska,Pietzner Maik,Nauck Matthias,Völker Uwe,Völzke Henry,Aghdassi Ali A,Sendler Matthias,Mayerle Julia,Weiss Frank U,Homuth Georg,Lerch Markus M
Gastroenterology
BACKGROUND & AIMS:Changes in intestinal microbiome composition are associated with inflammatory, metabolic, and malignant disorders. We studied how exocrine pancreatic function affects intestinal microbiota. METHODS:We performed 16S ribosomal RNA gene sequencing analysis of stool samples from 1795 volunteers from the population-based Study of Health in Pomerania who had no history of pancreatic disease. We also measured fecal pancreatic elastase by enzyme-linked immunosorbent assay and performed quantitative imaging of secretin-stimulated pancreatic fluid secretion. Associations of exocrine pancreatic function with microbial diversity or individual genera were calculated by permutational analysis of variance or linear regression, respectively. RESULTS:Differences in pancreatic elastase levels associated with significantly (P < .0001) greater changes in microbiota diversity than with participant age, body mass index, sex, smoking, alcohol consumption, or dietary factors. Significant changes in the abundance of 30 taxa, such as an increase in Prevotella (q < .0001) and a decrease of Bacteroides (q < .0001), indicated a shift from a type-1 to a type-2 enterotype. Changes in pancreatic fluid secretion alone were also associated with changes in microbial diversity (P = .0002), although to a lesser degree. CONCLUSIONS:In an analysis of fecal samples from 1795 volunteers, pancreatic acinar cell, rather than duct cell, function is presently the single most significant host factor to be associated with changes in intestinal microbiota composition.
10.1053/j.gastro.2018.10.047
A Pilot Study To Establish an Model To Study Premature Intestinal Epithelium and Gut Microbiota Interactions.
Gibbons Justin,Yoo Ji Youn,Mutka Tina,Groer Maureen,Ho Thao T B
mSphere
Intestinal microbiota has emerged as an important player in the health and disease of preterm infants. The interactions between intestinal flora and epithelium can lead to local injury and systemic diseases. A suitable cell model is needed to enhance our understanding of these interactions. In this study, we exposed fetal epithelial cell cultures (FHs-74 int cells, human, ATCC CCL 241) to sterile fecal filtrates derived from stool collected from preterm infants at <2 and at 3 to 4 weeks of age. We measured the cytokine levels from the culture media after 4, 24, and 48 h of exposure to the fecal filtrates. We analyzed the 16S rRNA V4 gene data of the fecal samples and transcriptome sequencing (RNA-seq) data from the fetal epithelial cells after 48 h of exposure to the same fecal filtrates. The results showed correlations between inflammatory responses (both cytokine levels and gene expression) and the -to- ratio and between fecal bacterial genera and epithelial apoptosis-related genes. Our cell model can be further developed and applied to study how the epithelium responds to different microbial flora from preterm infants. Combining immature epithelial cells and preterm infant stool samples into one model allows us to investigate disease processes in preterm infants in a way that had not been previously reported. The gut bacterial flora influences the development of the immune system and long-term health outcomes in preterm infants. Studies of the mechanistic interactions between the gut bacteria and mucosal barrier are limited to clinical observations, animal models, and cell culture models for this vulnerable population. Most cell culture models of microbe-host interactions use single organisms or adult origin cell lines. Our study is innovative and significant in that we expose immature epithelial cells derived from fetal tissues to fecal filtrates from eight stool samples from four preterm infants to study the role of intestinal epithelial cells. In addition, we analyzed epithelial gene expression to examine multiple cellular processes simultaneously. This model can be developed into patient-derived two- or three-dimensional cell cultures exposed to their own fecal material to allow better prediction of patient physiological responses to support the growing field of precision medicine.
10.1128/mSphere.00806-21
Homeostatic interferon-lambda response to bacterial microbiota stimulates preemptive antiviral defense within discrete pockets of intestinal epithelium.
eLife
Interferon-lambda (IFN-λ) protects intestinal epithelial cells (IECs) from enteric viruses by inducing expression of antiviral IFN-stimulated genes (ISGs). Here, we find that bacterial microbiota stimulate a homeostatic ISG signature in the intestine of specific pathogen-free mice. This homeostatic ISG expression is restricted to IECs, depends on IEC-intrinsic expression of IFN-λ receptor (), and is associated with IFN-λ production by leukocytes. Strikingly, imaging of these homeostatic ISGs reveals localization to pockets of the epithelium and concentration in mature IECs. Correspondingly, a minority of mature IECs express these ISGs in public single-cell RNA sequencing datasets from mice and humans. Furthermore, we assessed the ability of orally administered bacterial components to restore localized ISGs in mice lacking bacterial microbiota. Lastly, we find that IECs lacking are hyper-susceptible to initiation of murine rotavirus infection. These observations indicate that bacterial microbiota stimulate ISGs in localized regions of the intestinal epithelium at homeostasis, thereby preemptively activating antiviral defenses in vulnerable IECs to improve host defense against enteric viruses.
10.7554/eLife.74072
Intestinal accumulation of microbiota-produced succinate caused by loss of microRNAs leads to diarrhea in weanling piglets.
Gut microbes
Diarrheal disease is a common health problem with complex causality. Although diarrhea is accompanied by disturbances in microbial diversity, how gut microbes are involved in the occurrence of diarrhea remains largely unknown. Here, using a pig model of post-weaning stress-induced diarrhea, we aim to elucidate and enrich the mechanistic basis of diarrhea. We found significant alterations in fecal microbiome, their metabolites, and microRNAs levels in piglets with diarrhea. Specifically, loss of ssc-miRNA-425-5p and ssc-miRNA-423-3p, which inhibit the gene expression of fumarate reductase () in genus, caused succinate accumulation in piglets, which resulted in diarrhea. Single-cell RNA sequencing indicated impaired epithelial function and increased immune response in the colon of piglet with diarrhea. Notably, the accumulated succinate increased colonic fluid secretion by regulating transepithelial Cl-secretion in the epithelial cells. Meanwhile, succinate promoted colonic inflammatory responses by activating MyD88-dependent TLR4 signaling in the macrophages. Overall, our findings expand the mechanistic basis of diarrhea and suggest that colonic accumulation of microbiota-produced succinate caused by loss of miRNAs leads to diarrhea in weanling piglets.
10.1080/19490976.2022.2091369
[Analysis of gut microbiome in patients with lung adenocarcinoma and lung squamous cell carcinoma].
An R,He D D,Zhao F,Wang L Q,Wang X J
Zhonghua yu fang yi xue za zhi [Chinese journal of preventive medicine]
To investigate the diversity and composition of gut microbiota in patients with lung adenocarcinoma and lung squamous cell carcinoma. A single-center and case-control study was conducted to consecutively enroll a total of 27 lung cancer patients, including 15 males and 12 females, who were seen at the Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine between September 2018 to October 2020. A total of 20 cases of healthy healthy physical examiners, including 9 males and 11 females were recruited as healthy control group (HC) during the same period. Clinical data and stool samples were collected from each participants, and lung cancer patients were divided into lung adenocarcinoma group (AC, 19 patients, 8 males and 11 females) and lung squamous cell carcinoma group (SCC, 8 patients, 7 males and 1 females) according to the pathology type. Genomic DNA were extracted to amplify 16S rDNA V3-V4 region, then the Illumina MiSeq high-throughput sequencing platform and QIIME software were used for sequencing and analyzing the structure of the gut microbiota, respectively. Analysis of variance, χ test, K-W test were used to analyze the differences in age, gender,α diversity, and relative abundance of microbiota among the three groups. AC, SCC, and HC were aged (58.74±9.27), (63.38±6.12), and (55.65±7.79) years old, respectively. There were no difference in gender and age among the three groups (gender and age are respectively:χ=5.155, =0.076;=2.598,=0.086). And no significant difference in alpha diversity were found among the three groups (Chao and Shannon index were respectively: =0.616, =0.545; =2.484, =0.095), while β-diversity analysis indicated significant differences in the structure of intestinal flora among AC, SCC and HC (=0.001). LEfSe analysis showed that AC and SCC both have dominant bacterials. (=7.855,=0.020) and (=7.426,=0.024) were enriched in patients with AC, while (=8.400, =0.015), (=9.957,=0.007), and (=10.514,=0.005) were enriched in patients with SCC. Lung cancer patients have gut microbiota imbalance, while lung adenocarcinoma and lung squamous cell carcinoma patients have no significant difference in gut microbiota diversity, but lung adenocarcinoma and lung squamous cell carcinoma have their own unique microbiota. This imbalance of the intestinal microenvironment is of great significance for studying the occurrence and development of different pathological types of lung cancer.
10.3760/cma.j.cn112150-20200826-01155
Microbiome characteristics description of COVID-19 patients based on bulk RNA-seq and scRNA-Seq data.
Computers in biology and medicine
After infection with SARS-CoV-2, the microbiome inside the human body changes dramatically. By re-annotating microbial sequences in bulk RNA-seq and scRNA-seq data of COVID-19 patients, we described the cellular microbial landscape of COVID-19 patients and identified characteristic microorganisms in various tissues. We found that Acinetobacter lwoffii was highly correlated with COVID-19 symptoms and might disrupt some pathways of patients by interacting with the host and other microbes, such as Klebsiella pneumoniae. We further identified characteristic microorganisms specific to cell type, indicating the enrichment preference of some microbes. We also revealed the co-infection of SARS-CoV-2 with hMPV, which may cause the development of COVID-19. Overall, we demonstrated that the presence of intracellular microorganisms in COVID-19 patients and the synergies between microorganisms were strongly correlated with disease progression, providing a theoretical basis for COVID-19 treatment in a certain extent.
10.1016/j.compbiomed.2023.107400
Apigenin Impacts the Growth of the Gut Microbiota and Alters the Gene Expression of Enterococcus.
Molecules (Basel, Switzerland)
Apigenin is a major dietary flavonoid with many bioactivities, widely distributed in plants. Apigenin reaches the colon region intact and interacts there with the human gut microbiota, however there is little research on how apigenin affects the gut bacteria. This study investigated the effect of pure apigenin on human gut bacteria, at both the single strain and community levels. The effect of apigenin on the single gut bacteria strains , , GG, and , was examined by measuring their anaerobic growth profiles. The effect of apigenin on a gut microbiota community was studied by culturing a fecal inoculum under in vitro conditions simulating the human ascending colon. 16S rRNA gene sequencing and GC-MS analysis quantified changes in the community structure. Single molecule RNA sequencing was used to reveal the response of to apigenin. was effectively inhibited by apigenin when cultured alone, however, the genus was enhanced when tested in a community setting. Single molecule RNA sequencing found that responded to apigenin by up-regulating genes involved in DNA repair, stress response, cell wall synthesis, and protein folding. Taken together, these results demonstrate that apigenin affects both the growth and gene expression of .
10.3390/molecules22081292
Integrated characterization of SARS-CoV-2 genome, microbiome, antibiotic resistance and host response from single throat swabs.
Cell discovery
The ongoing coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, poses a severe threat to humanity. Rapid and comprehensive analysis of both pathogen and host sequencing data is critical to track infection and inform therapies. In this study, we performed unbiased metatranscriptomic analysis of clinical samples from COVID-19 patients using a recently developed RNA-seq library construction method (TRACE-seq), which utilizes tagmentation activity of Tn5 on RNA/DNA hybrids. This approach avoids the laborious and time-consuming steps in traditional RNA-seq procedure, and hence is fast, sensitive, and convenient. We demonstrated that TRACE-seq allowed integrated characterization of full genome information of SARS-CoV-2, putative pathogens causing coinfection, antibiotic resistance, and host response from single throat swabs. We believe that the integrated information will deepen our understanding of pathogenesis and improve diagnostic accuracy for infectious diseases.
10.1038/s41421-021-00248-3
Single Cell Genomics-Based Analysis of Gene Content and Expression of Prophages in a Diffuse-Flow Deep-Sea Hydrothermal System.
Labonté Jessica M,Pachiadaki Maria,Fergusson Elizabeth,McNichol Jesse,Grosche Ashley,Gulmann Lara K,Vetriani Costantino,Sievert Stefan M,Stepanauskas Ramunas
Frontiers in microbiology
Phage-host interactions likely play a major role in the composition and functioning of many microbiomes, yet remain poorly understood. Here, we employed single cell genomics to investigate phage-host interactions in a diffuse-flow, low-temperature hydrothermal vent that may be reflective of a broadly distributed biosphere in the subseafloor. We identified putative prophages in 13 of 126 sequenced single amplified genomes (SAGs), with no evidence for lytic infections, which is in stark contrast to findings in the surface ocean. Most were distantly related to known prophages, while their hosts included bacterial phyla Campylobacterota, Bacteroidetes, Chlorobi, Proteobacteria, Lentisphaerae, Spirochaetes, and Thermotogae. Our results suggest the predominance of lysogeny over lytic interaction in diffuse-flow, deep-sea hydrothermal vents, despite the high activity of the dominant Campylobacteria that would favor lytic infections. We show that some of the identified lysogens have co-evolved with their host over geological time scales and that their genes are transcribed in the environment. Functional annotations of lysogeny-related genes suggest involvement in horizontal gene transfer enabling host's protection against toxic metals and antibacterial compounds.
10.3389/fmicb.2019.01262
Commensal microbiota drive the functional diversification of colon macrophages.
Mucosal immunology
Mononuclear phagocytes are a heterogeneous population of leukocytes essential for immune homeostasis that develop tissue-specific functions due to unique transcriptional programs driven by local microenvironmental cues. Single cell RNA sequencing (scRNA-seq) of colonic myeloid cells from specific pathogen free (SPF) and germ-free (GF) C57BL/6 mice revealed extensive heterogeneity of both colon macrophages (MPs) and dendritic cells (DCs). Modeling of developmental pathways combined with inference of gene regulatory networks indicate two major trajectories from common CCR2 precursors resulting in colon MP populations with unique transcription factors and downstream target genes. Compared to SPF mice, GF mice had decreased numbers of total colon MPs, as well as selective proportional decreases of two major CD11cCD206CD121b and CD11cCD206CD121b colon MP populations, whereas DC numbers and proportions were not different. Importantly, these two major colon MP populations were clearly distinct from other colon MP populations regarding their gene expression profile, localization within the lamina propria (LP) and ability to phagocytose macromolecules from the blood. These data uncover the diversity of intestinal myeloid cell populations at the molecular level and highlight the importance of microbiota on the unique developmental as well as anatomical and functional fates of colon MPs.
10.1038/s41385-019-0228-3
A Planar Culture Model of Human Absorptive Enterocytes Reveals Metformin Increases Fatty Acid Oxidation and Export.
Cellular and molecular gastroenterology and hepatology
BACKGROUND & AIMS:Fatty acid oxidation by absorptive enterocytes has been linked to the pathophysiology of type 2 diabetes, obesity, and dyslipidemia. Caco-2 and organoids have been used to study dietary lipid-handling processes including fatty acid oxidation, but are limited in physiological relevance or preclude simultaneous apical and basal access. Here, we developed a high-throughput planar human absorptive enterocyte monolayer system for investigating lipid handling, and then evaluated the role of fatty acid oxidation in fatty acid export, using etomoxir, C75, and the antidiabetic drug metformin. METHODS:Single-cell RNA-sequencing, transcriptomics, and lineage trajectory was performed on primary human jejunum. In vivo absorptive enterocyte maturational states informed conditions used to differentiate human intestinal stem cells (ISCs) that mimic in vivo absorptive enterocyte maturation. The system was scaled for high-throughput drug screening. Fatty acid oxidation was modulated pharmacologically and BODIPY (Thermo Fisher Scientific, Waltham, MA) (B)-labeled fatty acids were used to evaluate fatty acid handling via fluorescence and thin-layer chromatography. RESULTS:Single-cell RNA-sequencing shows increasing expression of lipid-handling genes as absorptive enterocytes mature. Culture conditions promote ISC differentiation into confluent absorptive enterocyte monolayers. Fatty acid-handling gene expression mimics in vivo maturational states. The fatty acid oxidation inhibitor etomoxir decreased apical-to-basolateral export of medium-chain B-C12 and long-chain B-C16 fatty acids, whereas the CPT1 agonist C75 and the antidiabetic drug metformin increased apical-to-basolateral export. Short-chain B-C5 was unaffected by fatty acid oxidation inhibition and diffused through absorptive enterocytes. CONCLUSIONS:Primary human ISCs in culture undergo programmed maturation. Absorptive enterocyte monolayers show in vivo maturational states and lipid-handling gene expression profiles. Absorptive enterocytes create strong epithelial barriers in 96-Transwell format. Fatty acid export is proportional to fatty acid oxidation. Metformin enhances fatty acid oxidation and increases basolateral fatty acid export, supporting an intestine-specific role.
10.1016/j.jcmgh.2022.04.009
Single cell and tissue-transcriptomic analysis of murine bladders reveals age- and TNFα-dependent but microbiota-independent tertiary lymphoid tissue formation.
Mucosal immunology
Aging has multifaceted effects on the immune system, but how aging affects tissue-specific immunity is not well-defined. Bladder diseases characterized by chronic inflammation are highly prevalent in older women, but mechanisms by which aging promotes these pathologies remain unknown. Tissue transcriptomics of unperturbed, young and aged bladders identified a highly altered immune landscape as a fundamental feature of the aging female bladder. Detailed mapping of immune cells using single cell RNA-sequencing revealed novel subsets of macrophages and dendritic cells and unique changes to the immune repertoire in the aged bladder. B and T cells are highly enriched in aged bladders and spontaneously form organized bladder tertiary lymphoid tissues (bTLTs). Naïve, activated, and germinal center B cells and IgA plasma cells are found within bTLT and associated with increased urinary IgA concentrations. bTLTs form with increasing age and their formation is dependent on TNFα. Microbiota are not required to form bTLT, as aged germfree mice also harbor them. Thus, bTLTs require age-dependent TNFα but are independent of the microbiota. Our results indicate that chronic, age-associated inflammation underlies a fundamental alteration to the bladder and establishes a resource for further investigation of the bladder immune system in homeostasis, aging, and disease.
10.1038/s41385-020-0290-x
Oral Microbiome Analysis in Prospective Genome Cohort Studies of the Tohoku Medical Megabank Project.
Frontiers in cellular and infection microbiology
A baseline oral microbiome study of the Tohoku Medical Megabank Organization (TMM) was planned to characterize the profile of the oral microbiome in the Japanese population. The study also aimed to clarify risk factors for multifactorial diseases by integrated analysis of the oral microbiome and host genome/omics information. From 2013 to 2016, we collected three types of oral biospecimens, saliva, supragingival plaque, and tongue swab, from a total of 25,101 participants who had a dental examination in TMM. In this study, we used two independent cohorts; the Community-Based Cohort and Birth and Three-Generation Cohort as discovery and validation cohorts, respectively, and we selected participants examined by a single dentist. We found through the 16S ribosomal RNA gene sequencing analysis of 834 participants of the Community-Based Cohort Study that there are differences in the microbial composition and community structure between saliva and plaque. The species diversities in both saliva and plaque were increased in correlation with the severity of periodontal disease. These results were nicely reproduced in the analysis of 455 participants of the Birth and Three-Generation Cohort Study. In addition, strong positive and negative associations of microbial taxa in both plaque and saliva with periodontitis-associated biofilm formation were detected by co-occurrence network analysis. The classes and , including oral health-associated bacterial species, showed a positive correlation in saliva. These results revealed differences in microbial composition and community structure between saliva and plaque and a correlation between microbial species and the severity of periodontal disease. We expect that the large database of the oral microbiome in the TMM biobank will help in the discovery of novel targets for the treatment and prevention of oral diseases, as well as for the discovery of therapeutic and/or preventive targets of systemic diseases.
10.3389/fcimb.2020.604596
Meta-Apo improves accuracy of 16S-amplicon-based prediction of microbiome function.
Jing Gongchao,Zhang Yufeng,Cui Wenzhi,Liu Lu,Xu Jian,Su Xiaoquan
BMC genomics
BACKGROUND:Due to their much lower costs in experiment and computation than metagenomic whole-genome sequencing (WGS), 16S rRNA gene amplicons have been widely used for predicting the functional profiles of microbiome, via software tools such as PICRUSt 2. However, due to the potential PCR bias and gene profile variation among phylogenetically related genomes, functional profiles predicted from 16S amplicons may deviate from WGS-derived ones, resulting in misleading results. RESULTS:Here we present Meta-Apo, which greatly reduces or even eliminates such deviation, thus deduces much more consistent diversity patterns between the two approaches. Tests of Meta-Apo on > 5000 16S-rRNA amplicon human microbiome samples from 4 body sites showed the deviation between the two strategies is significantly reduced by using only 15 WGS-amplicon training sample pairs. Moreover, Meta-Apo enables cross-platform functional comparison between WGS and amplicon samples, thus greatly improve 16S-based microbiome diagnosis, e.g. accuracy of gingivitis diagnosis via 16S-derived functional profiles was elevated from 65 to 95% by WGS-based classification. Therefore, with the low cost of 16S-amplicon sequencing, Meta-Apo can produce a reliable, high-resolution view of microbiome function equivalent to that offered by shotgun WGS. CONCLUSIONS:This suggests that large-scale, function-oriented microbiome sequencing projects can probably benefit from the lower cost of 16S-amplicon strategy, without sacrificing the precision in functional reconstruction that otherwise requires WGS. An optimized C++ implementation of Meta-Apo is available on GitHub ( https://github.com/qibebt-bioinfo/meta-apo ) under a GNU GPL license. It takes the functional profiles of a few paired WGS:16S-amplicon samples as training, and outputs the calibrated functional profiles for the much larger number of 16S-amplicon samples.
10.1186/s12864-020-07307-1
Multi-omics personalized network analyses highlight progressive disruption of central metabolism associated with COVID-19 severity.
Cell systems
The clinical outcome and disease severity in coronavirus disease 2019 (COVID-19) are heterogeneous, and the progression or fatality of the disease cannot be explained by a single factor like age or comorbidities. In this study, we used system-wide network-based system biology analysis using whole blood RNA sequencing, immunophenotyping by flow cytometry, plasma metabolomics, and single-cell-type metabolomics of monocytes to identify the potential determinants of COVID-19 severity at personalized and group levels. Digital cell quantification and immunophenotyping of the mononuclear phagocytes indicated a substantial role in coordinating the immune cells that mediate COVID-19 severity. Stratum-specific and personalized genome-scale metabolic modeling indicated monocarboxylate transporter family genes (e.g., SLC16A6), nucleoside transporter genes (e.g., SLC29A1), and metabolites such as α-ketoglutarate, succinate, malate, and butyrate could play a crucial role in COVID-19 severity. Metabolic perturbations targeting the central metabolic pathway (TCA cycle) can be an alternate treatment strategy in severe COVID-19.
10.1016/j.cels.2022.06.006
Idiopathic subglottic stenosis arises at the epithelial interface of host and pathogen.
Research square
Background:Idiopathic subglottic stenosis (iSGS) is a rare fibrotic disease of the proximal airway affecting adult Caucasian women nearly exclusively. Life-threatening ventilatory obstruction occurs secondary to pernicious subglottic mucosal scar. Disease rarity and wide geographic patient distribution has previously limited substantive mechanistic investigation into iSGS pathogenesis. Result:By harnessing pathogenic mucosa from an international iSGS patient cohort and single-cell RNA sequencing, we unbiasedly characterize the cell subsets in the proximal airway scar and detail their molecular phenotypes. Results show that the airway epithelium in iSGS patients is depleted of basal progenitor cells, and the residual epithelial cells acquire a mesenchymal phenotype. Observed displacement of bacteria beneath the lamina propria provides functional support for the molecular evidence of epithelial dysfunction. Matched tissue microbiomes support displacement of the native microbiome into the lamina propria of iSGS patients rather than disrupted bacterial community structure. However, animal models confirm that bacteria are necessary for pathologic proximal airway fibrosis and suggest an equally essential role for host adaptive immunity. Human samples from iSGS airway scar demonstrate adaptive immune activation in response to the proximal airway microbiome of both matched iSGS patients and healthy controls. Clinical outcome data from iSGS patients suggests surgical extirpation of airway scar and reconstitution with unaffected tracheal mucosa halts the progressive fibrosis. Conclusion:Our data support an iSGS disease model where epithelial alterations facilitate microbiome displacement, dysregulated immune activation, and localized fibrosis. These results refine our understanding of iSGS and implicate shared pathogenic mechanisms with distal airway fibrotic diseases.
10.21203/rs.3.rs-2945067/v1
Systematic transcriptional analysis of human cell lines for gene expression landscape and tumor representation.
Nature communications
Cell lines are valuable resources as model for human biology and translational medicine. It is thus important to explore the concordance between the expression in various cell lines vis-à-vis human native and disease tissues. In this study, we investigate the expression of all human protein-coding genes in more than 1,000 human cell lines representing 27 cancer types by a genome-wide transcriptomics analysis. The cell line gene expression is compared with the corresponding profiles in various tissues, organs, single-cell types and cancers. Here, we present the expression for each cell line and give guidance for the most appropriate cell line for a given experimental study. In addition, we explore the cancer-related pathway and cytokine activity of the cell lines to aid human biology studies and drug development projects. All data are presented in an open access cell line section of the Human Protein Atlas to facilitate the exploration of all human protein-coding genes across these cell lines.
10.1038/s41467-023-41132-w
Fxr signaling and microbial metabolism of bile salts in the zebrafish intestine.
Science advances
Bile salt synthesis, secretion into the intestinal lumen, and resorption in the ileum occur in all vertebrate classes. In mammals, bile salt composition is determined by host and microbial enzymes, affecting signaling through the bile salt-binding transcription factor farnesoid X receptor (Fxr). However, these processes in other vertebrate classes remain poorly understood. We show that key components of hepatic bile salt synthesis and ileal transport pathways are conserved and under control of Fxr in zebrafish. Zebrafish bile salts consist primarily of a C bile alcohol and a C bile acid that undergo multiple microbial modifications including bile acid deconjugation that augments Fxr activity. Using single-cell RNA sequencing, we provide a cellular atlas of the zebrafish intestinal epithelium and uncover roles for Fxr in transcriptional and differentiation programs in ileal and other cell types. These results establish zebrafish as a nonmammalian vertebrate model for studying bile salt metabolism and Fxr signaling.
10.1126/sciadv.abg1371
Epigenetically regulated digital signaling defines epithelial innate immunity at the tissue level.
Nature communications
To prevent damage to the host or its commensal microbiota, epithelial tissues must match the intensity of the immune response to the severity of a biological threat. Toll-like receptors allow epithelial cells to identify microbe associated molecular patterns. However, the mechanisms that mitigate biological noise in single cells to ensure quantitatively appropriate responses remain unclear. Here we address this question using single cell and single molecule approaches in mammary epithelial cells and primary organoids. We find that epithelial tissues respond to bacterial microbe associated molecular patterns by activating a subset of cells in an all-or-nothing (i.e. digital) manner. The maximum fraction of responsive cells is regulated by a bimodal epigenetic switch that licenses the TLR2 promoter for transcription across multiple generations. This mechanism confers a flexible memory of inflammatory events as well as unique spatio-temporal control of epithelial tissue-level immune responses. We propose that epigenetic licensing in individual cells allows for long-term, quantitative fine-tuning of population-level responses.
10.1038/s41467-021-22070-x
Quantifying fluorescent glycan uptake to elucidate strain-level variability in foraging behaviors of rumen bacteria.
Klassen Leeann,Reintjes Greta,Tingley Jeffrey P,Jones Darryl R,Hehemann Jan-Hendrik,Smith Adam D,Schwinghamer Timothy D,Arnosti Carol,Jin Long,Alexander Trevor W,Amundsen Carolyn,Thomas Dallas,Amann Rudolf,McAllister Tim A,Abbott D Wade
Microbiome
Gut microbiomes, such as the microbial community that colonizes the rumen, have vast catabolic potential and play a vital role in host health and nutrition. By expanding our understanding of metabolic pathways in these ecosystems, we will garner foundational information for manipulating microbiome structure and function to influence host physiology. Currently, our knowledge of metabolic pathways relies heavily on inferences derived from metagenomics or culturing bacteria in vitro. However, novel approaches targeting specific cell physiologies can illuminate the functional potential encoded within microbial (meta)genomes to provide accurate assessments of metabolic abilities. Using fluorescently labeled polysaccharides, we visualized carbohydrate metabolism performed by single bacterial cells in a complex rumen sample, enabling a rapid assessment of their metabolic phenotype. Specifically, we identified bovine-adapted strains of Bacteroides thetaiotaomicron that metabolized yeast mannan in the rumen microbiome ex vivo and discerned the mechanistic differences between two distinct carbohydrate foraging behaviors, referred to as "medium grower" and "high grower." Using comparative whole-genome sequencing, RNA-seq, and carbohydrate-active enzyme fingerprinting, we could elucidate the strain-level variability in carbohydrate utilization systems of the two foraging behaviors to help predict individual strategies of nutrient acquisition. Here, we present a multi-faceted study using complimentary next-generation physiology and "omics" approaches to characterize microbial adaptation to a prebiotic in the rumen ecosystem. Video abstract.
10.1186/s40168-020-00975-x
FLG Deficiency in Mice Alters the Early-Life CD4 T-Cell Response to Skin Commensal Bacteria.
The Journal of investigative dermatology
FLG variants underlie ichthyosis vulgaris and increased risk of atopic dermatitis, conditions typified by disruption of the skin microbiome and cutaneous immune response. Yet, it remains unclear whether neonatal skin barrier compromise because of FLG deficiency alters the quality of commensal-specific T cells and the functional impact of such responses. To address these questions, we profiled changes in the skin barrier and early cutaneous immune response of neonatal C57BL/6 Flg and wild-type mice using single-cell RNA sequencing, flow cytometry, and other modalities. Flg neonates showed little alteration in transepidermal water loss or lipid- or corneocyte-related gene expression. However, they showed increases in barrier disruption genes, epidermal dye penetration, and numbers of skin CD4 T cells. Using an engineered strain of Staphylococcus epidermidis (S. epidermidis 2W) to study the response to neonatal skin colonization, we found that commensal-specific CD4 T cells were skewed in Flg pups toward effector rather than regulatory T cells. This altered response persisted into adulthood, where it was typified by T helper 17 (Th17) cells and associated with increased susceptibility to imiquimod-induced skin inflammation. Thus, subtle but impactful differences in neonatal barrier function in Flg mice are accompanied by a skewed commensal-specific CD4 response, with enduring consequences for skin immune homeostasis.
10.1016/j.jid.2022.10.019
SUMOylation inhibitors activate anti-tumor immunity by reshaping the immune microenvironment in a preclinical model of hepatocellular carcinoma.
Cellular oncology (Dordrecht)
PURPOSE:High levels of heterogeneity and immunosuppression characterize the HCC immune microenvironment (TME). Unfortunately, the majority of hepatocellular carcinoma (HCC) patients do not benefit from immune checkpoint inhibitors (ICIs) therapy. New small molecule therapies for the treatment of HCC are the goal of our research. METHODS:SUMOylation inhibitors (TAK-981 and ML-792) were evaluated for the treatment of preclinical mouse HCC models (including subcutaneous and orthotopic HCC models). We profile immune cell subsets from tumor samples after SUMOylation inhibitors treatment using single-cell RNA sequencing (scRNA-seq), mass cytometry (CyTOF), flow cytometry, and multiple immunofluorescences (mIF). RESULTS:We discover that SUMOylation is higher in HCC patient samples compared to normal liver tissue. TAK-981 and ML-792 decrease SUMOylation at nanomolar levels in HCC cells and also successfully reduced the tumor burden. Analysis combining scRNA-seq and CyTOF demonstrate that treatment with SUMOylation inhibitors reduces the exhausted CD8T (T) cells while enhancing the cytotoxic NK cells, M1 macrophages and cytotoxic T lymphocytes (CTL) in preclinical mouse HCC model. Furthermore, SUMOylation inhibitors have the potential to activate innate immune signals from CD8T, NK and macrophages while promoting TNFα and IL-17 secretion. Most notably, SUMOylation inhibitors can directly alter the TME by adjusting the abundance of intestinal microbiota, thereby restoring anti-tumor immunity in HCC models. CONCLUSIONS:This preclinical study suggests that SUMO signaling inhibitors may be beneficial for the treatment of HCC.
10.1007/s13402-023-00880-z
Relationship Between CNVs and Immune Cells Infiltration in Gastric Tumor Microenvironment.
Frontiers in genetics
Gastric cancer (GC) is a highly fatal and common malignancy of the digestive system. Recent therapeutic advancements have significantly improved the clinical outcomes in GC, but due to the unavailability of suitable molecular targets, a large number of patients do not respond to the immune checkpoint inhibitors (ICI) therapy. To identify and validate potential therapeutic and prognostic targets of gastric cancer, we used the "inferCNV" R package for analyzing single-cell sequencing data (GSE112302) of GC and normal epithelial cells. First, by using LASSO, we screened genes that were highly correlated with copy number variations (CNVs). Therefrom, five gene signature (, , , , and ) was selected by cross-validating the prognosis and risk management with the GC RNA-seq data obtained from GEO and TCGA. Moreover, the correlation analyses between CNVs of these genes and immune cell infiltration in gastric cancer identified as a potential prognostic marker. Finally, showed high expression in gastric cancer samples and cell lines, then siRNA-mediated silencing of expression in gastric cancer cells showed significant proliferation arrest in MGC803 cells. Here, we conclude that CNVs are key regulators of the immune cells infiltration in gastric TME as well as cancer development, and could potentially be used as a prognostic and therapeutic marker in gastric cancer.
10.3389/fgene.2022.869967
A novel computational framework for genome-scale alternative transcription units prediction.
Wang Qi,Liu Zhaoqian,Yan Bo,Chou Wen-Chi,Ettwiller Laurence,Ma Qin,Liu Bingqiang
Briefings in bioinformatics
Alternative transcription units (ATUs) are dynamically encoded under different conditions and display overlapping patterns (sharing one or more genes) under a specific condition in bacterial genomes. Genome-scale identification of ATUs is essential for studying the emergence of human diseases caused by bacterial organisms. However, it is unrealistic to identify all ATUs using experimental techniques because of the complexity and dynamic nature of ATUs. Here, we present the first-of-its-kind computational framework, named SeqATU, for genome-scale ATU prediction based on next-generation RNA-Seq data. The framework utilizes a convex quadratic programming model to seek an optimum expression combination of all of the to-be-identified ATUs. The predicted ATUs in Escherichia coli reached a precision of 0.77/0.74 and a recall of 0.75/0.76 in the two RNA-Sequencing datasets compared with the benchmarked ATUs from third-generation RNA-Seq data. In addition, the proportion of 5'- or 3'-end genes of the predicted ATUs, having documented transcription factor binding sites and transcription termination sites, was three times greater than that of no 5'- or 3'-end genes. We further evaluated the predicted ATUs by Gene Ontology and Kyoto Encyclopedia of Genes and Genomes functional enrichment analyses. The results suggested that gene pairs frequently encoded in the same ATUs are more functionally related than those that can belong to two distinct ATUs. Overall, these results demonstrated the high reliability of predicted ATUs. We expect that the new insights derived by SeqATU will not only improve the understanding of the transcription mechanism of bacteria but also guide the reconstruction of a genome-scale transcriptional regulatory network.
10.1093/bib/bbab162
Multi-omics analyses reveal bacteria and catalase associated with keloid disease.
EBioMedicine
BACKGROUND:The pathology of keloid and especially the roles of bacteria on it were not well understood. METHODS:In this study, multi-omics analyses including microbiome, metaproteomics, metabolomic, single-cell transcriptome and cell-derived xenograft (CDX) mice model were used to explore the roles of bacteria on keloid disease. FINDINGS:We found that the types of bacteria are significantly different between keloid and healthy skin. The 16S rRNA sequencing and metaproteomics showed that more catalase (CAT) negative bacteria, Clostridium and Roseburia existed in keloid compared with the adjacent healthy skin. In addition, protein mass spectrometry shows that CAT is one of the differentially expressed proteins (DEPs). Overexpression of CAT inhibited the proliferation, migration and invasion of keloid fibroblasts, and these characteristics were opposite when CAT was knocked down. Furthermore, the CDX model showed that Clostridium butyricum promote the growth of patient's keloid fibroblasts in BALB/c female nude mice, while CAT positive bacteria Bacillus subtilis inhibited it. Single-cell RNA sequencing verified that oxidative stress was up-regulated and CAT was down-regulated in mesenchymal-like fibroblasts of keloid. INTERPRETATION:In conclusion, our findings suggest that bacteria and CAT contribute to keloid disease. FUNDING:A full list of funding bodies that contributed to this study can be found in the Acknowledgements section.
10.1016/j.ebiom.2023.104904
Phylogenetic Diversity and Single-Cell Genome Analysis of "Melainabacteria", a Non-Photosynthetic Cyanobacterial Group, in the Termite Gut.
Utami Yuniar Devi,Kuwahara Hirokazu,Murakami Takumi,Morikawa Takahiro,Sugaya Kaito,Kihara Kumiko,Yuki Masahiro,Lo Nathan,Deevong Pinsurang,Hasin Sasitorn,Boonriam Warin,Inoue Tetsushi,Yamada Akinori,Ohkuma Moriya,Hongoh Yuichi
Microbes and environments
Termite guts harbor diverse yet-uncultured bacteria, including a non-photosynthetic cyanobacterial group, the class "Melainabacteria". We herein reported the phylogenetic diversity of "Melainabacteria" in the guts of diverse termites and conducted a single-cell genome analysis of a melainabacterium obtained from the gut of the termite Termes propinquus. We performed amplicon sequencing of 16S rRNA genes from the guts of 60 termite and eight cockroach species, and detected melainabacterial sequences in 48 out of the 68 insect species, albeit with low abundances (0.02-1.90%). Most of the melainabacterial sequences obtained were assigned to the order "Gastranaerophilales" and appeared to form clusters unique to termites and cockroaches. A single-cell genome of a melainabacterium, designated phylotype Tpq-Mel-01, was obtained using a fluorescence-activated cell sorter and whole genome amplification. The genome shared basic features with other melainabacterial genomes previously reconstructed from the metagenomes of human and koala feces. The bacterium had a small genome (~1.6 Mb) and possessed fermentative pathways possibly using sugars and chitobiose as carbon and energy sources, while the pathways for photosynthesis and carbon fixation were not found. The genome contained genes for flagellar components and chemotaxis; therefore, the bacterium is likely motile. A fluorescence in situ hybridization analysis showed that the cells of Tpq-Mel-01 and/or its close relatives are short rods with the dimensions of 1.1±0.2 μm by 0.5±0.1 μm; for these bacteria, we propose the novel species, "Candidatus Gastranaerophilus termiticola". Our results provide fundamental information on "Melainabacteria" in the termite gut and expand our knowledge on this underrepresented, non-photosynthetic cyanobacterial group.
10.1264/jsme2.ME17137
The Microbiome Regulates Pulmonary Responses to Ozone in Mice.
American journal of respiratory cell and molecular biology
Previous reports demonstrate that the microbiome impacts allergic airway responses, including airway hyperresponsiveness, a characteristic feature of asthma. Here we examined the role of the microbiome in pulmonary responses to a nonallergic asthma trigger, ozone. We depleted the microbiota of conventional mice with either a single antibiotic (ampicillin, metronidazole, neomycin, or vancomycin) or a cocktail of all four antibiotics given via the drinking water. Mice were then exposed to room air or ozone. In air-exposed mice, airway responsiveness did not differ between antibiotic- and control water-treated mice. Ozone caused airway hyperresponsiveness, the magnitude of which was decreased in antibiotic cocktail-treated mice versus water-treated mice. Except for neomycin, single antibiotics had effects similar to those observed with the cocktail. Compared with conventional mice, germ-free mice also had attenuated airway responsiveness after ozone. 16S ribosomal RNA gene sequencing of fecal DNA to characterize the gut microbiome indicated that bacterial genera that were decreased in mice with reduced ozone-induced airway hyperresponsiveness after antibiotic treatment were short-chain fatty acid producers. Serum analysis indicated reduced concentrations of the short-chain fatty acid propionate in cocktail-treated mice but not in neomycin-treated mice. Dietary enrichment with pectin, which increased serum short-chain fatty acids, also augmented ozone-induced airway hyperresponsiveness. Furthermore, propionate supplementation of the drinking water augmented ozone-induced airway hyperresponsiveness in conventional mice. Our data indicate that the microbiome contributes to ozone-induced airway hyperresponsiveness, likely via its ability to produce short-chain fatty acids.
10.1165/rcmb.2017-0404OC
Microbiota DNA isolation, 16S rRNA amplicon sequencing, and bioinformatic analysis for bacterial microbiome profiling of rodent fecal samples.
STAR protocols
Fecal samples are frequently used to characterize bacterial populations of the gastrointestinal tract. A protocol is provided to profile gut bacterial populations using rodent fecal samples. We describe the optimal procedures for collecting rodent fecal samples, isolating genomic DNA, 16S rRNA gene V4 region sequencing, and bioinformatic analyses. This protocol includes detailed instructions and example outputs to ensure accurate, reproducible results and data visualization. Comprehensive troubleshooting and limitation sections address technical and statistical issues that may arise when profiling microbiota. For complete details on the use and execution of this protocol, please refer to Gubert et al. (2022).
10.1016/j.xpro.2022.101772
Linking plasmid-based beta-lactamases to their bacterial hosts using single-cell fusion PCR.
eLife
The horizonal transfer of plasmid-encoded genes allows bacteria to adapt to constantly shifting environmental pressures, bestowing functional advantages to their bacterial hosts such as antibiotic resistance, metal resistance, virulence factors, and polysaccharide utilization. However, common molecular methods such as short- and long-read sequencing of microbiomes cannot associate extrachromosomal plasmids with the genome of the host bacterium. Alternative methods to link plasmids to host bacteria are either laborious, expensive, or prone to contamination. Here we present the One-step Isolation and Lysis PCR (OIL-PCR) method, which molecularly links plasmid-encoded genes with the bacterial 16S rRNA gene via fusion PCR performed within an emulsion. After validating this method, we apply it to identify the bacterial hosts of three clinically relevant beta-lactamases within the gut microbiomes of neutropenic patients, as they are particularly vulnerable multidrug-resistant infections. We successfully detect the known association of a multi-drug resistant plasmid with , as well as the novel associations of two low-abundance genera, and . Further investigation with OIL-PCR confirmed that our detection of is due to its physical association with as opposed to directly harboring the beta-lactamase genes. Here we put forth a robust, accessible, and high-throughput platform for sensitively surveying the bacterial hosts of mobile genes, as well as detecting physical bacterial associations such as those occurring within biofilms and complex microbial communities.
10.7554/eLife.66834
Immuno-genomic analysis reveals eosinophilic feature and favorable prognosis of female non-smoking esophageal squamous cell carcinomas.
Cancer letters
Most of esophageal squamous cell carcinoma (ESCC) develop in smoking males in Japan, but the genomic etiology and immunological characteristics of rare non-smoking female ECSS remain unclear. To elucidate the genomic and immunological features of ESCC in non-smoking females, we analyzed whole-genome or transcriptome sequencing data from 94 ESCCs, including 20 rare non-smoking female cases. In addition, 31,611 immune cells were extracted from four ESCC tissues and subject to single-cell RNA-seq. We compared their immuno-genomic and microbiome profiles between non-smoking female and smoking ESCCs. Non-smoking females showed much better prognosis. Whole-genome sequencing analysis showed no significant differences in driver genes or copy number alterations depending on smoking status. The mutational signatures specifically observed in non-smoking females ESCC could be attributed to aging. Immune profiling from RNA-seq revealed that ESCC in non-smoking females had high tumor microenvironment signatures and a high abundance of eosinophils with a favorable prognosis. Single-cell RNA-sequencing of intratumor immune cells revealed gender differences of eosinophils and their activation in female cases. ESCCs in non-smoking females have age-related mutational signatures and gender-specific tumor immune environment with eosinophils, which is likely to contribute to their favorable prognosis.
10.1016/j.canlet.2023.216499
Neuraminidase inhibitors rewire neutrophil function in murine sepsis and in COVID-19.
bioRxiv : the preprint server for biology
Neutrophil overstimulation plays a crucial role in tissue damage during severe infections. Neuraminidase (NEU)-mediated cleavage of surface sialic acid has been demonstrated to regulate leukocyte responses. Here, we report that antiviral NEU inhibitors constrain host NEU activity, surface sialic acid release, ROS production, and NETs released by microbial-activated human neutrophils. , treatment with Oseltamivir results in infection control and host survival in peritonitis and pneumonia models of sepsis. Single-cell RNA sequencing re-analysis of publicly data sets of respiratory tract samples from critical COVID-19 patients revealed an overexpression of NEU1 in infiltrated neutrophils. Moreover, Oseltamivir or Zanamivir treatment of whole blood cells from severe COVID-19 patients reduces host NEU-mediated shedding of cell surface sialic acid and neutrophil overactivation. These findings suggest that neuraminidase inhibitors can serve as host-directed interventions to dampen neutrophil dysfunction in severe infections.
10.1101/2020.11.12.379115
MTD: a unique pipeline for host and meta-transcriptome joint and integrative analyses of RNA-seq data.
Briefings in bioinformatics
Ribonucleic acid (RNA)-seq data contain not only host transcriptomes but also nonhost information that comprises transcripts from active microbiota in the host cells. Therefore, joint and integrative analyses of both host and meta-transcriptome can reveal gene expression of the microbial community in a given sample as well as the correlative and interactive dynamics of the host response to the microbiome. However, there are no convenient tools that can systemically analyze host-microbiota interactions through simultaneously quantifying the host and meta-transcriptome in the same sample at the tissue and the single-cell level. This poses a challenge for interested researchers with limited expertise in bioinformatics. Here, we developed a software pipeline that can comprehensively and synergistically analyze and correlate the host and meta-transcriptome in a single sample using bulk and single-cell RNA-seq data. This pipeline, named meta-transcriptome detector (MTD), can extensively identify and quantify microbiome, including viruses, bacteria, protozoa, fungi, plasmids and vectors, in the host cells and correlate the microbiome with the host transcriptome. MTD is easy to install and run, involving only a few lines of simple commands. It offers researchers with unique genomics insights into host responses to microorganisms.
10.1093/bib/bbac111
Uptake of Staphylococcus aureus by keratinocytes is reduced by interferon-fibronectin pathway and filaggrin expression.
The Journal of dermatology
Staphylococcus aureus (S. aureus) is frequently detected in the skin of patients with atopic dermatitis (AD). AD skin-derived strains of S. aureus (AD strain) are selectively internalized into keratinocytes (HaCaT cells) compared to standard strains. However, the mechanism of AD strain internalization by keratinocytes and effect of the skin environment on internalization remain unclear. HaCaT cells were exposed to heat-killed AD or standard strains of fluorescently labeled S. aureus, with or without interferon (IFN)-γ, interleukin (IL)-4, and IL-13 cytokines, for 24 h. Filaggrin and fibronectin expression in HaCaT cells was knocked down using small interfering RNA. The amount of internalized S. aureus was evaluated using a cell imaging system. The effects of INF-γ, IL-4, and S. aureus exposure on mRNA expression in HaCaT cells were analyzed using single-cell RNA sequencing. AD strains adhered to HaCaT cells in approximately 15 min and were increasingly internalized for up to 3 h (2361 ± 467 spots/100 cells, mean ± SD), whereas the standard strain was not (991 ± 71 spots/100 cells). In the presence of IFN-γ, both the number of internalized strains and fibronectin expression significantly decreased compared to in the control, whereas Th2 cytokines had no significant effects. The number of internalized AD strains was significantly higher in filaggrin knockdown and lower in fibronectin knockdown HaCaT cells compared to in the control. RNA sequencing revealed that IFN-γ decreased both fibronectin and filaggrin expression. Keratinocyte internalization of the AD strain may be predominantly mediated by the INF-γ-fibronectin pathway and partially regulated by filaggrin expression.
10.1111/1346-8138.16546
Changes in the Gut Microbiome Contribute to the Development of Behcet's Disease Adjuvant Effects.
Wang Qingfeng,Yi Shenglan,Su Guannan,Du Ziyu,Pan Su,Huang Xinyue,Cao Qingfeng,Yuan Gangxiang,Kijlstra Aize,Yang Peizeng
Frontiers in cell and developmental biology
Behcet's disease (BD) is associated with considerable gut microbiome changes. However, it still remains unknown how the composition of the gut microbiome exactly affects the development of this disease. In this study, transplantation of stool samples from patients with active ocular BD to mice oral gavage was performed. This resulted in decreases of three short chain fatty acids (SCFAs) including butyric acid, propionic acid and valeric acid in the feces of the BD-recipient group. Intestinal barrier integrity of mice receiving BD feces was damaged as shown by a decreased expression of tight junction proteins and was associated with the release of Lipopolysaccharides (LPS) in the circulation. The mice also showed a higher frequency of splenic neutrophils as well as an enrichment of genes associated with innate immune responses in the neutrophils and CD4 + T cells as identified by single cell RNA sequencing. Analysis of neutrophils and T cells functions in these mice showed an enhanced mesenteric lymph node and splenic Th1 and Th17 cell differentiation in association with activation of neutrophils. Transplantation of BD feces to mice and subsequent induction of experimental uveitis (EAU) or encephalomyelitis (EAE) led to an exacerbation of disease in both models, suggesting a microbial adjuvant effect. These findings suggest that the gut microbiome may regulate an autoimmune response adjuvant effects including increased gut permeability and enhancement of innate immunity.
10.3389/fcell.2021.716760
Pitfalls in Single Clone CRISPR-Cas9 Mutagenesis to Fine-map Regulatory Intervals.
Genes
The majority of genetic variants affecting complex traits map to regulatory regions of genes, and typically lie in credible intervals of 100 or more SNPs. Fine mapping of the causal variant(s) at a locus depends on assays that are able to discriminate the effects of polymorphisms or mutations on gene expression. Here, we evaluated a moderate-throughput CRISPR-Cas9 mutagenesis approach, based on replicated measurement of transcript abundance in single-cell clones, by deleting candidate regulatory SNPs, affecting four genes known to be affected by large-effect expression Quantitative Trait Loci (eQTL) in leukocytes, and using Fluidigm qRT-PCR to monitor gene expression in HL60 pro-myeloid human cells. We concluded that there were multiple constraints that rendered the approach generally infeasible for fine mapping. These included the non-targetability of many regulatory SNPs, clonal variability of single-cell derivatives, and expense. Power calculations based on the measured variance attributable to major sources of experimental error indicated that typical eQTL explaining 10% of the variation in expression of a gene would usually require at least eight biological replicates of each clone. Scanning across credible intervals with this approach is not recommended.
10.3390/genes11050504
Depression phenotype identified by using single nucleotide exact amplicon sequence variants of the human gut microbiome.
Molecular psychiatry
Single nucleotide exact amplicon sequence variants (ASV) of the human gut microbiome were used to evaluate if individuals with a depression phenotype (DEPR) could be identified from healthy reference subjects (NODEP). Microbial DNA in stool samples obtained from 40 subjects were characterized using high throughput microbiome sequence data processed via DADA2 error correction combined with PIME machine-learning de-noising and taxa binning/parsing of prevalent ASVs at the single nucleotide level of resolution. Application of ALDEx2 differential abundance analysis with assessed effect sizes and stringent PICRUSt2 predicted metabolic pathways. This multivariate machine-learning approach significantly differentiated DEPR (n = 20) vs. NODEP (n = 20) (PERMANOVA P < 0.001) based on microbiome taxa clustering and neurocircuit-relevant metabolic pathway network analysis for GABA, butyrate, glutamate, monoamines, monosaturated fatty acids, and inflammasome components. Gut microbiome dysbiosis using ASV prevalence data may offer the diagnostic potential of using human metaorganism biomarkers to identify individuals with a depression phenotype.
10.1038/s41380-020-0652-5
Roles of vaginal flora in human papillomavirus infection, virus persistence and clearance.
Frontiers in cellular and infection microbiology
Vaginal flora plays a vital role in human papillomavirus (HPV) infection and progression to cancer. To reveal a role of the vaginal flora in HPV persistence and clearance, 90 patients with HPV infection and 45 healthy individuals were enrolled in this study and their vaginal flora were analyzed. Women with HPV infection were treated with in the vaginal environment as a supplement to interferon therapy. Our results indicated that patients with high risk HPV (Hr-HPV) 16/18 infection had a significantly higher alpha diversity compared with the healthy control ( < 0.01), while there was no significant difference between the non-Hr-HPV16/18 group and the controls ( > 0.05). Patients with multiple HPV infection had insignificantly higher alpha diversity compared with single HPV infection ( > 0.05). The vaginal flora of patients with HPV infection exhibited different compositions when compared to the healthy controls. The dominant bacteria with the highest prevalence in HPV-positive group were (n = 49, 54.44%), and the top 3 dominant bacteria in the HPV-persistent group were (n = 34, 53.13%), (n = 9, 14.06%), and (n = 3, 4.69%). Patients with HPV clearance had significantly lower alpha diversity, and the flora pattern was also different between groups displaying HPV clearance vs. persistence. The patients with persistent HPV infection had significantly higher levels of Bacteroidaceae, Erysipelotrichaceae, Helicobacteraceae, Neisseriaceae, Streptococcaceae (family level), and , , , and (genus level) than patients who had cleared HPV ( < 0.05). Importance:Our study revealed differences in vaginal flora patterns are associated with HPV persistence and its clearance. Interferon plus probiotics can greatly improve virus clearance in some patients. Distinguishing bacterial features associated with HPV clearance in patients would be helpful for early intervention and reverse persistent infection.
10.3389/fcimb.2022.1036869
Daily turnover of active giant virus infection during algal blooms revealed by single-cell transcriptomics.
Science advances
Giant viruses infect many unicellular eukaryotes, including algae that form massive oceanic blooms. Despite the major impact of viruses on the marine ecosystem, the ability to quantify and assess active viral infection in nature remains a major challenge. We applied single-cell RNA sequencing, to profile virus and host transcriptomes of 12,000 single algal cells from a coccolithophore bloom. Viral infection was detected already at early exponential bloom phase, negatively correlating with the bloom intensity. A consistent percent of infected coccolithophores displayed the early phase of viral replication for several consecutive days, indicating a daily turnover and continuous virocell-associated metabolite production, potentially affecting the surrounding microbiome. Linking single-cell infection state to host physiology revealed that infected cells remained calcified even in the late infection stage. These findings stress the importance of studying host-virus dynamics in natural populations, at single-cell resolution, to better understand virus life cycle and its impact on microbial food webs.
10.1126/sciadv.adf7971
and expression by clinical, HLA, immune, and microbial correlates across 34 human cancers and matched normal tissues: implications for SARS-CoV-2 COVID-19.
Journal for immunotherapy of cancer
BACKGROUND:Pandemic COVID-19 by severe acute respiratory syndrome (SARS) coronavirus 2 (SARS-CoV-2) infection is facilitated by the ACE2 receptor and protease TMPRSS2. Modestly sized case series have described clinical factors associated with COVID-19, while and expression analyses have been described in some cell types. Patients with cancer may have worse outcomes to COVID-19. METHODS:We performed an integrated study of and gene expression across and within organ systems, by normal versus tumor, across several existing databases (The Cancer Genome Atlas, Census of Immune Single Cell Expression Atlas, The Human Cell Landscape, and more). We correlated gene expression with clinical factors (including but not limited to age, gender, race, body mass index, and smoking history), HLA genotype, immune gene expression patterns, cell subsets, and single-cell sequencing as well as commensal microbiome. RESULTS:Matched normal tissues generally display higher and expression compared with cancer, with normal and tumor from digestive organs expressing the highest levels. No clinical factors were consistently identified to be significantly associated with gene expression levels though outlier organ systems were observed for some factors. Similarly, no HLA genotypes were consistently associated with gene expression levels. Strong correlations were observed between expression levels and multiple immune gene signatures including interferon-stimulated genes and the T cell-inflamed phenotype as well as inverse associations with angiogenesis and transforming growth factor-β signatures. positively correlated with macrophage subsets across tumor types. was less associated with immune gene expression but was strongly associated with epithelial cell abundance. Single-cell sequencing analysis across nine independent studies demonstrated little to no or expression in lymphocytes or macrophages. and gene expression associated with commensal microbiota in matched normal tissues particularly from colorectal cancers, with distinct bacterial populations showing strong associations. CONCLUSIONS:We performed a large-scale integration of and gene expression across clinical, genetic, and microbiome domains. We identify novel associations with the microbiota and confirm host immunity associations with gene expression. We suggest caution in interpretation regarding genetic associations with expression suggested from smaller case series.
10.1136/jitc-2020-001020
Integration of the Microbiome, Metabolome and Transcriptomics Data Identified Novel Metabolic Pathway Regulation in Colorectal Cancer.
International journal of molecular sciences
Integrative multiomics data analysis provides a unique opportunity for the mechanistic understanding of colorectal cancer (CRC) in addition to the identification of potential novel therapeutic targets. In this study, we used public omics data sets to investigate potential associations between microbiome, metabolome, bulk transcriptomics and single cell RNA sequencing datasets. We identified multiple potential interactions, for example 5-aminovalerate interacting with ; cholesteryl ester interacting with bacterial genera , and . Using public single cell and bulk RNA sequencing, we identified 17 overlapping genes involved in epithelial cell pathways, with particular significance of the oxidative phosphorylation pathway and the gene that indirectly regulates the esterification of cholesterol. These findings demonstrate that the integration of multiomics data sets from diverse populations can help us in untangling the colorectal cancer pathogenesis as well as postulate the disease pathology mechanisms and therapeutic targets.
10.3390/ijms22115763
The "most wanted" taxa from the human microbiome for whole genome sequencing.
PloS one
The goal of the Human Microbiome Project (HMP) is to generate a comprehensive catalog of human-associated microorganisms including reference genomes representing the most common species. Toward this goal, the HMP has characterized the microbial communities at 18 body habitats in a cohort of over 200 healthy volunteers using 16S rRNA gene (16S) sequencing and has generated nearly 1,000 reference genomes from human-associated microorganisms. To determine how well current reference genome collections capture the diversity observed among the healthy microbiome and to guide isolation and future sequencing of microbiome members, we compared the HMP's 16S data sets to several reference 16S collections to create a 'most wanted' list of taxa for sequencing. Our analysis revealed that the diversity of commonly occurring taxa within the HMP cohort microbiome is relatively modest, few novel taxa are represented by these OTUs and many common taxa among HMP volunteers recur across different populations of healthy humans. Taken together, these results suggest that it should be possible to perform whole-genome sequencing on a large fraction of the human microbiome, including the 'most wanted', and that these sequences should serve to support microbiome studies across multiple cohorts. Also, in stark contrast to other taxa, the 'most wanted' organisms are poorly represented among culture collections suggesting that novel culture- and single-cell-based methods will be required to isolate these organisms for sequencing.
10.1371/journal.pone.0041294
Gut microbiota correlates with antitumor activity in patients with mCRC and NSCLC treated with cetuximab plus avelumab.
International journal of cancer
Gut microbiota is involved in immune modulation and immune checkpoint inhibitors (ICIs) efficacy. Single-arm phase II CAVE-mCRC and CAVE-LUNG clinical trials investigated cetuximab + avelumab combination in RAS wild-type (WT) metastatic colorectal cancer (mCRC) and chemo-refractory nonsmall cell lung cancer (NSCLC) patients, respectively. A comprehensive gut microbiota genetic analysis was done in basal fecal samples of 14 patients from CAVE-mCRC trial with circulating tumor DNA (ctDNA) RAS/BRAF WT and microsatellite stable (MSS) disease. Results were validated in a cohort of 10 patients from CAVE-Lung trial. 16S rRNA sequencing revealed 23 027 bacteria species in basal fecal samples of 14 patients from CAVE-mCRC trial. In five long-term responding patients (progression-free survival [PFS], 9-24 months) significant increases in two butyrate-producing bacteria, Agathobacter M104/1 (P = .018) and Blautia SR1/5 (P = .023) were found compared to nine patients with shorter PFS (2-6 months). A significantly better PFS was also observed according to the presence or absence of these species in basal fecal samples. For Agathobacter M104/1, median PFS (mPFS) was 13.5 months (95% confidence interval [CI], 6.5-20.5 months) vs 4.6 months (95% CI, 1.8-7.4 months); P = .006. For Blautia SR1/5, mPFS was 5.9 months (95% CI, 2.2-9.7 months) vs 3.6 months (95% CI, 3.3-4.0 months); P = .021. Similarly, in CAVE-Lung validation cohort, Agathobacter M104/1 and Blautia SR1/5 expression were associated with PFS according to their presence or absence in basal fecal samples. Agathobacter and Blautia species could be potential biomarkers of outcome in mCRC, and NSCLC patients treated with cetuximab + avelumab. These findings deserve further investigation.
10.1002/ijc.34033
Vancomycin-induced gut microbial dysbiosis alters enteric neuron-macrophage interactions during a critical period of postnatal development.
Frontiers in immunology
Vancomycin is a broad-spectrum antibiotic widely used in cases of suspected sepsis in premature neonates. While appropriate and potentially lifesaving in this setting, early-life antibiotic exposure alters the developing microbiome and is associated with an increased risk of deadly complications, including late-onset sepsis (LOS) and necrotizing enterocolitis (NEC). Recent studies show that neonatal vancomycin treatment disrupts postnatal enteric nervous system (ENS) development in mouse pups, which is in part dependent upon neuroimmune interactions. This suggests that early-life antibiotic exposure could disrupt these interactions in the neonatal gut. Notably, a subset of tissue-resident intestinal macrophages, muscularis macrophages, has been identified as important contributors to the development of postnatal ENS. We hypothesized that vancomycin-induced neonatal dysbiosis impacts postnatal ENS development through its effects on macrophages. Using a mouse model, we found that exposure to vancomycin in the first 10 days of life, but not in adult mice, resulted in an expansion of pro-inflammatory colonic macrophages by increasing the recruitment of bone-marrow-derived macrophages. Single-cell RNA sequencing of neonatal colonic macrophages revealed that early-life vancomycin exposure was associated with an increase in immature and inflammatory macrophages, consistent with an influx of circulating monocytes differentiating into macrophages. Lineage tracing confirmed that vancomycin significantly increased the non-yolk-sac-derived macrophage population. Consistent with these results, early-life vancomycin exposure did not expand the colonic macrophage population nor decrease enteric neuron density in CCR2-deficient mice. Collectively, these findings demonstrate that early-life vancomycin exposure alters macrophage number and phenotypes in distinct ways compared with vancomycin exposure in adult mice and results in altered ENS development.
10.3389/fimmu.2023.1268909
Division of functional roles for termite gut protists revealed by single-cell transcriptomes.
The ISME journal
The microbiome in the hindgut of wood-feeding termites comprises various species of bacteria, archaea, and protists. This gut community is indispensable for the termite, which thrives solely on recalcitrant and nitrogen-poor wood. However, the difficulty in culturing these microorganisms has hindered our understanding of the function of each species in the gut. Although protists predominate in the termite gut microbiome and play a major role in wood digestion, very few culture-independent studies have explored the contribution of each species to digestion. Here, we report single-cell transcriptomes of four protists species comprising the protist population in worldwide pest Coptotermes formosanus. Comparative transcriptomic analysis revealed that the expression patterns of the genes involved in wood digestion were different among species, reinforcing their division of roles in wood degradation. Transcriptomes, together with enzyme assays, also suggested that one of the protists, Cononympha leidyi, actively degrades chitin and assimilates it into amino acids. We propose that C. leidyi contributes to nitrogen recycling and inhibiting infection from entomopathogenic fungi through chitin degradation. Two of the genes for chitin degradation were further revealed to be acquired via lateral gene transfer (LGT) implying the importance of LGT in the evolution of symbiosis. Our single-cell-based approach successfully characterized the function of each protist in termite hindgut and explained why the gut community includes multiple species.
10.1038/s41396-020-0698-z
Bladder Exposure to Activates Host Pathways Necessary for Recurrent UTI.
Frontiers in cellular and infection microbiology
Recurrent urinary tract infections (rUTI) are a costly clinical problem affecting millions of women worldwide each year. The majority of rUTI cases are caused by uropathogenic (UPEC). Data from humans and mouse models indicate that some instances of rUTI are caused by UPEC emerging from latent reservoirs in the bladder. Women with vaginal dysbiosis, typically characterized by high levels of and other anaerobes, are at increased risk of UTI. Multiple studies have detected in urine collected by transurethral catheterization (to limit vaginal contamination), suggesting that some women experience routine urinary tract exposures. We recently reported that inoculation of into the bladder triggers rUTI from UPEC bladder reservoirs in a mouse model. Here we performed whole bladder RNA-seq to identify host pathways involved in induced rUTI. We identified a variety host pathways differentially expressed in whole bladders following exposure, such as pathways involved in inflammation/immunity and epithelial turnover. At the gene level, we identified upregulation of Immediate Early (IE) genes, which are induced in various cell types shortly following stimuli like infection and inflammation. One such upregulated IE gene was the orphan nuclear receptor (aka ). Pilot experiments in mice suggest that Nur77 is necessary for exposure to trigger rUTI from UPEC reservoirs. These findings demonstrate that bladder gene expression can be impacted by short-lived exposures to urogenital bacteria and warrant future examination of responses in distinct cell types, such as with single cell transcriptomic technologies. The biological validation studies in mice lay the groundwork for future studies investigating Nur77 and the Immediate Early response in rUTI.
10.3389/fcimb.2021.788229
Antigen discovery and specification of immunodominance hierarchies for MHCII-restricted epitopes.
Graham Daniel B,Luo Chengwei,O'Connell Daniel J,Lefkovith Ariel,Brown Eric M,Yassour Moran,Varma Mukund,Abelin Jennifer G,Conway Kara L,Jasso Guadalupe J,Matar Caline G,Carr Steven A,Xavier Ramnik J
Nature medicine
Identifying immunodominant T cell epitopes remains a significant challenge in the context of infectious disease, autoimmunity, and immuno-oncology. To address the challenge of antigen discovery, we developed a quantitative proteomic approach that enabled unbiased identification of major histocompatibility complex class II (MHCII)-associated peptide epitopes and biochemical features of antigenicity. On the basis of these data, we trained a deep neural network model for genome-scale predictions of immunodominant MHCII-restricted epitopes. We named this model bacteria originated T cell antigen (BOTA) predictor. In validation studies, BOTA accurately predicted novel CD4 T cell epitopes derived from the model pathogen Listeria monocytogenes and the commensal microorganism Muribaculum intestinale. To conclusively define immunodominant T cell epitopes predicted by BOTA, we developed a high-throughput approach to screen DNA-encoded peptide-MHCII libraries for functional recognition by T cell receptors identified from single-cell RNA sequencing. Collectively, these studies provide a framework for defining the immunodominance landscape across a broad range of immune pathologies.
10.1038/s41591-018-0203-7
Mapping Genetic Susceptibility to Stenosis in the Proximal Airway.
The Laryngoscope
OBJECTIVES:Recent translational scientific efforts in subglottic stenosis (SGS) support a disease model where epithelial alterations facilitate microbiome displacement, dysregulated immune activation, and localized fibrosis. Yet despite recent advances, the genetic basis of SGS remains poorly understood. We sought to identify candidate risk genes associated with an SGS phenotype, investigate their biological function, and identify the cell types enriched for their expression. METHODS:The Online Mendelian Inheritance in Man (OMIM) database was queried for single gene variants associated with an SGS phenotype. The functional intersections and molecular roles of the identified genes were explored using pathway enrichment analysis (PEA) computational methods. Cellular localization of the candidate risk genes was measured via transcriptional quantification in an established single cell RNA sequencing (scRNA-seq) atlas of the proximal airway. RESULTS:Twenty genes associated with SGS phenotype were identified. PEA resulted in 24 significantly enriched terms including "cellular response to TGF-β," "epithelial-to-mesenchymal transition," and "adherens junctions." Mapping the 20 candidate risk genes to the scRNA-seq atlas found 3 (15%) genes were enriched in epithelial cells, 3 (15%) in fibroblasts, and 3 (15%) in endothelial cells. 11 (55%) genes were expressed ubiquitously among tissue types. Interestingly, immune cells were not significantly enriched for candidate risk genes. CONCLUSION:We identify and provide biologic context for 20 genes associated with fibrotic disease of the proximal airway and form the foundation for future detailed genetic study. LEVEL OF EVIDENCE:N/A Laryngoscope, 133:3049-3056, 2023.
10.1002/lary.30718
Cannabinoid Receptor Activation on Haematopoietic Cells and Enterocytes Protects against Colitis.
Becker William,Alrafas Haider Rasheed,Busbee Philip B,Walla Michael D,Wilson Kiesha,Miranda Kathryn,Cai Guoshuai,Putluri Vasanta,Putluri Nagireddy,Nagarkatti Mitzi,Nagarkatti Prakash S
Journal of Crohn's & colitis
BACKGROUND AND AIMS:Cannabinoid receptor [CB] activation can attenuate inflammatory bowel disease [IBD] in experimental models and human cohorts. However, the roles of the microbiome, metabolome, and the respective contributions of haematopoietic and non-haematopoietic cells in the anti-colitic effects of cannabinoids have yet to be determined. METHODS:Female C57BL/6 mice were treated with either cannabidiol [CBD], Δ 9-tetrahydrocannabinol [THC], a combination of CBD and THC, or vehicle, in several models of chemically induced colitis. Clinical parameters of colitis were assessed by colonoscopy, histology, flow cytometry, and detection of serum biomarkers; single-cell RNA sequencing and qRT-PCR were used to evaluate the effects of cannabinoids on enterocytes. Immune cell transfer from CB2 knockout mice was used to evaluate the contribution of haematopoietic and non-haematopoietic cells to colitis protection. RESULTS:We found that THC prevented colitis and that CBD, at the dose tested, provided little benefit to the amelioration of colitis, nor when added synergistically with THC. THC increased colonic barrier integrity by stimulating mucus and tight junction and antimicrobial peptide production, and these effects were specific to the large intestine. THC increased colonic Gram-negative bacteria, but the anti-colitic effects of THC were independent of the microbiome. THC acted both on immune cells via CB2 and on enterocytes, to attenuate colitis. CONCLUSIONS:Our findings demonstrate how cannabinoid receptor activation on both immune cells and colonocytes is critical to prevent colonic inflammation. These studies also suggest how cannabinoid receptor activation can be used as a preventive and therapeutic modality against colitis.
10.1093/ecco-jcc/jjaa253
Preliminary evidence for developing safe and efficient fecal microbiota transplantation as potential treatment for aged related cognitive impairments.
Frontiers in cellular and infection microbiology
Background:Recent studies have reported that gut microbiota is closely associated with cognitive fuction. Fecal microbiota transplantation (FMT) may be a potential treatment for cognitive impairment, but its efficacy in patients with cognitive impairment is unknown. Objectives:This study aimed to investigate the safety and efficacy of FMT for cognitive impairment treatment. Methods:Five patients aged 54-80 years (three women) were enrolled in this single-arm clinical trial from July 2021 to May 2022. The Montreal Cognitive Assessment-B (MoCA-B), Activities of Daily Living (ADL), and the cognitive section of the Alzheimer's Disease Assessment Scale (ADAS-Cog) were assessed at days 0, 30, 60, 90, and 180. Additionally, stool and serum samples were obtained twice before FMT was administered and six months after the treatment. The structure of fecal microbiota was analyzed by 16S RNA gene sequencing. Serum samples were analyzed for metabolomics and lipopolysaccharide (LPS)-binding proteins by liquid chromatography-mass spectrometry and enzyme-linked immunosorbent assay, respectively. Safety was assessed based on adverse events, vital signs, and laboratory parameters during FMT and the follow-up period. Results:The MoCA, ADL, and ADAS-Cog scores of patients with mild cognitive impairment (patients C and E) after FMT were improved or maintained compared with those before transplantation. However, patients with severe cognitive impairment (patients A, B, and D) had no worsening of cognitive scores. Fecal microbiota analysis showed that FMT changed the structure of gut microbiota. The results of serum metabolomics analysis suggested that there were significant changes in the serum metabolomics of patients after FMT, with 7 up-regulated and 28 down-regulated metabolites. 3b,12a-dihydroxy-5a-cholanoic acid, 25-acetylvulgaroside, deoxycholic acid, 2(R)-hydroxydocosanoic acid, and P-anisic acid increased, while bilirubin and other metabolites decreased. KEFF pathway analysis indicated that the main metabolic pathways were bile secretion and choline metabolism in cancer. No adverse effects were reported throughout the study. Conclusions:In this pilot study, FMT could maintain and improve cognitive function in mild cognitive impairment by changing gut microbiota structure and affecting serum metabolomics. Fecal bacteria capsules were safe. However, further studies are needed to evaluate the safety and efficacy of fecal microbiota transplantation. ClinicalTrials.gov Identifier: CHiCTR2100043548.
10.3389/fcimb.2023.1103189
Gut microbiome dysbiosis in men who have sex with men increases HIV infection risk through immunity homeostasis alteration.
Frontiers in cellular and infection microbiology
Objectives:Recent studies pointed out that gut microbiome dysbiosis in HIV infection was possibly confounded in men who have sex with men (MSM), but there is a lack of evidence. It also remained unclear how MSM-associated gut microbiome dysbiosis affected human health. This study aimed to compare the differences in gut microbiome changes between HIV and MSM and reveal the potential impacts of MSM-associated gut microbiome dysbiosis on the immune system. Methods:We searched available studies based on the PubMed database, and all gut microbiome changes associated with HIV infection and MSM were extracted from the enrolled studies. The gutMgene database was used to identify the target genes and metabolites of the gut microbiome. Bioinformatic technology and single-cell RNA sequencing data analysis were utilized to explore the impacts of these gut microbiome changes on human immunity. Results:The results showed significant overlaps between the gut microbiome associated with HIV and that of MSM. Moreover, bioinformatic analysis revealed that gut microbiome dysbiosis in MSM had an impact on several pathways related to immunity, including the IL-17 signaling pathway and Th17 cell differentiation. Additionally, target genes of MSM-associated gut microbiome were found to be highly expressed in monocytes and lymphocytes, suggesting their potential regulatory role in immune cells. Furthermore, we found that MSM-associated gut microbiome could produce acetate and butyrate which were reported to increase the level of inflammatory factors. Conclusion:In conclusion, this study highlighted that MSM-associated gut microbiome dysbiosis might increase the risk of HIV acquisition by activating the immune system. Further studies are expected to elucidate the mechanism by which gut microbiome dysbiosis in MSM modulates HIV susceptibility.
10.3389/fcimb.2023.1260068
A distinct human cell type expressing MHCII and RORγt with dual characteristics of dendritic cells and type 3 innate lymphoid cells.
Proceedings of the National Academy of Sciences of the United States of America
Recent studies have characterized various mouse antigen-presenting cells (APCs) expressing the lymphoid-lineage transcription factor RORγt (Retinoid-related orphan receptor gamma t), which exhibit distinct phenotypic features and are implicated in the induction of peripheral regulatory T cells (Tregs) and immune tolerance to microbiota and self-antigens. These APCs encompass Janus cells and Thetis cell subsets, some of which express the AutoImmune REgulator (AIRE). RORγt MHCII type 3 innate lymphoid cells (ILC3) have also been implicated in the instruction of microbiota-specific Tregs. While RORγt APCs have been actively investigated in mice, the identity and function of these cell subsets in humans remain elusive. Herein, we identify a rare subset of RORγt cells with dendritic cell (DC) features through integrated single-cell RNA sequencing and single-cell ATAC sequencing. These cells, which we term RORγt DC-like cells (R-DC-like), exhibit DC morphology, express the MHC class II machinery, and are distinct from all previously reported DC and ILC3 subsets, but share transcriptional and epigenetic similarities with DC2 and ILC3. We have developed procedures to isolate and expand them in vitro, enabling their functional characterization. R-DC-like cells proliferate in vitro, continue to express RORγt, and differentiate into CD1c DC2-like cells. They stimulate the proliferation of allogeneic T cells. The identification of human R-DC-like cells with proliferative potential and plasticity toward CD1c DC2-like cells will prompt further investigation into their impact on immune homeostasis, inflammation, and autoimmunity.
10.1073/pnas.2318710120
Conserved roles for Hnf4 family transcription factors in zebrafish development and intestinal function.
Genetics
Transcription factors play important roles in the development of the intestinal epithelium and its ability to respond to endocrine, nutritional, and microbial signals. Hepatocyte nuclear factor 4 family nuclear receptors are liganded transcription factors that are critical for the development and function of multiple digestive organs in vertebrates, including the intestinal epithelium. Zebrafish have 3 hepatocyte nuclear factor 4 homologs, of which, hnf4a was previously shown to mediate intestinal responses to microbiota in zebrafish larvae. To discern the functions of other hepatocyte nuclear factor 4 family members in zebrafish development and intestinal function, we created and characterized mutations in hnf4g and hnf4b. We addressed the possibility of genetic redundancy amongst these factors by creating double and triple mutants which showed different rates of survival, including apparent early lethality in hnf4a; hnf4b double mutants and triple mutants. RNA sequencing performed on digestive tracts from single and double mutant larvae revealed extensive changes in intestinal gene expression in hnf4a mutants that were amplified in hnf4a; hnf4g mutants, but limited in hnf4g mutants. Changes in hnf4a and hnf4a; hnf4g mutants were reminiscent of those seen in mice including decreased expression of genes involved in intestinal function and increased expression of cell proliferation genes, and were validated using transgenic reporters and EdU labeling in the intestinal epithelium. Gnotobiotics combined with RNA sequencing also showed hnf4g has subtler roles than hnf4a in host responses to microbiota. Overall, phenotypic changes in hnf4a single mutants were strongly enhanced in hnf4a; hnf4g double mutants, suggesting a conserved partial genetic redundancy between hnf4a and hnf4g in the vertebrate intestine.
10.1093/genetics/iyac133
High-throughput identification and quantification of single bacterial cells in the microbiota.
Nature communications
The bacterial microbiota works as a community that consists of many individual organisms, i.e., cells. To fully understand the function of bacterial microbiota, individual cells must be identified; however, it is difficult with current techniques. Here, we develop a method, Barcoding Bacteria for Identification and Quantification (BarBIQ), which classifies single bacterial cells into taxa-named herein cell-based operational taxonomy units (cOTUs)-based on cellularly barcoded 16S rRNA sequences with single-base accuracy, and quantifies the cell number for each cOTU in the microbiota in a high-throughput manner. We apply BarBIQ to murine cecal microbiotas and quantify in total 3.4 × 10 bacterial cells containing 810 cOTUs. Interestingly, we find location-dependent global differences in the cecal microbiota depending on the dietary vitamin A deficiency, and more differentially abundant cOTUs at the proximal location than the distal location. Importantly, these location differences are not clearly shown by conventional 16S rRNA gene-amplicon sequencing methods, which quantify the 16S rRNA genes, not the cells. Thus, BarBIQ enables microbiota characterization with the identification and quantification of individual constituent bacteria, which is a cornerstone for microbiota studies.
10.1038/s41467-022-28426-1
Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO.
Nature methods
Factor analysis is a widely used method for dimensionality reduction in genome biology, with applications from personalized health to single-cell biology. Existing factor analysis models assume independence of the observed samples, an assumption that fails in spatio-temporal profiling studies. Here we present MEFISTO, a flexible and versatile toolbox for modeling high-dimensional data when spatial or temporal dependencies between the samples are known. MEFISTO maintains the established benefits of factor analysis for multimodal data, but enables the performance of spatio-temporally informed dimensionality reduction, interpolation, and separation of smooth from non-smooth patterns of variation. Moreover, MEFISTO can integrate multiple related datasets by simultaneously identifying and aligning the underlying patterns of variation in a data-driven manner. To illustrate MEFISTO, we apply the model to different datasets with spatial or temporal resolution, including an evolutionary atlas of organ development, a longitudinal microbiome study, a single-cell multi-omics atlas of mouse gastrulation and spatially resolved transcriptomics.
10.1038/s41592-021-01343-9
A quantitative SMRT cell sequencing method for ribosomal amplicons.
Jones Bethan M,Kustka Adam B
Journal of microbiological methods
Advances in sequencing technologies continue to provide unprecedented opportunities to characterize microbial communities. For example, the Pacific Biosciences Single Molecule Real-Time (SMRT) platform has emerged as a unique approach harnessing DNA polymerase activity to sequence template molecules, enabling long reads at low costs. With the aim to simultaneously classify and enumerate in situ microbial populations, we developed a quantitative SMRT (qSMRT) approach that involves the addition of exogenous standards to quantify ribosomal amplicons derived from environmental samples. The V7-9 regions of 18S SSU rDNA were targeted and quantified from protistan community samples collected in the Ross Sea during the Austral summer of 2011. We used three standards of different length and optimized conditions to obtain accurate quantitative retrieval across the range of expected amplicon sizes, a necessary criterion for analyzing taxonomically diverse 18S rDNA molecules from natural environments. The ability to concurrently identify and quantify microorganisms in their natural environment makes qSMRT a powerful, rapid and cost-effective approach for defining ecosystem diversity and function.
10.1016/j.mimet.2017.01.017
Predicting preterm birth through vaginal microbiota, cervical length, and WBC using a machine learning model.
Frontiers in microbiology
An association between the vaginal microbiome and preterm birth has been reported. However, in practice, it is difficult to predict premature birth using the microbiome because the vaginal microbial community varies highly among samples depending on the individual, and the prediction rate is very low. The purpose of this study was to select markers that improve predictive power through machine learning among various vaginal microbiota and develop a prediction algorithm with better predictive power that combines clinical information. As a multicenter case-control study with 150 Korean pregnant women with 54 preterm delivery group and 96 full-term delivery group, cervicovaginal fluid was collected from pregnant women during mid-pregnancy. Their demographic profiles (age, BMI, education level, and PTB history), white blood cell count, and cervical length were recorded, and the microbiome profiles of the cervicovaginal fluid were analyzed. The subjects were randomly divided into a training ( = 101) and a test set ( = 49) in a two-to-one ratio. When training ML models using selected markers, five-fold cross-validation was performed on the training set. A univariate analysis was performed to select markers using seven statistical tests, including the Wilcoxon rank-sum test. Using the selected markers, including spp., , , , , and , machine learning models (logistic regression, random forest, extreme gradient boosting, support vector machine, and GUIDE) were used to build prediction models. The test area under the curve of the logistic regression model was 0.72 when it was trained with the 17 selected markers. When analyzed by combining white blood cell count and cervical length with the seven vaginal microbiome markers, the random forest model showed the highest test area under the curve of 0.84. The GUIDE, the single tree model, provided a more reasonable biological interpretation, using the 10 selected markers (, , , , , , , , , and ), and the covariates produced a tree with a test area under the curve of 0.77. It was confirmed that the association with preterm birth increased when and increased (AUC = 0.77), which could also be explained by the fact that as the number of increased, the association with preterm birth was high (AUC = 0.77). Our study demonstrates that several candidate bacteria could be used as potential predictors for preterm birth, and that the predictive rate can be increased through a machine learning model employing a combination of cervical length and white blood cell count information.
10.3389/fmicb.2022.912853
Prototypical pacemaker neurons interact with the resident microbiota.
Proceedings of the National Academy of Sciences of the United States of America
Pacemaker neurons exert control over neuronal circuit function by their intrinsic ability to generate rhythmic bursts of action potential. Recent work has identified rhythmic gut contractions in human, mice, and hydra to be dependent on both neurons and the resident microbiota. However, little is known about the evolutionary origin of these neurons and their interaction with microbes. In this study, we identified and functionally characterized prototypical ANO/SCN/TRPM ion channel-expressing pacemaker cells in the basal metazoan by using a combination of single-cell transcriptomics, immunochemistry, and functional experiments. Unexpectedly, these prototypical pacemaker neurons express a rich set of immune-related genes mediating their interaction with the microbial environment. Furthermore, functional experiments gave a strong support to a model of the evolutionary emergence of pacemaker cells as neurons using components of innate immunity to interact with the microbial environment and ion channels to generate rhythmic contractions.
10.1073/pnas.1920469117
Deconvolution of the hematopoietic stem cell microenvironment reveals a high degree of specialization and conservation.
iScience
Understanding the regulation of normal and malignant human hematopoiesis requires comprehensive cell atlas of the hematopoietic stem cell (HSC) regulatory microenvironment. Here, we develop a tailored bioinformatic pipeline to integrate public and proprietary single-cell RNA sequencing (scRNA-seq) datasets. As a result, we robustly identify for the first time 14 intermediate cell states and 11 stages of differentiation in the endothelial and mesenchymal BM compartments, respectively. Our data provide the most comprehensive description to date of the murine HSC-regulatory microenvironment and suggest a higher level of specialization of the cellular circuits than previously anticipated. Furthermore, this deep characterization allows inferring conserved features in human, suggesting that the layers of microenvironmental regulation of hematopoiesis may also be shared between species. Our resource and methodology is a stepping-stone toward a comprehensive cell atlas of the BM microenvironment.
10.1016/j.isci.2022.104225
Endometriosis induces gut microbiota alterations in mice.
Yuan Ming,Li Dong,Zhang Zhe,Sun Huihui,An Min,Wang Guoyun
Human reproduction (Oxford, England)
STUDY QUESTION:What happens to the gut microbiota during development of murine endometriosis? SUMMARY ANSWER:Mice with the persistence of endometrial lesions for 42 days develop a distinct composition of gut microbiota. WHAT IS KNOWN ALREADY:Disorders in the immune system play fundamental roles in changing the intestinal microbiota. No study has used high-throughput DNA sequencing to show how endometriosis changes the gut microbiota, although endometriosis is accompanied by abnormal cytokine expression and immune cell dysfunction. STUDY DESIGN, SIZE, DURATION:This study includes a prospective and randomized experiment on an animal endometriosis model induced via the intraperitoneal injection of endometrial tissues. PARTICIPANTS/MATERIALS, SETTING, METHODS:The mice were divided into endometriosis and mock groups and were sacrificed at four different time points for model confirmation and fecal sample collection. To detect gut microbiota, 16S ribosomal-RNA gene sequencing was performed. Alpha diversity was used to analyze the complexity and species diversity of the samples through six indices. Beta diversity analysis was utilized to evaluate the differences in species complexity. Principal coordinate analysis and unweighted pair-group method with arithmetic means clustering were performed to determine the clustering features. The microbial features differentiating the fecal microbiota were characterized by linear discriminant analysis effect size method. MAIN RESULTS AND THE ROLE OF CHANCE:The endometriosis and mock mice shared similar diversity and richness of gut microbiota. However, different compositions of gut microbiota were detected 42 days after the modeling. Among the discriminative concrete features, the Firmicutes/Bacteroidetes ratio was elevated in mice with endometriosis, indicating that endometriosis may induce dysbiosis. Bifidobacterium, which is known as a commonly used probiotic, was also increased in mice with endometriosis. LARGE SCALE DATA:N/A. LIMITATIONS, REASONS FOR CAUTION:More control groups should be further studied to clarify the specificity of the dysbiosis induced by endometriosis. This study was performed only on mice. Thus, additional data acquired from patients with endometriosis are needed in future research. We only detected the changes of gut microbiota at 42 days after the modeling, while the long-term effect of endometriosis on gut microbiota remains poorly understood. Moreover, we only revealed a single effect of endometriosis on gut microbiota. WIDER IMPLICATIONS OF THE FINDINGS:This study provided the first comprehensive data on the association of endometriosis and gut microbiota from high-throughput sequencing technology. The gut microbiota changed with the development of endometriosis in a murine model. The communication between the host and the gut microbiota is bidirectional, and further studies should be performed to clarify their relationship. STUDY FUNDING/COMPETING INTEREST(S):This research was supported by Grant (81571417) from the National Science Foundation of China and Grant (2015GSF118092) from the Technology Development Plan of Shandong Province. The authors report no conflict of interest.
10.1093/humrep/dex372
Metric learning for comparing genomic data with triplet network.
Briefings in bioinformatics
Many biological applications are essentially pairwise comparison problems, such as evolutionary relationships on genomic sequences, contigs binning on metagenomic data, cell type identification on gene expression profiles of single-cells, etc. To make pair-wise comparison, it is necessary to adopt suitable dissimilarity metric. However, not all the metrics can be fully adapted to all possible biological applications. It is necessary to employ metric learning based on data adaptive to the application of interest. Therefore, in this study, we proposed MEtric Learning with Triplet network (MELT), which learns a nonlinear mapping from original space to the embedding space in order to keep similar data closer and dissimilar data far apart. MELT is a weakly supervised and data-driven comparison framework that offers more adaptive and accurate dissimilarity learned in the absence of the label information when the supervised methods are not applicable. We applied MELT in three typical applications of genomic data comparison, including hierarchical genomic sequences, longitudinal microbiome samples and longitudinal single-cell gene expression profiles, which have no distinctive grouping information. In the experiments, MELT demonstrated its empirical utility in comparison to many widely used dissimilarity metrics. And MELT is expected to accommodate a more extensive set of applications in large-scale genomic comparisons. MELT is available at https://github.com/Ying-Lab/MELT.
10.1093/bib/bbac345
Single-Cell Transcriptomics Reveal a Correlation between Genome Architecture and Gene Family Evolution in Ciliates.
mBio
Ciliates, a eukaryotic clade that is over 1 billion years old, are defined by division of genome function between transcriptionally inactive germline micronuclei and functional somatic macronuclei. To date, most analyses of gene family evolution have been limited to cultivable model lineages (e.g., , , , and ). Here, we focus on the uncultivable Karyorelictea and its understudied sister class Heterotrichea, which represent two extremes in genome architecture. Somatic macronuclei within the Karyorelictea are described as nearly diploid, while the Heterotrichea have hyperpolyploid somatic genomes. Previous analyses indicate that genome architecture impacts ciliate gene family evolution as the most diverse and largest gene families are found in lineages with extensively processed somatic genomes (i.e., possessing thousands of gene-sized chromosomes). To further assess ciliate gene family evolution, we analyzed 43 single-cell transcriptomes from 33 ciliate species representing 10 classes. Focusing on conserved eukaryotic genes, we use estimates of transcript diversity as a proxy for the number of paralogs in gene families among four focal clades: Karyorelictea, Heterotrichea, extensive fragmenters (with gene-size somatic chromosomes), and non-extensive fragmenters (with more traditional somatic chromosomes), the latter two within the subphylum Intramacronucleata. Our results show that (i) the Karyorelictea have the lowest average transcript diversity, while Heterotrichea are highest among the four groups; (ii) proteins in Karyorelictea are under the highest functional constraints, and the patterns of selection in ciliates may reflect genome architecture; and (iii) stop codon reassignments vary among members of the Heterotrichea and Spirotrichea but are conserved in other classes. To further our understanding of genome evolution in eukaryotes, we assess the relationship between patterns of molecular evolution within gene families and variable genome structures found among ciliates. We combine single-cell transcriptomics with bioinformatic tools, focusing on understudied and uncultivable lineages selected from across the ciliate tree of life. Our analyses show that genome architecture correlates with patterns of protein evolution as lineages with more canonical somatic genomes, such as the class Karyorelictea, have more conserved patterns of molecular evolution compared to other classes. This study showcases the power of single-cell transcriptomics for investigating genome architecture and evolution in uncultivable microbial lineages and provides transcriptomic resources for further research on genome evolution.
10.1128/mBio.02524-19
Comprehensive Assessment of 16S rRNA Gene Amplicon Sequencing for Microbiome Profiling across Multiple Habitats.
Microbiology spectrum
The 16S rRNA gene works as a rapid and effective marker for the identification of microorganisms in complex communities; hence, a huge number of microbiomes have been surveyed by 16S amplicon-based sequencing. The resolution of the 16S rRNA gene is always considered only at the genus level; however, it has not been verified on a wide range of microbes yet. To fully explore the ability and potential of the 16S rRNA gene in microbial profiling, here, we propose Qscore, a comprehensive method to evaluate the performance of amplicons by integrating the amplification rate, multitier taxonomic annotation, sequence type, and length. Our assessment by a "global view" of 35,889 microbe species across multiple reference databases summarizes the optimal sequencing strategy for 16S short reads. On the other hand, since microbes are unevenly distributed according to their habitats, we also provide the recommended configuration for 16 typical ecosystems based on the Qscores of 157,390 microbiomes in the Microbiome Search Engine (MSE). Detailed data simulation further proves that the 16S amplicons produced with Qscore-suggested parameters exhibit high precision in microbiome profiling, which is close to that of shotgun metagenomes under CAMI metrics. Therefore, by reconsidering the precision of 16S-based microbiome profiling, our work not only enables the high-quality reusability of massive sequence legacy that has already been produced but is also significant for guiding microbiome studies in the future. We have implemented the Qscore as an online service at http://qscore.single-cell.cn to parse the recommended sequencing strategy for specific habitats or expected microbial structures. 16S rRNA has long been used as a biomarker to identify distinct microbes from complex communities. However, due to the influence of the amplification region, sequencing type, sequence processing, and reference database, the accuracy of 16S rRNA has not been fully verified on a global range. More importantly, the microbial composition of different habitats varies greatly, and it is necessary to adopt different strategies according to the corresponding target microbes to achieve optimal analytical performance. Here, we developed Qscore, which evaluates the comprehensive performance of 16S amplicons from multiple perspectives, thus providing the best sequencing strategies for common ecological environments by using big data.
10.1128/spectrum.00563-23
Transcriptome profile and immune infiltrated landscape revealed a novel role of γδT cells in mediating pyroptosis in celiac disease.
Journal of translational medicine
BACKGROUND:Celiac disease (CeD) is a primary malabsorption syndrome with no specific therapy, which greatly affects the quality of life. Since the pathogenesis of CeD remains riddled, based on multiple transcriptome profiles, this study aimed to establish an immune interaction network and elucidated new mechanisms involved in the pathogenesis of CeD, providing potentially new evidence for the diagnosis and treatment of CeD. METHODS:Three microarray and three RNA sequencing datasets of human duodenal tissue with or without CeD were included in Gene Expression Omnibus and respectively merged into derivation and validation cohorts. Differential expression gene and functional enrichment analysis were developed, then pyroptosis enrichment score (PES) model was established to quantify pyroptosis levels. Immune infiltration and co-expression network were constructed based on Xcell database. Protein-protein interaction and weighted gene co-expression network analysis were determined to identify pyroptosis relative hub genes, whose predictive efficiency were tested using a least absolute shrinkage and selection operator (LASSO) regression model. CeD animal and in vitro cell line models were established to verify the occurrence of pyroptosis and molecules expression employing immunofluorescence, western blotting, cell counting kit-8 assay and enzyme-linked immunosorbent assay. Analysis of single-cell RNAseq (scRNAseq) was performed using "Seurat" R package. RESULTS:Differentially expressed genes (DEGs) (137) were identified in derivation cohort whose function was mainly enriched in interferon response and suppression of metabolism. Since an enrichment of pyroptosis pathway in CeD was unexpectedly discovered, a PES model with high efficiency was constructed and verified with two external databases, which confirmed that pyroptosis was significantly upregulated in CeD epithelia. γδT cells exhibited high expression of IFN-γ were the most relevant cells associated with pyroptosis and occupied a greater weight in the LASSO predictive model of CeD. An accumulation of GSDMD expressed in epithelia was identified using scRNAseq, while animal model and in vitro experiments confirmed that epithelium cells were induced to become "pre-pyroptotic" status via IFN-γ/IRF1/GSDMD axis. Furthermore, gluten intake triggered pyroptosis via caspase-1/GSDMD/IL-1β pathway. CONCLUSION:Our study demonstrated that pyroptosis was involved in the pathogenesis of CeD, and elucidated the novel role of γδT cells in mediating epithelial cell pyroptosis.
10.1186/s12967-023-04359-1
Integrated multi-omics identified the novel intratumor microbiome-derived subtypes and signature to predict the outcome, tumor microenvironment heterogeneity, and immunotherapy response for pancreatic cancer patients.
Frontiers in pharmacology
The extremely malignant tumour known as pancreatic cancer (PC) lacks efficient prognostic markers and treatment strategies. The microbiome is crucial to how cancer develops and responds to treatment. Our study was conducted in order to better understand how PC patients' microbiomes influence their outcome, tumour microenvironment, and responsiveness to immunotherapy. We integrated transcriptome and microbiome data of PC and used univariable Cox regression and Kaplan-Meier method for screening the prognostic microbes. Then intratumor microbiome-derived subtypes were identified using consensus clustering. We utilized LASSO and Cox regression to build the microbe-related model for predicting the prognosis of PC, and utilized eight algorithms to assess the immune microenvironment feature. The OncoPredict package was utilized to predict drug treatment response. We utilized qRT-PCR to verify gene expression and single-cell analysis to reveal the composition of PC tumour microenvironment. We obtained a total of 26 prognostic genera in PC. And PC samples were divided into two microbiome-related subtypes: Mcluster A and B. Compared with Mcluster A, patients in Mcluster B had a worse prognosis and higher TNM stage and pathological grade. Immune analysis revealed that neutrophils, regulatory T cell, CD8 T cell, macrophages M1 and M2, cancer associated fibroblasts, myeloid dendritic cell, and activated mast cell had remarkably higher infiltrated levels within the tumour microenvironment of Mcluster B. Patients in Mcluster A were more likely to benefit from CTLA-4 blockers and were highly sensitive to 5-fluorouracil, cisplatin, gemcitabine, irinotecan, oxaliplatin, and epirubicin. Moreover, we built a microbe-derived model to assess the outcome. The ROC curves showed that the microbe-related model has good predictive performance. The expression of LAMA3 and LIPH was markedly increased within pancreatic tumour tissues and was linked to advanced stage and poor prognosis. Single-cell analysis indicated that besides cancer cells, the tumour microenvironment of PC was also rich in monocytes/macrophages, endothelial cells, and fibroblasts. LIPH and LAMA3 exhibited relatively higher expression in cancer cells and neutrophils. The intratumor microbiome-derived subtypes and signature in PC were first established, and our study provided novel perspectives on PC prognostic indicators and treatment options.
10.3389/fphar.2023.1244752
Targeted single-cell genomics reveals novel host adaptation strategies of the symbiotic bacteria Endozoicomonas in Acropora tenuis coral.
Microbiome
BACKGROUND:Endozoicomonas bacteria symbiosis with various marine organisms is hypothesized as a potential indicator of health in corals. Although many amplicon analyses using 16S rRNA gene have suggested the diversity of Endozoicomonas species, genome analysis has been limited due to contamination of host-derived sequences and difficulties in culture and metagenomic analysis. Therefore, the evolutionary and functional potential of individual Endozoicomonas species symbiotic with the same coral species remains unresolved. RESULTS:In this study, we applied a novel single-cell genomics technique using droplet microfluidics to obtain single-cell amplified genomes (SAGs) for uncultured coral-associated Endozoicomonas spp. We obtained seven novel Endozoicomonas genomes and quantitative bacterial composition from Acropora tenuis corals at four sites in Japan. Our quantitative 16S rRNA gene and comparative genomic analysis revealed that these Endozoicomonas spp. belong to different lineages (Clade A and Clade B), with widely varying abundance among individual corals. Furthermore, each Endozoicomonas species possessed various eukaryotic-like genes in clade-specific genes. It was suggested that these eukaryotic-like genes might have a potential ability of different functions in each clade, such as infection of the host coral or suppression of host immune pathways. These Endozoicomonas species may have adopted different host adaptation strategies despite living symbiotically on the same coral. CONCLUSIONS:This study suggests that coral-associated Endozoicomonas spp. on the same species of coral have different evolutional strategies and functional potentials in each species and emphasizes the need to analyze the genome of each uncultured strain in future coral-Endozoicomonas relationships studies. Video Abstract.
10.1186/s40168-022-01395-9
High-resolution single-molecule long-fragment rRNA gene amplicon sequencing of bacterial and eukaryotic microbial communities.
Cell reports methods
Sequencing of hypervariable regions as well as internal transcribed spacer regions of ribosomal RNA genes (rDNA) is broadly used to identify bacteria and fungi, but taxonomic and phylogenetic resolution is hampered by insufficient sequencing length using high throughput, cost-efficient second-generation sequencing. We developed a method to obtain nearly full-length rDNA by assembling single DNA molecules combining DNA co-barcoding with single-tube long fragment read technology and second-generation sequencing. Benchmarking was performed using mock bacterial and fungal communities as well as two forest soil samples. All mock species rDNA were successfully recovered with identities above 99.5% compared to the reference sequences. From the soil samples we obtained good coverage with identification of more than 20,000 unknown species, as well as high abundance correlation between replicates. This approach provides a cost-effective method for obtaining extensive and accurate information on complex environmental microbial communities.
10.1016/j.crmeth.2023.100437
Transcriptional Integration of Distinct Microbial and Nutritional Signals by the Small Intestinal Epithelium.
Cellular and molecular gastroenterology and hepatology
BACKGROUND & AIMS:The intestine constantly interprets and adapts to complex combinations of dietary and microbial stimuli. However, the transcriptional strategies by which the intestinal epithelium integrates these coincident sources of information remain unresolved. We recently found that microbiota colonization suppresses epithelial activity of hepatocyte nuclear factor 4 nuclear receptor transcription factors, but their integrative regulation was unknown. METHODS:We compared adult mice reared germ-free or conventionalized with a microbiota either fed normally or after a single high-fat meal. Preparations of unsorted jejunal intestinal epithelial cells were queried using lipidomics and genome-wide assays for RNA sequencing and ChIP sequencing for the activating histone mark H3K27ac and hepatocyte nuclear factor 4 alpha. RESULTS:Analysis of lipid classes, genes, and regulatory regions identified distinct nutritional and microbial responses but also simultaneous influence of both stimuli. H3K27ac sites preferentially increased by high-fat meal in the presence of microbes neighbor lipid anabolism and proliferation genes, were previously identified intestinal stem cell regulatory regions, and were not hepatocyte nuclear factor 4 alpha targets. In contrast, H3K27ac sites preferentially increased by high-fat meal in the absence of microbes neighbor targets of the energy homeostasis regulator peroxisome proliferator activated receptor alpha, neighbored fatty acid oxidation genes, were previously identified enterocyte regulatory regions, and were hepatocyte factor 4 alpha bound. CONCLUSIONS:Hepatocyte factor 4 alpha supports a differentiated enterocyte and fatty acid oxidation program in germ-free mice, and that suppression of hepatocyte factor 4 alpha by the combination of microbes and high-fat meal may result in preferential activation of intestinal epithelial cell proliferation programs. This identifies potential transcriptional mechanisms for intestinal adaptation to multiple signals and how microbiota may modulate intestinal lipid absorption, epithelial cell renewal, and systemic energy balance.
10.1016/j.jcmgh.2022.04.013
Conventional Co-Housing Modulates Murine Gut Microbiota and Hematopoietic Gene Expression.
Chen Jichun,Zhang Shuling,Feng Xingmin,Wu Zhijie,Dubois Wendy,Thovarai Vishal,Ahluwalia Sonia,Gao Shouguo,Chen Jinguo,Peat Tyler,Sen Shurjo K,Trinchieri Giorgio,Young Neal S,Mock Beverly A
International journal of molecular sciences
Specific-pathogen-free (SPF) mice have improved hematopoietic characteristics relative to germ-free mice, however, it is not clear whether improvements in hematopoietic traits will continue when the level of microorganism exposure is further increased. We co-housed SPF C57BL/6 mice in a conventional facility (CVT) and found a significant increase in gut microbiota diversity along with increased levels of myeloid cells and T cells, especially effector memory T cells. Through single cell RNA sequencing of sorted KL (c-KitLin) cells, we imputed a decline in long-term hematopoietic stem cells and an increase in granulocyte-monocyte progenitors in CVT mice with up-regulation of genes associated with cell survival. Bone marrow transplantation through competitive repopulation revealed a significant increase in KSL (c-KitSca-1Lin) cell reconstitution in recipients of CVT donor cells which occurred when donors were co-housed for both one and twelve months. However, there was minimal to no gain in mature blood cell engraftment in recipients of CVT donor cells relative to those receiving SPF donor cells. We conclude that co-housing SPF mice with mice born in a conventional facility increased gut microbiota diversity, augmented myeloid cell production and T cell activation, stimulated KSL cell reconstitution, and altered hematopoietic gene expression.
10.3390/ijms21176143
IL-13-programmed airway tuft cells produce PGE2, which promotes CFTR-dependent mucociliary function.
JCI insight
Chronic type 2 (T2) inflammatory diseases of the respiratory tract are characterized by mucus overproduction and disordered mucociliary function, which are largely attributed to the effects of IL-13 on common epithelial cell types (mucus secretory and ciliated cells). The role of rare cells in airway T2 inflammation is less clear, though tuft cells have been shown to be critical in the initiation of T2 immunity in the intestine. Using bulk and single-cell RNA sequencing of airway epithelium and mouse modeling, we found that IL-13 expanded and programmed airway tuft cells toward eicosanoid metabolism and that tuft cell deficiency led to a reduction in airway prostaglandin E2 (PGE2) concentration. Allergic airway epithelia bore a signature of PGE2 activation, and PGE2 activation led to cystic fibrosis transmembrane receptor-dependent ion and fluid secretion and accelerated mucociliary transport. These data reveal a role for tuft cells in regulating epithelial mucociliary function in the allergic airway.
10.1172/jci.insight.159832
Identification of lipolytic enzymes using high-throughput single-cell screening and sorting of a metagenomic library.
New biotechnology
The demand for novel, robust microbial biocatalysts for use in industrial and pharmaceutical applications continues to increase rapidly. As a result, there is a need to develop advanced tools and technologies to exploit the vast metabolic potential of unculturable microorganisms found in various environments. Single-cell and functional metagenomics studies can explore the enzymatic potential of entire microbial communities in a given environment without the need to culture the microorganisms. This approach has contributed substantially to the discovery of unique microbial genes for industrial and medical applications. Functional metagenomics involves the extraction of microbial DNA directly from environmental samples, constructing expression libraries comprising the entire microbial genome, and screening of the libraries for the presence of desired phenotypes. In this study, lipolytic enzymes from the Red Sea were targeted. A high-throughput single-cell microfluidic platform combined with a laser-based fluorescent screening bioassay was employed to discover new genes encoding lipolytic enzymes. Analysis of the metagenomic library led to the identification of three microbial genes encoding lipases based on their functional similarity and sequence homology to known lipases. The results demonstrated that microfluidics is a robust technology that can be used for screening in functional metagenomics. The results also indicate that the Red Sea is a promising, under-investigated source of new genes and gene products.
10.1016/j.nbt.2022.05.006
Triangulation of microbial fingerprinting in anaerobic digestion reveals consistent fingerprinting profiles.
De Vrieze Jo,Heyer Robert,Props Ruben,Van Meulebroek Lieven,Gille Karen,Vanhaecke Lynn,Benndorf Dirk,Boon Nico
Water research
The anaerobic digestion microbiome has been puzzling us since the dawn of molecular methods for mixed microbial community analysis. Monitoring of the anaerobic digestion microbiome can either take place via a non-targeted holistic evaluation of the microbial community through fingerprinting or by targeted monitoring of selected taxa. Here, we compared four different microbial community fingerprinting methods, i.e., amplicon sequencing, metaproteomics, metabolomics and cytomics, in their ability to characterise the full-scale anaerobic digestion microbiome. Cytometric fingerprinting through cytomics reflects a, for anaerobic digestion, novel, single cell-based approach of direct microbial community fingerprinting by flow cytometry. Three different digester types, i.e., sludge digesters, digesters treating agro-industrial waste and dry anaerobic digesters, each reflected different operational parameters. The α-diversity analysis yielded inconsistent results, especially for richness, across the different methods. In contrast, β-diversity analysis resulted in comparable profiles, even when translated into phyla or functions, with clear separation of the three digester types. In-depth analysis of each method's features i.e., operational taxonomic units, metaproteins, metabolites, and cytometric traits, yielded certain similar features, yet, also some clear differences between the different methods, which was related to the complexity of the anaerobic digestion process. In conclusion, cytometric fingerprinting through flow cytometry is a reliable, fast method for holistic monitoring of the anaerobic digestion microbiome, and the complementary identification of key features through other methods could give rise to a direct interpretation of anaerobic digestion process performance.
10.1016/j.watres.2021.117422